Wrap generates Matlab namespaces, so now 'import gtsam.*' allows class names like Values, NonlinearFactor, to be used. Without import, syntax is gtsam.Values, etc.

release/4.3a0
Richard Roberts 2012-07-18 15:47:06 +00:00
parent 8fa77de2a0
commit 8dbffd4629
55 changed files with 493 additions and 389 deletions

View File

@ -6,12 +6,12 @@ message(STATUS "Installing Matlab Utility Functions")
file(GLOB matlab_utils_m "${GTSAM_SOURCE_ROOT_DIR}/matlab/*.m") file(GLOB matlab_utils_m "${GTSAM_SOURCE_ROOT_DIR}/matlab/*.m")
file(GLOB matlab_utils_fig "${GTSAM_SOURCE_ROOT_DIR}/matlab/*.fig") file(GLOB matlab_utils_fig "${GTSAM_SOURCE_ROOT_DIR}/matlab/*.fig")
set(matlab_utils ${matlab_utils_m} ${matlab_utils_fig}) set(matlab_utils ${matlab_utils_m} ${matlab_utils_fig})
install(FILES ${matlab_utils} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam) install(FILES ${matlab_utils} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/)
# Tests # Tests
message(STATUS "Installing Matlab Toolbox Tests") message(STATUS "Installing Matlab Toolbox Tests")
file(GLOB matlab_tests "${GTSAM_SOURCE_ROOT_DIR}/matlab/tests/*.m") file(GLOB matlab_tests "${GTSAM_SOURCE_ROOT_DIR}/matlab/tests/*.m")
install(FILES ${matlab_tests} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam/tests) install(FILES ${matlab_tests} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam_tests)
# Examples # Examples
message(STATUS "Installing Matlab Toolbox Examples") message(STATUS "Installing Matlab Toolbox Examples")
@ -19,11 +19,11 @@ message(STATUS "Installing Matlab Toolbox Examples")
file(GLOB matlab_examples_m "${GTSAM_SOURCE_ROOT_DIR}/matlab/examples/*.m") file(GLOB matlab_examples_m "${GTSAM_SOURCE_ROOT_DIR}/matlab/examples/*.m")
file(GLOB matlab_examples_fig "${GTSAM_SOURCE_ROOT_DIR}/matlab/examples/*.fig") file(GLOB matlab_examples_fig "${GTSAM_SOURCE_ROOT_DIR}/matlab/examples/*.fig")
set(matlab_examples ${matlab_examples_m} ${matlab_examples_fig}) set(matlab_examples ${matlab_examples_m} ${matlab_examples_fig})
install(FILES ${matlab_examples} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam/examples) install(FILES ${matlab_examples} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam_examples)
message(STATUS "Installing Matlab Toolbox Examples (Data)") message(STATUS "Installing Matlab Toolbox Examples (Data)")
# Data files: *.graph and *.txt # Data files: *.graph and *.txt
file(GLOB matlab_examples_data_graph "${GTSAM_SOURCE_ROOT_DIR}/examples/Data/*.graph") file(GLOB matlab_examples_data_graph "${GTSAM_SOURCE_ROOT_DIR}/examples/Data/*.graph")
file(GLOB matlab_examples_data_txt "${GTSAM_SOURCE_ROOT_DIR}/examples/Data/*.txt") file(GLOB matlab_examples_data_txt "${GTSAM_SOURCE_ROOT_DIR}/examples/Data/*.txt")
set(matlab_examples_data ${matlab_examples_data_graph} ${matlab_examples_data_txt}) set(matlab_examples_data ${matlab_examples_data_graph} ${matlab_examples_data_txt})
install(FILES ${matlab_examples_data} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam/Data) install(FILES ${matlab_examples_data} DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam_examples/Data)

View File

@ -3,33 +3,35 @@ function [data,truth] = VisualISAMGenerateData(options)
% Authors: Duy Nguyen Ta and Frank Dellaert % Authors: Duy Nguyen Ta and Frank Dellaert
%% Generate simulated data %% Generate simulated data
import gtsam.*
if options.triangle % Create a triangle target, just 3 points on a plane if options.triangle % Create a triangle target, just 3 points on a plane
nrPoints = 3; nrPoints = 3;
r = 10; r = 10;
for j=1:nrPoints for j=1:nrPoints
theta = (j-1)*2*pi/nrPoints; theta = (j-1)*2*pi/nrPoints;
truth.points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]'); truth.points{j} = Point3([r*cos(theta), r*sin(theta), 0]');
end end
else % 3D landmarks as vertices of a cube else % 3D landmarks as vertices of a cube
nrPoints = 8; nrPoints = 8;
truth.points = {gtsamPoint3([10 10 10]'),... truth.points = {Point3([10 10 10]'),...
gtsamPoint3([-10 10 10]'),... Point3([-10 10 10]'),...
gtsamPoint3([-10 -10 10]'),... Point3([-10 -10 10]'),...
gtsamPoint3([10 -10 10]'),... Point3([10 -10 10]'),...
gtsamPoint3([10 10 -10]'),... Point3([10 10 -10]'),...
gtsamPoint3([-10 10 -10]'),... Point3([-10 10 -10]'),...
gtsamPoint3([-10 -10 -10]'),... Point3([-10 -10 -10]'),...
gtsamPoint3([10 -10 -10]')}; Point3([10 -10 -10]')};
end end
%% Create camera cameras on a circle around the triangle %% Create camera cameras on a circle around the triangle
import gtsam.*
height = 10; r = 40; height = 10; r = 40;
truth.K = gtsamCal3_S2(500,500,0,640/2,480/2); truth.K = Cal3_S2(500,500,0,640/2,480/2);
data.K = truth.K; data.K = truth.K;
for i=1:options.nrCameras for i=1:options.nrCameras
theta = (i-1)*2*pi/options.nrCameras; theta = (i-1)*2*pi/options.nrCameras;
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]'); t = Point3([r*cos(theta), r*sin(theta), height]');
truth.cameras{i} = gtsamSimpleCamera.Lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), truth.K); truth.cameras{i} = SimpleCamera.Lookat(t, Point3, Point3([0,0,1]'), truth.K);
% Create measurements % Create measurements
for j=1:nrPoints for j=1:nrPoints
% All landmarks seen in every frame % All landmarks seen in every frame

View File

@ -3,18 +3,19 @@ function [noiseModels,isam,result] = VisualISAMInitialize(data,truth,options)
% Authors: Duy Nguyen Ta, Frank Dellaert and Alex Cunningham % Authors: Duy Nguyen Ta, Frank Dellaert and Alex Cunningham
%% Initialize iSAM %% Initialize iSAM
isam = visualSLAMISAM(options.reorderInterval); isam = visualSLAM.ISAM(options.reorderInterval);
%% Set Noise parameters %% Set Noise parameters
noiseModels.pose = gtsamnoiseModelDiagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); import gtsam.*
noiseModels.odometry = gtsamnoiseModelDiagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); noiseModels.pose = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
noiseModels.point = gtsamnoiseModelIsotropic.Sigma(3, 0.1); noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
noiseModels.measurement = gtsamnoiseModelIsotropic.Sigma(2, 1.0); noiseModels.point = noiseModel.Isotropic.Sigma(3, 0.1);
noiseModels.measurement = noiseModel.Isotropic.Sigma(2, 1.0);
%% Add constraints/priors %% Add constraints/priors
% TODO: should not be from ground truth! % TODO: should not be from ground truth!
newFactors = visualSLAMGraph; newFactors = visualSLAM.Graph;
initialEstimates = visualSLAMValues; initialEstimates = visualSLAM.Values;
for i=1:2 for i=1:2
ii = symbol('x',i); ii = symbol('x',i);
if i==1 if i==1

View File

@ -21,10 +21,11 @@ for j=0:N-1 % NOTE: uses indexing directly from a C++ vector, so zero-indexed
end end
%% Plot cameras %% Plot cameras
import gtsam.*
for i=1:options.cameraInterval:M for i=1:options.cameraInterval:M
ii = symbol('x',i); ii = symbol('x',i);
pose_i = result.pose(ii); pose_i = result.pose(ii);
if options.hardConstraint & (i==1) if options.hardConstraint && (i==1)
plotPose3(pose_i,[],10); plotPose3(pose_i,[],10);
else else
P = isam.marginalCovariance(ii); P = isam.marginalCovariance(ii);

