gtsam/examples/elaboratePoint2KalmanFilter...

411 lines
18 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file elaboratePoint2KalmanFilter.cpp
*
* simple linear Kalman filter on a moving 2D point, but done using factor graphs
* This example manually creates all of the needed data structures
*
* @date Aug 19, 2011
* @author Frank Dellaert
* @author Stephen Williams
*/
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/base/Vector.h>
#include <cassert>
using namespace std;
using namespace gtsam;
int main() {
// [code below basically does SRIF with Cholesky]
// Create a factor graph to perform the inference
GaussianFactorGraph::shared_ptr linearFactorGraph(new GaussianFactorGraph);
// Create the desired ordering
Ordering::shared_ptr ordering(new Ordering);
// Create a structure to hold the linearization points
Values linearizationPoints;
// Ground truth example
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
// Motion model is just moving to the right (x'-x)^2
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
// i.e., we should get 0,0 0,1 0,2 if there is no noise
// Create new state variable
Symbol x0('x',0);
ordering->push_back(x0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0
Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
// Create a JacobianFactor directly - this represents the prior constraint on x0
JacobianFactor::shared_ptr factor1(
new JacobianFactor(x0, P_initial->R(), Vector::Zero(2),
noiseModel::Unit::Create(2)));
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1);
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
// For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
// Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
// where F is the state transition model/matrix, B is the control input model,
// and w is zero-mean, Gaussian white noise with covariance Q
// Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
// physical property, such as velocity or acceleration, and G is derived from physics
//
// For the purposes of this example, let us assume we are using a constant-position model and
// the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
// and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1];
//
// In the case of factor graphs, the factor related to the motion model would be defined as
// f2 = (f(x_{t}) - x_{t+1}) * Q^-1 * (f(x_{t}) - x_{t+1})^T
// Conveniently, there is a factor type, called a BetweenFactor, that can generate this factor
// given the expected difference, f(x_{t}) - x_{t+1}, and Q.
// so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t}
// = (F - I)*x_{t} + B*u_{t}
// = B*u_{t} (for our example)
Symbol x1('x',1);
ordering->push_back(x1);
Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints));
// We have now made the small factor graph f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0)
// and factor f2 is from the motion model
// Eliminate this in order x0, x1, to get Bayes net P(x0|x1)P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
//
// Because of the way GTSAM works internally, we have used nonlinear class even though this example
// system is linear. We first convert the nonlinear factor graph into a linear one, using the specified
// ordering. Linear factors are simply numbered, and are not accessible via named key like the nonlinear
// variables. Also, the nonlinear factors are linearized around an initial estimate. For a true linear
// system, the initial estimate is not important.
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianBayesNet::shared_ptr bayesNet = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& x1Conditional = bayesNet->back(); // This should be P(x1)
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = bayesNet->optimize();
Point2 x1_predict = linearizationPoints.at<Point2>(x1) + Point2(result[x1]);
traits<Point2>::Print(x1_predict, "X1 Predict");
// Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict);
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// Some care must be done here, as the linearization point in future steps will be different
// than what was used when the factor was created.
// f = || F*dx1' - (F*x0 - x1) ||^2, originally linearized at x1 = x0
// After this step, the factor needs to be linearized around x1 = x1_predict
// This changes the factor to f = || F*dx1'' - b'' ||^2
// = || F*(dx1' - (dx1' - dx1'')) - b'' ||^2
// = || F*dx1' - F*(dx1' - dx1'') - b'' ||^2
// = || F*dx1' - (b'' + F(dx1' - dx1'')) ||^2
// -> b' = b'' + F(dx1' - dx1'')
// -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
JacobianFactor::shared_ptr newPrior(new JacobianFactor(
x1,
x1Conditional->R(),
x1Conditional->d() - x1Conditional->R() * result[x1],
x1Conditional->get_model()));
// Ensure correct number of rows, that there is one variable, and that variable is x1
assert(newPrior->rows() == x1Conditional->R().rows());
assert(newPrior->size() == 1);
assert(*newPrior->begin() == x1);
// Create a new, empty graph and add the new prior
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
linearFactorGraph->push_back(newPrior);
// Reset ordering for the next step
ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x1);
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
// where f3 is the prior from the previous step, and
// where f4 is a measurement factor
//
// So, now we need to create the measurement factor, f4
// For the Kalman Filter, this is the measurement function, h(x_{t}) = z_{t}
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
//
// For the purposes of this example, let us assume we have something like a GPS that returns
// the current position of the robot. For this simple example, we can use a PriorFactor to model the
// observation as it depends on only a single state variable, x1. To model real sensor observations
// generally requires the creation of a new factor type. For example, factors for range sensors, bearing
// sensors, and camera projections have already been added to GTSAM.