View File

@ -4,15 +4,17 @@ function [isam,result] = VisualISAMStep(data,noiseModels,isam,result,truth, opti
% iSAM expects us to give it a new set of factors % iSAM expects us to give it a new set of factors
% along with initial estimates for any new variables introduced. % along with initial estimates for any new variables introduced.
newFactors = visualSLAMGraph; newFactors = visualSLAM.Graph;
initialEstimates = visualSLAMValues; initialEstimates = visualSLAM.Values;
%% Add odometry %% Add odometry
import gtsam.*
i = result.nrPoses+1; i = result.nrPoses+1;
odometry = data.odometry{i-1}; odometry = data.odometry{i-1};
newFactors.addRelativePose(symbol('x',i-1), symbol('x',i), odometry, noiseModels.odometry); newFactors.addRelativePose(symbol('x',i-1), symbol('x',i), odometry, noiseModels.odometry);
%% Add visual measurement factors and initializations as necessary %% Add visual measurement factors and initializations as necessary
import gtsam.*
for k=1:length(data.Z{i}) for k=1:length(data.Z{i})
zij = data.Z{i}{k}; zij = data.Z{i}{k};
j = data.J{i}{k}; j = data.J{i}{k};
@ -26,6 +28,7 @@ for k=1:length(data.Z{i})
end end
%% Initial estimates for the new pose. %% Initial estimates for the new pose.
import gtsam.*
prevPose = result.pose(symbol('x',i-1)); prevPose = result.pose(symbol('x',i-1));
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry)); initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));

View File

@ -16,36 +16,41 @@
% - The robot is on a grid, moving 2 meters each step % - The robot is on a grid, moving 2 meters each step
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add two odometry factors %% Add two odometry factors
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) import gtsam.*
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
graph.addRelativePose(1, 2, odometry, odometryNoise); graph.addRelativePose(1, 2, odometry, odometryNoise);
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.addRelativePose(2, 3, odometry, odometryNoise);
%% Add three "GPS" measurements %% Add three "GPS" measurements
import gtsam.*
% We use Pose2 Priors here with high variance on theta % We use Pose2 Priors here with high variance on theta
noiseModel = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.1; 10]); priorNoise = noiseModel.Diagonal.Sigmas([0.1; 0.1; 10]);
graph.addPosePrior(1, gtsamPose2(0.0, 0.0, 0.0), noiseModel); graph.addPosePrior(1, Pose2(0.0, 0.0, 0.0), priorNoise);
graph.addPosePrior(2, gtsamPose2(2.0, 0.0, 0.0), noiseModel); graph.addPosePrior(2, Pose2(2.0, 0.0, 0.0), priorNoise);
graph.addPosePrior(3, gtsamPose2(4.0, 0.0, 0.0), noiseModel); graph.addPosePrior(3, Pose2(4.0, 0.0, 0.0), priorNoise);
%% print %% print
graph.print(sprintf('\nFactor graph:\n')); graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; import gtsam.*
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print(sprintf('\nInitial estimate:\n ')); initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
import gtsam.*
result = graph.optimize(initialEstimate,1); result = graph.optimize(initialEstimate,1);
result.print(sprintf('\nFinal result:\n ')); result.print(sprintf('\nFinal result:\n '));
%% Plot Covariance Ellipses %% Plot Covariance Ellipses
import gtsam.*
cla; cla;
X=result.poses(); X=result.poses();
plot(X(:,1),X(:,2),'k*-'); hold on plot(X(:,1),X(:,2),'k*-'); hold on

View File

@ -16,16 +16,18 @@
% - The robot is on a grid, moving 2 meters each step % - The robot is on a grid, moving 2 meters each step
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add a Gaussian prior on pose x_1 %% Add a Gaussian prior on pose x_1
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior mean is at origin import gtsam.*
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
%% Add two odometry factors %% Add two odometry factors
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) import gtsam.*
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
graph.addRelativePose(1, 2, odometry, odometryNoise); graph.addRelativePose(1, 2, odometry, odometryNoise);
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.addRelativePose(2, 3, odometry, odometryNoise);
@ -33,10 +35,11 @@ graph.addRelativePose(2, 3, odometry, odometryNoise);
graph.print(sprintf('\nFactor graph:\n')); graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; import gtsam.*
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print(sprintf('\nInitial estimate:\n ')); initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
@ -44,6 +47,7 @@ result = graph.optimize(initialEstimate,1);
result.print(sprintf('\nFinal result:\n ')); result.print(sprintf('\nFinal result:\n '));
%% Plot Covariance Ellipses %% Plot Covariance Ellipses
import gtsam.*
cla; cla;
X=result.poses(); X=result.poses();
plot(X(:,1),X(:,2),'k*-'); hold on plot(X(:,1),X(:,2),'k*-'); hold on

View File

@ -20,40 +20,45 @@
% - Landmarks are 2 meters away from the robot trajectory % - Landmarks are 2 meters away from the robot trajectory
%% Create keys for variables %% Create keys for variables
import gtsam.*
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
j1 = symbol('l',1); j2 = symbol('l',2); j1 = symbol('l',1); j2 = symbol('l',2);
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = planarSLAMGraph; graph = planarSLAM.Graph;
%% Add prior %% Add prior
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin import gtsam.*
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
%% Add odometry %% Add odometry
odometry = gtsamPose2(2.0, 0.0, 0.0); import gtsam.*
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); odometry = Pose2(2.0, 0.0, 0.0);
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(i1, i2, odometry, odometryNoise); graph.addRelativePose(i1, i2, odometry, odometryNoise);
graph.addRelativePose(i2, i3, odometry, odometryNoise); graph.addRelativePose(i2, i3, odometry, odometryNoise);
%% Add bearing/range measurement factors %% Add bearing/range measurement factors
import gtsam.*
degrees = pi/180; degrees = pi/180;
noiseModel = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.2]); brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel); graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise);
graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise);
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise);
% print % print
graph.print(sprintf('\nFull graph:\n')); graph.print(sprintf('\nFull graph:\n'));
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = planarSLAMValues; import gtsam.*
initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate = planarSLAM.Values;
initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(i1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(i2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1)); initialEstimate.insertPose(i3, Pose2(4.1, 0.1, 0.1));
initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8)); initialEstimate.insertPoint(j1, Point2(1.8, 2.1));
initialEstimate.insertPoint(j2, Point2(4.1, 1.8));
initialEstimate.print(sprintf('\nInitial estimate:\n')); initialEstimate.print(sprintf('\nInitial estimate:\n'));
@ -62,6 +67,7 @@ result = graph.optimize(initialEstimate,1);
result.print(sprintf('\nFinal result:\n')); result.print(sprintf('\nFinal result:\n'));
%% Plot Covariance Ellipses %% Plot Covariance Ellipses
import gtsam.*
cla;hold on cla;hold on
marginals = graph.marginals(result); marginals = graph.marginals(result);
for i=1:3 for i=1:3

View File

@ -12,37 +12,39 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create the same factor graph as in PlanarSLAMExample %% Create the same factor graph as in PlanarSLAMExample
import gtsam.*
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
graph = planarSLAMGraph; graph = planarSLAM.Graph;
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
odometry = gtsamPose2(2.0, 0.0, 0.0); odometry = Pose2(2.0, 0.0, 0.0);
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(i1, i2, odometry, odometryNoise); graph.addRelativePose(i1, i2, odometry, odometryNoise);
graph.addRelativePose(i2, i3, odometry, odometryNoise); graph.addRelativePose(i2, i3, odometry, odometryNoise);
%% Except, for measurements we offer a choice %% Except, for measurements we offer a choice
import gtsam.*
j1 = symbol('l',1); j2 = symbol('l',2); j1 = symbol('l',1); j2 = symbol('l',2);
degrees = pi/180; degrees = pi/180;
noiseModel = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.2]); brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
if 1 if 1
graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel); graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise);
graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise);
else else
bearingModel = gtsamnoiseModelDiagonal.Sigmas(0.1); bearingModel = noiseModel.Diagonal.Sigmas(0.1);
graph.addBearing(i1, j1, gtsamRot2(45*degrees), bearingModel); graph.addBearing(i1, j1, Rot2(45*degrees), bearingModel);
graph.addBearing(i2, j1, gtsamRot2(90*degrees), bearingModel); graph.addBearing(i2, j1, Rot2(90*degrees), bearingModel);
end end
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise);
%% Initialize MCMC sampler with ground truth %% Initialize MCMC sampler with ground truth
sample = planarSLAMValues; sample = planarSLAM.Values;
sample.insertPose(i1, gtsamPose2(0,0,0)); sample.insertPose(i1, Pose2(0,0,0));
sample.insertPose(i2, gtsamPose2(2,0,0)); sample.insertPose(i2, Pose2(2,0,0));
sample.insertPose(i3, gtsamPose2(4,0,0)); sample.insertPose(i3, Pose2(4,0,0));
sample.insertPoint(j1, gtsamPoint2(2,2)); sample.insertPoint(j1, Point2(2,2));
sample.insertPoint(j2, gtsamPoint2(4,2)); sample.insertPoint(j2, Point2(4,2));
%% Calculate and plot Covariance Ellipses %% Calculate and plot Covariance Ellipses
figure(1);clf;hold on figure(1);clf;hold on
@ -74,6 +76,6 @@ axis equal
N=1000; N=1000;
for s=1:N for s=1:N
delta = S{2}*randn(2,1); delta = S{2}*randn(2,1);
proposedPoint = gtsamPoint2(point{2}.x+delta(1),point{2}.y+delta(2)); proposedPoint = Point2(point{2}.x+delta(1),point{2}.y+delta(2));
plotPoint2(proposedPoint,'k.') plotPoint2(proposedPoint,'k.')
end end

View File

@ -19,36 +19,40 @@
% - The robot is on a grid, moving 2 meters each step % - The robot is on a grid, moving 2 meters each step
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add prior %% Add prior
import gtsam.*
% gaussian for prior % gaussian for prior
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
%% Add odometry %% Add odometry
import gtsam.*
% general noisemodel for odometry % general noisemodel for odometry
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(1, 2, gtsamPose2(2.0, 0.0, 0.0 ), odometryNoise); graph.addRelativePose(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise);
graph.addRelativePose(2, 3, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise);
graph.addRelativePose(3, 4, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise);
graph.addRelativePose(4, 5, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise);
%% Add pose constraint %% Add pose constraint
model = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); import gtsam.*
graph.addRelativePose(5, 2, gtsamPose2(2.0, 0.0, pi/2), model); model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(5, 2, Pose2(2.0, 0.0, pi/2), model);
% print % print
graph.print(sprintf('\nFactor graph:\n')); graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; import gtsam.*
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2 )); initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2 )); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2 ));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, pi/2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2 ));
initialEstimate.insertPose(4, gtsamPose2(4.0, 2.0, pi )); initialEstimate.insertPose(3, Pose2(4.1, 0.1, pi/2));
initialEstimate.insertPose(5, gtsamPose2(2.1, 2.1,-pi/2)); initialEstimate.insertPose(4, Pose2(4.0, 2.0, pi ));
initialEstimate.insertPose(5, Pose2(2.1, 2.1,-pi/2));
initialEstimate.print(sprintf('\nInitial estimate:\n')); initialEstimate.print(sprintf('\nInitial estimate:\n'));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd

View File

@ -21,38 +21,42 @@
% - The robot is on a grid, moving 2 meters each step % - The robot is on a grid, moving 2 meters each step
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add prior %% Add prior
import gtsam.*
% gaussian for prior % gaussian for prior
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
%% Add odometry %% Add odometry
import gtsam.*
% general noisemodel for odometry % general noisemodel for odometry
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
graph.addRelativePose(1, 2, odometry, odometryNoise); graph.addRelativePose(1, 2, odometry, odometryNoise);
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.addRelativePose(2, 3, odometry, odometryNoise);
%% Add measurements %% Add measurements
import gtsam.*
% general noisemodel for measurements % general noisemodel for measurements
measurementNoise = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.2]); measurementNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
% print % print
graph.print('full graph'); graph.print('full graph');
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; import gtsam.*
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print('initial estimate'); initialEstimate.print('initial estimate');
%% set up solver, choose ordering and optimize %% set up solver, choose ordering and optimize
%params = gtsamNonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15); %params = NonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15);
% %
%ord = graph.orderingCOLAMD(initialEstimate); %ord = graph.orderingCOLAMD(initialEstimate);
% %

View File

@ -11,15 +11,15 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create a hexagon of poses %% Create a hexagon of poses
hexagon = pose2SLAMValues.Circle(6,1.0); hexagon = pose2SLAM.Values.Circle(6,1.0);
p0 = hexagon.pose(0); p0 = hexagon.pose(0);
p1 = hexagon.pose(1); p1 = hexagon.pose(1);
%% create a Pose graph with one equality constraint and one measurement %% create a Pose graph with one equality constraint and one measurement
fg = pose2SLAMGraph; fg = pose2SLAM.Graph;
fg.addPoseConstraint(0, p0); fg.addPoseConstraint(0, p0);
delta = p0.between(p1); delta = p0.between(p1);
covariance = gtsamnoiseModelDiagonal.Sigmas([0.05; 0.05; 5*pi/180]); covariance = gtsam.noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
fg.addRelativePose(0,1, delta, covariance); fg.addRelativePose(0,1, delta, covariance);
fg.addRelativePose(1,2, delta, covariance); fg.addRelativePose(1,2, delta, covariance);
fg.addRelativePose(2,3, delta, covariance); fg.addRelativePose(2,3, delta, covariance);
@ -28,7 +28,7 @@ fg.addRelativePose(4,5, delta, covariance);
fg.addRelativePose(5,0, delta, covariance); fg.addRelativePose(5,0, delta, covariance);
%% Create initial config %% Create initial config
initial = pose2SLAMValues; initial = pose2SLAM.Values;
initial.insertPose(0, p0); initial.insertPose(0, p0);
initial.insertPose(1, hexagon.pose(1).retract([-0.1, 0.1,-0.1]')); initial.insertPose(1, hexagon.pose(1).retract([-0.1, 0.1,-0.1]'));
initial.insertPose(2, hexagon.pose(2).retract([ 0.1,-0.1, 0.1]')); initial.insertPose(2, hexagon.pose(2).retract([ 0.1,-0.1, 0.1]'));

View File

@ -11,13 +11,15 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Initialize graph, initial estimate, and odometry noise %% Initialize graph, initial estimate, and odometry noise
model = gtsamnoiseModelDiagonal.Sigmas([0.05; 0.05; 5*pi/180]); import gtsam.*
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
[graph,initial]=load2D('../../examples/Data/w100-odom.graph',model); [graph,initial]=load2D('../../examples/Data/w100-odom.graph',model);
initial.print(sprintf('Initial estimate:\n')); initial.print(sprintf('Initial estimate:\n'));
%% Add a Gaussian prior on pose x_1 %% Add a Gaussian prior on pose x_1
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior mean is at origin import gtsam.*
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.01; 0.01; 0.01]); priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
%% Plot Initial Estimate %% Plot Initial Estimate

View File

@ -17,36 +17,39 @@
% - The robot is on a grid, moving 2 meters each step % - The robot is on a grid, moving 2 meters each step
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add prior %% Add prior
import gtsam.*
% gaussian for prior % gaussian for prior
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.addPrior(1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
%% Add odometry %% Add odometry
import gtsam.*
% general noisemodel for odometry % general noisemodel for odometry
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addOdometry(1, 2, gtsamPose2(2.0, 0.0, 0.0 ), odometryNoise); graph.addRelativePose(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise);
graph.addOdometry(2, 3, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise);
graph.addOdometry(3, 4, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise);
graph.addOdometry(4, 5, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise);
%% Add pose constraint %% Add pose constraint
model = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); import gtsam.*
graph.addRelativePose(5, 2, gtsamPose2(2.0, 0.0, pi/2), model); model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(5, 2, Pose2(2.0, 0.0, pi/2), model);
% print % print
graph.print(sprintf('\nFactor graph:\n')); graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2 )); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2 ));
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2 )); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2 ));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, pi/2)); initialEstimate.insertPose(3, Pose2(4.1, 0.1, pi/2));
initialEstimate.insertPose(4, gtsamPose2(4.0, 2.0, pi )); initialEstimate.insertPose(4, Pose2(4.0, 2.0, pi ));
initialEstimate.insertPose(5, gtsamPose2(2.1, 2.1,-pi/2)); initialEstimate.insertPose(5, Pose2(2.1, 2.1,-pi/2));
initialEstimate.print(sprintf('\nInitial estimate:\n')); initialEstimate.print(sprintf('\nInitial estimate:\n'));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd

View File

@ -11,15 +11,15 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create a hexagon of poses %% Create a hexagon of poses
hexagon = pose3SLAMValues.Circle(6,1.0); hexagon = pose3SLAM.Values.Circle(6,1.0);
p0 = hexagon.pose(0); p0 = hexagon.pose(0);
p1 = hexagon.pose(1); p1 = hexagon.pose(1);
%% create a Pose graph with one equality constraint and one measurement %% create a Pose graph with one equality constraint and one measurement
fg = pose3SLAMGraph; fg = pose3SLAM.Graph;
fg.addPoseConstraint(0, p0); fg.addPoseConstraint(0, p0);
delta = p0.between(p1); delta = p0.between(p1);
covariance = gtsamnoiseModelDiagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]); covariance = gtsam.noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
fg.addRelativePose(0,1, delta, covariance); fg.addRelativePose(0,1, delta, covariance);
fg.addRelativePose(1,2, delta, covariance); fg.addRelativePose(1,2, delta, covariance);
fg.addRelativePose(2,3, delta, covariance); fg.addRelativePose(2,3, delta, covariance);
@ -28,7 +28,7 @@ fg.addRelativePose(4,5, delta, covariance);
fg.addRelativePose(5,0, delta, covariance); fg.addRelativePose(5,0, delta, covariance);
%% Create initial config %% Create initial config
initial = pose3SLAMValues; initial = pose3SLAM.Values;
s = 0.10; s = 0.10;
initial.insertPose(0, p0); initial.insertPose(0, p0);
initial.insertPose(1, hexagon.pose(1).retract(s*randn(6,1))); initial.insertPose(1, hexagon.pose(1).retract(s*randn(6,1)));