//
// In the case of factor graphs, the factor related to the measurements would be defined as
// f4 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints));
// We have now made the small factor graph f3-(x1)-f4
// where factor f3 is the prior from previous time ( P(x1) )
// and factor f4 is from the measurement, z1 ( P(x1|z1) )
// Eliminate this in order x1, to get Bayes net P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianBayesNet::shared_ptr updatedBayesNet = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& updatedConditional = updatedBayesNet->back();
// Extract the current estimate of x1 from the Bayes Network
VectorValues updatedResult = updatedBayesNet->optimize();
Point2 x1_update = linearizationPoints.at<Point2>(x1) + Point2(updatedResult[x1]);
traits<Point2>::Print(x1_update, "X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
// Wash, rinse, repeat for another time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
JacobianFactor::shared_ptr updatedPrior(new JacobianFactor(
x1,
updatedConditional->R(),
updatedConditional->d() - updatedConditional->R() * updatedResult[x1],
updatedConditional->get_model()));
// Ensure correct number of rows, that there is one variable, and that variable is x1
assert(updatedPrior->rows() == updatedConditional->R().rows());
assert(updatedPrior->size() == 1);
assert(*updatedPrior->begin() == x1);
linearFactorGraph->push_back(updatedPrior);
// Create a key for the new state
Symbol x2('x',2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x1);
ordering->push_back(x2);
// Create a nonlinear factor describing the motion model (moving right again)
Point2 difference2(1,0);
SharedDiagonal Q2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
BetweenFactor<Point2> factor6(x1, x2, difference2, Q2);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianBayesNet::shared_ptr predictionBayesNet2 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& x2Conditional = predictionBayesNet2->back();
// Extract the predicted state
VectorValues prediction2Result = predictionBayesNet2->optimize();
Point2 x2_predict = linearizationPoints.at<Point2>(x2) + Point2(prediction2Result[x2]);
traits<Point2>::Print(x2_predict, "X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
JacobianFactor::shared_ptr prior2(new JacobianFactor(
x2,
x2Conditional->R(),
x2Conditional->d() - x2Conditional->R() * prediction2Result[x2],
x2Conditional->get_model()));
assert(prior2->rows() == x2Conditional->R().rows());
assert(prior2->size() == 1);
assert(*prior2->begin() == x2);
linearFactorGraph->push_back(prior2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x2);
// And update using z2 ...
Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
// and factor f8 is from the measurement, z2 ( P(x2|z2) )
// Eliminate this in order x2, to get Bayes net P(x2)
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianBayesNet::shared_ptr updatedBayesNet2 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& updatedConditional2 = updatedBayesNet2->back();
// Extract the current estimate of x2 from the Bayes Network
VectorValues updatedResult2 = updatedBayesNet2->optimize();
Point2 x2_update = linearizationPoints.at<Point2>(x2) + Point2(updatedResult2[x2]);
traits<Point2>::Print(x2_update, "X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
// Wash, rinse, repeat for a third time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
Matrix updatedR2 = updatedConditional2->R();
Vector updatedD2 = updatedConditional2->d() - updatedR2 * updatedResult2[x2];
JacobianFactor::shared_ptr updatedPrior2(new JacobianFactor(
x2,
updatedR2,
updatedD2,
updatedConditional2->get_model()));
linearFactorGraph->push_back(updatedPrior2);
// Create a key for the new state
Symbol x3('x',3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x2);
ordering->push_back(x3);
// Create a nonlinear factor describing the motion model
Point2 difference3(1,0);
SharedDiagonal Q3 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
BetweenFactor<Point2> factor10(x2, x3, difference3, Q3);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianBayesNet::shared_ptr predictionBayesNet3 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& x3Conditional = predictionBayesNet3->back();
// Extract the current estimate of x3 from the Bayes Network
VectorValues prediction3Result = predictionBayesNet3->optimize();
Point2 x3_predict = linearizationPoints.at<Point2>(x3) + Point2(prediction3Result[x3]);
traits<Point2>::Print(x3_predict, "X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
JacobianFactor::shared_ptr prior3(new JacobianFactor(
x3,
x3Conditional->R(),
x3Conditional->d() - x3Conditional->R() * prediction3Result[x3],
x3Conditional->get_model()));
linearFactorGraph->push_back(prior3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x3);
// And update using z3 ...
Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
// and factor f12 is from the measurement, z3 ( P(x3|z3) )
// Eliminate this in order x3, to get Bayes net P(x3)
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianBayesNet::shared_ptr updatedBayesNet3 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& updatedConditional3 = updatedBayesNet3->back();
// Extract the current estimate of x2 from the Bayes Network
VectorValues updatedResult3 = updatedBayesNet3->optimize();
Point2 x3_update = linearizationPoints.at<Point2>(x3) + Point2(updatedResult3[x3]);
traits<Point2>::Print(x3_update, "X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);
return 0;
}