View File

@ -16,7 +16,7 @@ N = 2500;
filename = '../../examples/Data/sphere2500.txt'; filename = '../../examples/Data/sphere2500.txt';
%% Initialize graph, initial estimate, and odometry noise %% Initialize graph, initial estimate, and odometry noise
model = gtsamnoiseModelDiagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]); model = gtsam.noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
[graph,initial]=load3D(filename,model,true,N); [graph,initial]=load3D(filename,model,true,N);
%% Plot Initial Estimate %% Plot Initial Estimate
@ -27,6 +27,6 @@ plot3DTrajectory(initial,'g-',false);
%% Read again, now with all constraints, and optimize %% Read again, now with all constraints, and optimize
graph = load3D(filename,model,false,N); graph = load3D(filename,model,false,N);
graph.addHardConstraint(0, first); graph.addPoseConstraint(0, first);
result = graph.optimize(initial); result = graph.optimize(initial);
plot3DTrajectory(result,'r-',false); axis equal; plot3DTrajectory(result,'r-',false); axis equal;

View File

@ -30,11 +30,12 @@ cameraNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1 ...
0.001*ones(1,5)]'; 0.001*ones(1,5)]';
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
graph = sparseBAGraph; graph = sparseBA.Graph;
%% Add factors for all measurements %% Add factors for all measurements
measurementNoise = gtsamnoiseModelIsotropic.Sigma(2,measurementNoiseSigma); import gtsam.*
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
for i=1:length(data.Z) for i=1:length(data.Z)
for k=1:length(data.Z{i}) for k=1:length(data.Z{i})
j = data.J{i}{k}; j = data.J{i}{k};
@ -43,11 +44,12 @@ for i=1:length(data.Z)
end end
%% Add Gaussian priors for a pose and a landmark to constrain the system %% Add Gaussian priors for a pose and a landmark to constrain the system
cameraPriorNoise = gtsamnoiseModelDiagonal.Sigmas(cameraNoiseSigmas); import gtsam.*
firstCamera = gtsamSimpleCamera(truth.cameras{1}.pose, truth.K); cameraPriorNoise = noiseModel.Diagonal.Sigmas(cameraNoiseSigmas);
firstCamera = SimpleCamera(truth.cameras{1}.pose, truth.K);
graph.addSimpleCameraPrior(symbol('c',1), firstCamera, cameraPriorNoise); graph.addSimpleCameraPrior(symbol('c',1), firstCamera, cameraPriorNoise);
pointPriorNoise = gtsamnoiseModelIsotropic.Sigma(3,pointNoiseSigma); pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise); graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise);
%% Print the graph %% Print the graph
@ -55,10 +57,11 @@ graph.print(sprintf('\nFactor graph:\n'));
%% Initialize cameras and points close to ground truth in this example %% Initialize cameras and points close to ground truth in this example
initialEstimate = sparseBAValues; import gtsam.*
initialEstimate = sparseBA.Values;
for i=1:size(truth.cameras,2) for i=1:size(truth.cameras,2)
pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1)); pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1));
camera_i = gtsamSimpleCamera(pose_i, truth.K); camera_i = SimpleCamera(pose_i, truth.K);
initialEstimate.insertSimpleCamera(symbol('c',i), camera_i); initialEstimate.insertSimpleCamera(symbol('c',i), camera_i);
end end
for j=1:size(truth.points,2) for j=1:size(truth.points,2)
@ -69,7 +72,8 @@ initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Fine grain optimization, allowing user to iterate step by step %% Fine grain optimization, allowing user to iterate step by step
parameters = gtsamLevenbergMarquardtParams; import gtsam.*
parameters = LevenbergMarquardtParams;
parameters.setlambdaInitial(1.0); parameters.setlambdaInitial(1.0);
parameters.setVerbosityLM('trylambda'); parameters.setVerbosityLM('trylambda');

View File

@ -29,10 +29,11 @@ pointNoiseSigma = 0.1;
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
graph = visualSLAMGraph; graph = visualSLAM.Graph;
%% Add factors for all measurements %% Add factors for all measurements
measurementNoise = gtsamnoiseModelIsotropic.Sigma(2,measurementNoiseSigma); import gtsam.*
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
for i=1:length(data.Z) for i=1:length(data.Z)
for k=1:length(data.Z{i}) for k=1:length(data.Z{i})
j = data.J{i}{k}; j = data.J{i}{k};
@ -41,16 +42,17 @@ for i=1:length(data.Z)
end end
%% Add Gaussian priors for a pose and a landmark to constrain the system %% Add Gaussian priors for a pose and a landmark to constrain the system
posePriorNoise = gtsamnoiseModelDiagonal.Sigmas(poseNoiseSigmas); import gtsam.*
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise); graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise);
pointPriorNoise = gtsamnoiseModelIsotropic.Sigma(3,pointNoiseSigma); pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise); graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise);
%% Print the graph %% Print the graph
graph.print(sprintf('\nFactor graph:\n')); graph.print(sprintf('\nFactor graph:\n'));
%% Initialize cameras and points close to ground truth in this example %% Initialize cameras and points close to ground truth in this example
initialEstimate = visualSLAMValues; initialEstimate = visualSLAM.Values;
for i=1:size(truth.cameras,2) for i=1:size(truth.cameras,2)
pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1)); pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1));
initialEstimate.insertPose(symbol('x',i), pose_i); initialEstimate.insertPose(symbol('x',i), pose_i);
@ -63,7 +65,8 @@ initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Fine grain optimization, allowing user to iterate step by step %% Fine grain optimization, allowing user to iterate step by step
parameters = gtsamLevenbergMarquardtParams; import gtsam.*
parameters = LevenbergMarquardtParams;
parameters.setlambdaInitial(1.0); parameters.setlambdaInitial(1.0);
parameters.setVerbosityLM('trylambda'); parameters.setVerbosityLM('trylambda');

View File

@ -22,37 +22,41 @@ x1 = symbol('x',1); x2 = symbol('x',2);
l1 = symbol('l',1); l2 = symbol('l',2); l3 = symbol('l',3); l1 = symbol('l',1); l2 = symbol('l',2); l3 = symbol('l',3);
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = visualSLAMGraph; graph = visualSLAM.Graph;
%% add a constraint on the starting pose %% add a constraint on the starting pose
first_pose = gtsamPose3(); import gtsam.*
first_pose = Pose3();
graph.addPoseConstraint(x1, first_pose); graph.addPoseConstraint(x1, first_pose);
%% Create realistic calibration and measurement noise model %% Create realistic calibration and measurement noise model
% format: fx fy skew cx cy baseline % format: fx fy skew cx cy baseline
K = gtsamCal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2); import gtsam.*
stereo_model = gtsamnoiseModelDiagonal.Sigmas([1.0; 1.0; 1.0]); K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2);
stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
%% Add measurements %% Add measurements
import gtsam.*
% pose 1 % pose 1
graph.addStereoMeasurement(gtsamStereoPoint2(520, 480, 440), stereo_model, x1, l1, K); graph.addStereoMeasurement(StereoPoint2(520, 480, 440), stereo_model, x1, l1, K);
graph.addStereoMeasurement(gtsamStereoPoint2(120, 80, 440), stereo_model, x1, l2, K); graph.addStereoMeasurement(StereoPoint2(120, 80, 440), stereo_model, x1, l2, K);
graph.addStereoMeasurement(gtsamStereoPoint2(320, 280, 140), stereo_model, x1, l3, K); graph.addStereoMeasurement(StereoPoint2(320, 280, 140), stereo_model, x1, l3, K);
%pose 2 %pose 2
graph.addStereoMeasurement(gtsamStereoPoint2(570, 520, 490), stereo_model, x2, l1, K); graph.addStereoMeasurement(StereoPoint2(570, 520, 490), stereo_model, x2, l1, K);
graph.addStereoMeasurement(gtsamStereoPoint2( 70, 20, 490), stereo_model, x2, l2, K); graph.addStereoMeasurement(StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K);
graph.addStereoMeasurement(gtsamStereoPoint2(320, 270, 115), stereo_model, x2, l3, K); graph.addStereoMeasurement(StereoPoint2(320, 270, 115), stereo_model, x2, l3, K);
%% Create initial estimate for camera poses and landmarks %% Create initial estimate for camera poses and landmarks
initialEstimate = visualSLAMValues; import gtsam.*
initialEstimate = visualSLAM.Values;
initialEstimate.insertPose(x1, first_pose); initialEstimate.insertPose(x1, first_pose);
% noisy estimate for pose 2 % noisy estimate for pose 2
initialEstimate.insertPose(x2, gtsamPose3(gtsamRot3(), gtsamPoint3(0.1,-.1,1.1))); initialEstimate.insertPose(x2, Pose3(Rot3(), Point3(0.1,-.1,1.1)));
initialEstimate.insertPoint(l1, gtsamPoint3( 1, 1, 5)); initialEstimate.insertPoint(l1, Point3( 1, 1, 5));
initialEstimate.insertPoint(l2, gtsamPoint3(-1, 1, 5)); initialEstimate.insertPoint(l2, Point3(-1, 1, 5));
initialEstimate.insertPoint(l3, gtsamPoint3( 0,-.5, 5)); initialEstimate.insertPoint(l3, Point3( 0,-.5, 5));
%% optimize %% optimize
fprintf(1,'Optimizing\n'); tic fprintf(1,'Optimizing\n'); tic

View File

@ -11,40 +11,43 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Load calibration %% Load calibration
import gtsam.*
% format: fx fy skew cx cy baseline % format: fx fy skew cx cy baseline
calib = dlmread('../../examples/Data/VO_calibration.txt'); calib = dlmread('../../examples/Data/VO_calibration.txt');
K = gtsamCal3_S2Stereo(calib(1), calib(2), calib(3), calib(4), calib(5), calib(6)); K = Cal3_S2Stereo(calib(1), calib(2), calib(3), calib(4), calib(5), calib(6));
stereo_model = gtsamnoiseModelDiagonal.Sigmas([1.0; 1.0; 1.0]); stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
%% create empty graph and values %% create empty graph and values
graph = visualSLAMGraph; graph = visualSLAM.Graph;
initial = visualSLAMValues; initial = visualSLAM.Values;
%% load the initial poses from VO %% load the initial poses from VO
% row format: camera_id 4x4 pose (row, major) % row format: camera_id 4x4 pose (row, major)
import gtsam.*
fprintf(1,'Reading data\n'); fprintf(1,'Reading data\n');
cameras = dlmread('../../examples/Data/VO_camera_poses_large.txt'); cameras = dlmread('../../examples/Data/VO_camera_poses_large.txt');
for i=1:size(cameras,1) for i=1:size(cameras,1)
pose = gtsamPose3(reshape(cameras(i,2:17),4,4)'); pose = Pose3(reshape(cameras(i,2:17),4,4)');
initial.insertPose(symbol('x',cameras(i,1)),pose); initial.insertPose(symbol('x',cameras(i,1)),pose);
end end
%% load stereo measurements and initialize landmarks %% load stereo measurements and initialize landmarks
% camera_id landmark_id uL uR v X Y Z % camera_id landmark_id uL uR v X Y Z
import gtsam.*
measurements = dlmread('../../examples/Data/VO_stereo_factors_large.txt'); measurements = dlmread('../../examples/Data/VO_stereo_factors_large.txt');
fprintf(1,'Creating Graph\n'); tic fprintf(1,'Creating Graph\n'); tic
for i=1:size(measurements,1) for i=1:size(measurements,1)
sf = measurements(i,:); sf = measurements(i,:);
graph.addStereoMeasurement(gtsamStereoPoint2(sf(3),sf(4),sf(5)), stereo_model, ... graph.addStereoMeasurement(StereoPoint2(sf(3),sf(4),sf(5)), stereo_model, ...
symbol('x', sf(1)), symbol('l', sf(2)), K); symbol('x', sf(1)), symbol('l', sf(2)), K);
if ~initial.exists(symbol('l',sf(2))) if ~initial.exists(symbol('l',sf(2)))
% 3D landmarks are stored in camera coordinates: transform % 3D landmarks are stored in camera coordinates: transform
% to world coordinates using the respective initial pose % to world coordinates using the respective initial pose
pose = initial.pose(symbol('x', sf(1))); pose = initial.pose(symbol('x', sf(1)));
world_point = pose.transform_from(gtsamPoint3(sf(6),sf(7),sf(8))); world_point = pose.transform_from(Point3(sf(6),sf(7),sf(8)));
initial.insertPoint(symbol('l',sf(2)), world_point); initial.insertPoint(symbol('l',sf(2)), world_point);
end end
end end

View File

@ -13,17 +13,17 @@ fclose(fid);
lines=columns{1}; lines=columns{1};
% loop over lines and add vertices % loop over lines and add vertices
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
initial = pose2SLAMValues; initial = pose2SLAM.Values;
n=size(lines,1); n=size(lines,1);
for i=1:n for i=1:n
line_i=lines{i}; line_i=lines{i};
if strcmp('VERTEX2',line_i(1:7)) if strcmp('VERTEX2',line_i(1:7))
v = textscan(line_i,'%s %d %f %f %f',1); v = textscan(line_i,'%s %d %f %f %f',1);
initial.insertPose(v{2}, gtsamPose2(v{3}, v{4}, v{5})); initial.insertPose(v{2}, gtsam.Pose2(v{3}, v{4}, v{5}));
elseif strcmp('EDGE2',line_i(1:5)) elseif strcmp('EDGE2',line_i(1:5))
e = textscan(line_i,'%s %d %d %f %f %f',1); e = textscan(line_i,'%s %d %d %f %f %f',1);
graph.addOdometry(e{2}, e{3}, gtsamPose2(e{4}, e{5}, e{6}), model); graph.addRelativePose(e{2}, e{3}, gtsam.Pose2(e{4}, e{5}, e{6}), model);
end end
end end

View File

@ -15,9 +15,9 @@ fclose(fid);
lines=columns{1}; lines=columns{1};
% loop over lines and add vertices % loop over lines and add vertices
graph = pose3SLAMGraph; graph = pose3SLAM.Graph;
initial = pose3SLAMValues; initial = pose3SLAM.Values;
origin=gtsamPose3; origin=gtsam.Pose3;
initial.insertPose(0,origin); initial.insertPose(0,origin);
n=size(lines,1); n=size(lines,1);
if nargin<4, N=n;end if nargin<4, N=n;end
@ -26,21 +26,21 @@ for i=1:n
line_i=lines{i}; line_i=lines{i};
if strcmp('VERTEX3',line_i(1:7)) if strcmp('VERTEX3',line_i(1:7))
v = textscan(line_i,'%s %d %f %f %f %f %f %f',1); v = textscan(line_i,'%s %d %f %f %f %f %f %f',1);
i=v{2}; i1=v{2};
if (~successive & i<N | successive & i==0) if (~successive && i1<N || successive && i1==0)
t = gtsamPoint3(v{3}, v{4}, v{5}); t = gtsam.Point3(v{3}, v{4}, v{5});
R = gtsamRot3.Ypr(v{8}, -v{7}, v{6}); R = gtsam.Rot3.Ypr(v{8}, -v{7}, v{6});
initial.insertPose(i, gtsamPose3(R,t)); initial.insertPose(i1, gtsam.Pose3(R,t));
end end
elseif strcmp('EDGE3',line_i(1:5)) elseif strcmp('EDGE3',line_i(1:5))
e = textscan(line_i,'%s %d %d %f %f %f %f %f %f',1); e = textscan(line_i,'%s %d %d %f %f %f %f %f %f',1);
i1=e{2}; i1=e{2};
i2=e{3}; i2=e{3};
if i1<N & i2<N if i1<N && i2<N
if ~successive | abs(i2-i1)==1 if ~successive || abs(i2-i1)==1
t = gtsamPoint3(e{4}, e{5}, e{6}); t = gtsam.Point3(e{4}, e{5}, e{6});
R = gtsamRot3.Ypr(e{9}, e{8}, e{7}); R = gtsam.Rot3.Ypr(e{9}, e{8}, e{7});
dpose = gtsamPose3(R,t); dpose = gtsam.Pose3(R,t);
graph.addRelativePose(i1, i2, dpose, model); graph.addRelativePose(i1, i2, dpose, model);
if successive if successive
if i2>i1 if i2>i1

View File

@ -1,4 +1,4 @@
function key = symbol(c,i) function key = symbol(c,i)
% generate a key corresponding to a symbol % generate a key corresponding to a symbol
s = gtsamSymbol(c,i); s = gtsam.Symbol(c,i);
key = s.key(); key = s.key();

View File

@ -1,4 +1,4 @@
function c = symbolChr(key) function c = symbolChr(key)
% generate the chr from a key % generate the chr from a key
s = gtsamSymbol(key); s = gtsam.Symbol(key);
c = s.chr(); c = s.chr();

View File

@ -1,4 +1,4 @@
function i = symbolIndex(key) function i = symbolIndex(key)
% generate the index from a key % generate the index from a key
s = gtsamSymbol(key); s = gtsam.Symbol(key);
i = s.index(); i = s.index();

View File

@ -1,6 +1,8 @@
%----------------------------------------------------------------------- %-----------------------------------------------------------------------
% eliminate % eliminate
import gtsam.*
% the combined linear factor % the combined linear factor
Ax2 = [ Ax2 = [
-5., 0. -5., 0.
@ -30,8 +32,8 @@ x1 = 3;
% the RHS % the RHS
b2=[-1;1.5;2;-1]; b2=[-1;1.5;2;-1];
sigmas = [1;1;1;1]; sigmas = [1;1;1;1];
model4 = gtsamnoiseModelDiagonal.Sigmas(sigmas); model4 = noiseModel.Diagonal.Sigmas(sigmas);
combined = gtsamJacobianFactor(x2, Ax2, l1, Al1, x1, Ax1, b2, model4); combined = JacobianFactor(x2, Ax2, l1, Al1, x1, Ax1, b2, model4);
% eliminate the first variable (x2) in the combined factor, destructive ! % eliminate the first variable (x2) in the combined factor, destructive !
actualCG = combined.eliminateFirst(); actualCG = combined.eliminateFirst();
@ -50,7 +52,7 @@ S13 = [
+0.00,-8.94427 +0.00,-8.94427
]; ];
d=[2.23607;-1.56525]; d=[2.23607;-1.56525];
expectedCG = gtsamGaussianConditional(x2,d,R11,l1,S12,x1,S13,[1;1]); expectedCG = GaussianConditional(x2,d,R11,l1,S12,x1,S13,[1;1]);
% check if the result matches % check if the result matches
CHECK('actualCG.equals(expectedCG,1e-5)',actualCG.equals(expectedCG,1e-4)); CHECK('actualCG.equals(expectedCG,1e-5)',actualCG.equals(expectedCG,1e-4));
@ -69,8 +71,8 @@ Bx1 = [
% the RHS % the RHS
b1= [0.0;0.894427]; b1= [0.0;0.894427];
model2 = gtsamnoiseModelDiagonal.Sigmas([1;1]); model2 = noiseModel.Diagonal.Sigmas([1;1]);
expectedLF = gtsamJacobianFactor(l1, Bl1, x1, Bx1, b1, model2); expectedLF = JacobianFactor(l1, Bl1, x1, Bx1, b1, model2);
% check if the result matches the combined (reduced) factor % check if the result matches the combined (reduced) factor
% FIXME: JacobianFactor/GaussianFactor mismatch % FIXME: JacobianFactor/GaussianFactor mismatch

View File

@ -19,16 +19,17 @@
% */ % */
%% Create the controls and measurement properties for our example %% Create the controls and measurement properties for our example
import gtsam.*
F = eye(2,2); F = eye(2,2);
B = eye(2,2); B = eye(2,2);
u = [1.0; 0.0]; u = [1.0; 0.0];
modelQ = gtsamnoiseModelDiagonal.Sigmas([0.1;0.1]); modelQ = noiseModel.Diagonal.Sigmas([0.1;0.1]);
Q = 0.01*eye(2,2); Q = 0.01*eye(2,2);
H = eye(2,2); H = eye(2,2);
z1 = [1.0, 0.0]'; z1 = [1.0, 0.0]';
z2 = [2.0, 0.0]'; z2 = [2.0, 0.0]';
z3 = [3.0, 0.0]'; z3 = [3.0, 0.0]';
modelR = gtsamnoiseModelDiagonal.Sigmas([0.1;0.1]); modelR = noiseModel.Diagonal.Sigmas([0.1;0.1]);
R = 0.01*eye(2,2); R = 0.01*eye(2,2);
%% Create the set of expected output TestValues %% Create the set of expected output TestValues
@ -48,7 +49,8 @@ P23 = inv(I22) + Q;
I33 = inv(P23) + inv(R); I33 = inv(P23) + inv(R);
%% Create an KalmanFilter object %% Create an KalmanFilter object
KF = gtsamKalmanFilter(2); import gtsam.*
KF = KalmanFilter(2);
%% Create the Kalman Filter initialization point %% Create the Kalman Filter initialization point
x_initial = [0.0;0.0]; x_initial = [0.0;0.0];

View File

@ -11,30 +11,32 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add two odometry factors %% Add two odometry factors
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) import gtsam.*
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
graph.addRelativePose(1, 2, odometry, odometryNoise); graph.addRelativePose(1, 2, odometry, odometryNoise);
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.addRelativePose(2, 3, odometry, odometryNoise);
%% Add three "GPS" measurements %% Add three "GPS" measurements
% We use Pose2 Priors here with high variance on theta % We use Pose2 Priors here with high variance on theta
groundTruth = pose2SLAMValues; import gtsam.*
groundTruth.insertPose(1, gtsamPose2(0.0, 0.0, 0.0)); groundTruth = pose2SLAM.Values;
groundTruth.insertPose(2, gtsamPose2(2.0, 0.0, 0.0)); groundTruth.insertPose(1, Pose2(0.0, 0.0, 0.0));
groundTruth.insertPose(3, gtsamPose2(4.0, 0.0, 0.0)); groundTruth.insertPose(2, Pose2(2.0, 0.0, 0.0));
noiseModel = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.1; 10]); groundTruth.insertPose(3, Pose2(4.0, 0.0, 0.0));
model = noiseModel.Diagonal.Sigmas([0.1; 0.1; 10]);
for i=1:3 for i=1:3
graph.addPosePrior(i, groundTruth.pose(i), noiseModel); graph.addPosePrior(i, groundTruth.pose(i), model);
end end
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate,0); result = graph.optimize(initialEstimate,0);

View File

@ -11,24 +11,27 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add a Gaussian prior on pose x_1 %% Add a Gaussian prior on pose x_1
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior mean is at origin import gtsam.*
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
%% Add two odometry factors %% Add two odometry factors
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) import gtsam.*
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
graph.addRelativePose(1, 2, odometry, odometryNoise); graph.addRelativePose(1, 2, odometry, odometryNoise);
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.addRelativePose(2, 3, odometry, odometryNoise);
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; import gtsam.*
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate,0); result = graph.optimize(initialEstimate,0);
@ -37,4 +40,4 @@ marginals.marginalCovariance(1);
%% Check first pose equality %% Check first pose equality
pose_1 = result.pose(1); pose_1 = result.pose(1);
CHECK('pose_1.equals(gtsamPose2,1e-4)',pose_1.equals(gtsamPose2,1e-4)); CHECK('pose_1.equals(Pose2,1e-4)',pose_1.equals(Pose2,1e-4));

View File

@ -24,45 +24,50 @@ i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
j1 = symbol('l',1); j2 = symbol('l',2); j1 = symbol('l',1); j2 = symbol('l',2);
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = planarSLAMGraph; graph = planarSLAM.Graph;
%% Add prior %% Add prior
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin import gtsam.*
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
%% Add odometry %% Add odometry
odometry = gtsamPose2(2.0, 0.0, 0.0); import gtsam.*
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); odometry = Pose2(2.0, 0.0, 0.0);
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(i1, i2, odometry, odometryNoise); graph.addRelativePose(i1, i2, odometry, odometryNoise);
graph.addRelativePose(i2, i3, odometry, odometryNoise); graph.addRelativePose(i2, i3, odometry, odometryNoise);
%% Add bearing/range measurement factors %% Add bearing/range measurement factors
import gtsam.*
degrees = pi/180; degrees = pi/180;
noiseModel = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.2]); brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel); graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise);
graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise);
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise);
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = planarSLAMValues; import gtsam.*
initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate = planarSLAM.Values;
initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(i1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPose(i2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1)); initialEstimate.insertPose(i3, Pose2(4.1, 0.1, 0.1));
initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8)); initialEstimate.insertPoint(j1, Point2(1.8, 2.1));
initialEstimate.insertPoint(j2, Point2(4.1, 1.8));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate,0); result = graph.optimize(initialEstimate,0);
marginals = graph.marginals(result); marginals = graph.marginals(result);
%% Check first pose and point equality %% Check first pose and point equality
import gtsam.*
pose_1 = result.pose(symbol('x',1)); pose_1 = result.pose(symbol('x',1));
marginals.marginalCovariance(symbol('x',1)); marginals.marginalCovariance(symbol('x',1));
CHECK('pose_1.equals(gtsamPose2,1e-4)',pose_1.equals(gtsamPose2,1e-4)); CHECK('pose_1.equals(Pose2,1e-4)',pose_1.equals(Pose2,1e-4));
point_1 = result.point(symbol('l',1)); point_1 = result.point(symbol('l',1));
marginals.marginalCovariance(symbol('l',1)); marginals.marginalCovariance(symbol('l',1));
CHECK('point_1.equals(gtsamPoint2(2,2),1e-4)',point_1.equals(gtsamPoint2(2,2),1e-4)); CHECK('point_1.equals(Point2(2,2),1e-4)',point_1.equals(Point2(2,2),1e-4));

View File

@ -19,33 +19,37 @@
% - The robot is on a grid, moving 2 meters each step % - The robot is on a grid, moving 2 meters each step
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = pose2SLAMGraph; graph = pose2SLAM.Graph;
%% Add prior %% Add prior
import gtsam.*
% gaussian for prior % gaussian for prior
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
%% Add odometry %% Add odometry
% general noisemodel for odometry % general noisemodel for odometry
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); import gtsam.*
graph.addRelativePose(1, 2, gtsamPose2(2.0, 0.0, 0.0 ), odometryNoise); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(2, 3, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise);
graph.addRelativePose(3, 4, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise);
graph.addRelativePose(4, 5, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise);
graph.addRelativePose(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise);
%% Add pose constraint %% Add pose constraint
model = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); import gtsam.*
graph.addRelativePose(5, 2, gtsamPose2(2.0, 0.0, pi/2), model); model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.addRelativePose(5, 2, Pose2(2.0, 0.0, pi/2), model);
%% Initialize to noisy points %% Initialize to noisy points
initialEstimate = pose2SLAMValues; import gtsam.*
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2 )); initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2 )); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2 ));
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, pi/2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2 ));
initialEstimate.insertPose(4, gtsamPose2(4.0, 2.0, pi )); initialEstimate.insertPose(3, Pose2(4.1, 0.1, pi/2));
initialEstimate.insertPose(5, gtsamPose2(2.1, 2.1,-pi/2)); initialEstimate.insertPose(4, Pose2(4.0, 2.0, pi ));
initialEstimate.insertPose(5, Pose2(2.1, 2.1,-pi/2));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate,0); result = graph.optimize(initialEstimate,0);
@ -56,9 +60,9 @@ marginals = graph.marginals(result);
P = marginals.marginalCovariance(1); P = marginals.marginalCovariance(1);
pose_1 = result.pose(1); pose_1 = result.pose(1);
CHECK('pose_1.equals(gtsamPose2,1e-4)',pose_1.equals(gtsamPose2,1e-4)); CHECK('pose_1.equals(Pose2,1e-4)',pose_1.equals(Pose2,1e-4));
poseSPCG_1 = resultSPCG.pose(1); poseSPCG_1 = resultSPCG.pose(1);
CHECK('poseSPCG_1.equals(gtsamPose2,1e-4)',poseSPCG_1.equals(gtsamPose2,1e-4)); CHECK('poseSPCG_1.equals(Pose2,1e-4)',poseSPCG_1.equals(Pose2,1e-4));

View File

@ -11,15 +11,16 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create a hexagon of poses %% Create a hexagon of poses
hexagon = pose3SLAMValues.Circle(6,1.0); hexagon = pose3SLAM.Values.Circle(6,1.0);
p0 = hexagon.pose(0); p0 = hexagon.pose(0);
p1 = hexagon.pose(1); p1 = hexagon.pose(1);
%% create a Pose graph with one equality constraint and one measurement %% create a Pose graph with one equality constraint and one measurement
fg = pose3SLAMGraph; import gtsam.*
fg = pose3SLAM.Graph;
fg.addPoseConstraint(0, p0); fg.addPoseConstraint(0, p0);
delta = p0.between(p1); delta = p0.between(p1);
covariance = gtsamnoiseModelDiagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]); covariance = noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
fg.addRelativePose(0,1, delta, covariance); fg.addRelativePose(0,1, delta, covariance);
fg.addRelativePose(1,2, delta, covariance); fg.addRelativePose(1,2, delta, covariance);
fg.addRelativePose(2,3, delta, covariance); fg.addRelativePose(2,3, delta, covariance);
@ -28,7 +29,7 @@ fg.addRelativePose(4,5, delta, covariance);
fg.addRelativePose(5,0, delta, covariance); fg.addRelativePose(5,0, delta, covariance);
%% Create initial config %% Create initial config
initial = pose3SLAMValues; initial = pose3SLAM.Values;
s = 0.10; s = 0.10;
initial.insertPose(0, p0); initial.insertPose(0, p0);
initial.insertPose(1, hexagon.pose(1).retract(s*randn(6,1))); initial.insertPose(1, hexagon.pose(1).retract(s*randn(6,1)));
@ -41,6 +42,6 @@ initial.insertPose(5, hexagon.pose(5).retract(s*randn(6,1)));
result = fg.optimize(initial,0); result = fg.optimize(initial,0);
pose_1 = result.pose(1); pose_1 = result.pose(1);
CHECK('pose_1.equals(gtsamPose3,1e-4)',pose_1.equals(p1,1e-4)); CHECK('pose_1.equals(Pose3,1e-4)',pose_1.equals(p1,1e-4));

View File

@ -20,10 +20,11 @@ measurementNoiseSigma = 1.0;
pointNoiseSigma = 0.1; pointNoiseSigma = 0.1;
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
graph = visualSLAMGraph; graph = visualSLAM.Graph;
%% Add factors for all measurements %% Add factors for all measurements
measurementNoise = gtsamnoiseModelIsotropic.Sigma(2,measurementNoiseSigma); import gtsam.*
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
for i=1:length(data.Z) for i=1:length(data.Z)
for k=1:length(data.Z{i}) for k=1:length(data.Z{i})
j = data.J{i}{k}; j = data.J{i}{k};
@ -31,13 +32,13 @@ for i=1:length(data.Z)
end end
end end
posePriorNoise = gtsamnoiseModelDiagonal.Sigmas(poseNoiseSigmas); posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise); graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise);
pointPriorNoise = gtsamnoiseModelIsotropic.Sigma(3,pointNoiseSigma); pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise); graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise);
%% Initial estimate %% Initial estimate
initialEstimate = visualSLAMValues; initialEstimate = visualSLAM.Values;
for i=1:size(truth.cameras,2) for i=1:size(truth.cameras,2)
pose_i = truth.cameras{i}.pose; pose_i = truth.cameras{i}.pose;
initialEstimate.insertPose(symbol('x',i), pose_i); initialEstimate.insertPose(symbol('x',i), pose_i);
@ -48,7 +49,8 @@ for j=1:size(truth.points,2)
end end
%% Optimization %% Optimization
parameters = gtsamLevenbergMarquardtParams; import gtsam.*
parameters = LevenbergMarquardtParams;
optimizer = graph.optimizer(initialEstimate, parameters); optimizer = graph.optimizer(initialEstimate, parameters);
for i=1:5 for i=1:5
optimizer.iterate(); optimizer.iterate();

View File

@ -22,38 +22,42 @@ x1 = symbol('x',1); x2 = symbol('x',2);
l1 = symbol('l',1); l2 = symbol('l',2); l3 = symbol('l',3); l1 = symbol('l',1); l2 = symbol('l',2); l3 = symbol('l',3);
%% Create graph container and add factors to it %% Create graph container and add factors to it
graph = visualSLAMGraph; graph = visualSLAM.Graph;
%% add a constraint on the starting pose %% add a constraint on the starting pose
first_pose = gtsamPose3(); import gtsam.*
first_pose = Pose3();
graph.addPoseConstraint(x1, first_pose); graph.addPoseConstraint(x1, first_pose);
%% Create realistic calibration and measurement noise model %% Create realistic calibration and measurement noise model
% format: fx fy skew cx cy baseline % format: fx fy skew cx cy baseline
K = gtsamCal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2); import gtsam.*
stereo_model = gtsamnoiseModelDiagonal.Sigmas([1.0; 1.0; 1.0]); K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2);
stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
%% Add measurements %% Add measurements
import gtsam.*
% pose 1 % pose 1
graph.addStereoMeasurement(gtsamStereoPoint2(520, 480, 440), stereo_model, x1, l1, K); graph.addStereoMeasurement(StereoPoint2(520, 480, 440), stereo_model, x1, l1, K);
graph.addStereoMeasurement(gtsamStereoPoint2(120, 80, 440), stereo_model, x1, l2, K); graph.addStereoMeasurement(StereoPoint2(120, 80, 440), stereo_model, x1, l2, K);
graph.addStereoMeasurement(gtsamStereoPoint2(320, 280, 140), stereo_model, x1, l3, K); graph.addStereoMeasurement(StereoPoint2(320, 280, 140), stereo_model, x1, l3, K);
%pose 2 %pose 2
graph.addStereoMeasurement(gtsamStereoPoint2(570, 520, 490), stereo_model, x2, l1, K); graph.addStereoMeasurement(StereoPoint2(570, 520, 490), stereo_model, x2, l1, K);
graph.addStereoMeasurement(gtsamStereoPoint2( 70, 20, 490), stereo_model, x2, l2, K); graph.addStereoMeasurement(StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K);
graph.addStereoMeasurement(gtsamStereoPoint2(320, 270, 115), stereo_model, x2, l3, K); graph.addStereoMeasurement(StereoPoint2(320, 270, 115), stereo_model, x2, l3, K);
%% Create initial estimate for camera poses and landmarks %% Create initial estimate for camera poses and landmarks
initialEstimate = visualSLAMValues; import gtsam.*
initialEstimate = visualSLAM.Values;
initialEstimate.insertPose(x1, first_pose); initialEstimate.insertPose(x1, first_pose);
% noisy estimate for pose 2 % noisy estimate for pose 2
initialEstimate.insertPose(x2, gtsamPose3(gtsamRot3(), gtsamPoint3(0.1,-.1,1.1))); initialEstimate.insertPose(x2, Pose3(Rot3(), Point3(0.1,-.1,1.1)));
expected_l1 = gtsamPoint3( 1, 1, 5); expected_l1 = Point3( 1, 1, 5);
initialEstimate.insertPoint(l1, expected_l1); initialEstimate.insertPoint(l1, expected_l1);
initialEstimate.insertPoint(l2, gtsamPoint3(-1, 1, 5)); initialEstimate.insertPoint(l2, Point3(-1, 1, 5));
initialEstimate.insertPoint(l3, gtsamPoint3( 0,-.5, 5)); initialEstimate.insertPoint(l3, Point3( 0,-.5, 5));
%% optimize %% optimize
result = graph.optimize(initialEstimate,0); result = graph.optimize(initialEstimate,0);

View File

@ -48,7 +48,7 @@ void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
file.oss << " "; file.oss << " ";
string cppType = qualifiedType("::"); string cppType = qualifiedType("::");
string matlabType = qualifiedType(); string matlabUniqueType = qualifiedType();
if (is_ptr) if (is_ptr)
// A pointer: emit an "unwrap_shared_ptr" call which returns a pointer // A pointer: emit an "unwrap_shared_ptr" call which returns a pointer
@ -65,7 +65,7 @@ void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
file.oss << cppType << " " << name << " = unwrap< "; file.oss << cppType << " " << name << " = unwrap< ";
file.oss << cppType << " >(" << matlabName; file.oss << cppType << " >(" << matlabName;
if (is_ptr || is_ref) file.oss << ", \"ptr_" << matlabType << "\""; if (is_ptr || is_ref) file.oss << ", \"ptr_" << matlabUniqueType << "\"";
file.oss << ");" << endl; file.oss << ");" << endl;
} }

View File

@ -24,6 +24,7 @@
#include <stdint.h> // works on Linux GCC #include <stdint.h> // works on Linux GCC
#include <boost/foreach.hpp> #include <boost/foreach.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp> #include <boost/lexical_cast.hpp>
#include "Class.h" #include "Class.h"
@ -34,29 +35,47 @@ using namespace std;
using namespace wrap; using namespace wrap;
/* ************************************************************************* */ /* ************************************************************************* */
void Class::matlab_proxy(const string& classFile, const string& wrapperName, void Class::matlab_proxy(const string& toolboxPath, const string& wrapperName,
const TypeAttributesTable& typeAttributes, const TypeAttributesTable& typeAttributes,
FileWriter& wrapperFile, vector<string>& functionNames) const { FileWriter& wrapperFile, vector<string>& functionNames) const {
// open destination classFile
// Create namespace folders
{
using namespace boost::filesystem;
path curPath = toolboxPath;
BOOST_FOREACH(const string& subdir, namespaces) {
curPath /= "+" + subdir;
if(!is_directory(curPath))
if(exists("+" + subdir))
throw OutputError("Need to write files to directory " + curPath.string() + ", which already exists as a file but is not a directory");
else
boost::filesystem::create_directory(curPath);
}
}
// open destination classFile
string classFile = toolboxPath;
if(!namespaces.empty())
classFile += "/+" + wrap::qualifiedName("/+", namespaces);
classFile += "/" + name + ".m";
FileWriter proxyFile(classFile, verbose_, "%"); FileWriter proxyFile(classFile, verbose_, "%");
// get the name of actual matlab object // get the name of actual matlab object
const string matlabName = qualifiedName(), cppName = qualifiedName("::"); const string matlabQualName = qualifiedName("."), matlabUniqueName = qualifiedName(), cppName = qualifiedName("::");
const string matlabBaseName = wrap::qualifiedName("", qualifiedParent); const string matlabBaseName = wrap::qualifiedName(".", qualifiedParent);
const string cppBaseName = wrap::qualifiedName("::", qualifiedParent); const string cppBaseName = wrap::qualifiedName("::", qualifiedParent);
// emit class proxy code // emit class proxy code
// we want our class to inherit the handle class for memory purposes // we want our class to inherit the handle class for memory purposes
const string parent = qualifiedParent.empty() ? const string parent = qualifiedParent.empty() ? "handle" : matlabBaseName;
"handle" : ::wrap::qualifiedName("", qualifiedParent); proxyFile.oss << "classdef " << name << " < " << parent << endl;
proxyFile.oss << "classdef " << matlabName << " < " << parent << endl;
proxyFile.oss << " properties" << endl; proxyFile.oss << " properties" << endl;
proxyFile.oss << " ptr_" << matlabName << " = 0" << endl; proxyFile.oss << " ptr_" << matlabUniqueName << " = 0" << endl;
proxyFile.oss << " end" << endl; proxyFile.oss << " end" << endl;
proxyFile.oss << " methods" << endl; proxyFile.oss << " methods" << endl;
// Constructor // Constructor
proxyFile.oss << " function obj = " << matlabName << "(varargin)" << endl; proxyFile.oss << " function obj = " << name << "(varargin)" << endl;
// Special pointer constructors - one in MATLAB to create an object and // Special pointer constructors - one in MATLAB to create an object and
// assign a pointer returned from a C++ function. In turn this MATLAB // assign a pointer returned from a C++ function. In turn this MATLAB
// constructor calls a special C++ function that just adds the object to // constructor calls a special C++ function that just adds the object to
@ -70,26 +89,26 @@ void Class::matlab_proxy(const string& classFile, const string& wrapperName,
BOOST_FOREACH(ArgumentList a, constructor.args_list) BOOST_FOREACH(ArgumentList a, constructor.args_list)
{ {
const int id = (int)functionNames.size(); const int id = (int)functionNames.size();
constructor.proxy_fragment(proxyFile, wrapperName, matlabName, matlabBaseName, id, a); constructor.proxy_fragment(proxyFile, wrapperName, !qualifiedParent.empty(), id, a);
const string wrapFunctionName = constructor.wrapper_fragment(wrapperFile, const string wrapFunctionName = constructor.wrapper_fragment(wrapperFile,
cppName, matlabName, cppBaseName, id, using_namespaces, a); cppName, matlabUniqueName, cppBaseName, id, using_namespaces, a);
wrapperFile.oss << "\n"; wrapperFile.oss << "\n";
functionNames.push_back(wrapFunctionName); functionNames.push_back(wrapFunctionName);
} }
proxyFile.oss << " else\n"; proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of " << matlabName << " constructor');" << endl; proxyFile.oss << " error('Arguments do not match any overload of " << matlabQualName << " constructor');" << endl;
proxyFile.oss << " end\n"; proxyFile.oss << " end\n";
if(!qualifiedParent.empty()) if(!qualifiedParent.empty())
proxyFile.oss << " obj = obj@" << matlabBaseName << "(uint64(" << ptr_constructor_key << "), base_ptr);\n"; proxyFile.oss << " obj = obj@" << matlabBaseName << "(uint64(" << ptr_constructor_key << "), base_ptr);\n";
proxyFile.oss << " obj.ptr_" << matlabName << " = my_ptr;\n"; proxyFile.oss << " obj.ptr_" << matlabUniqueName << " = my_ptr;\n";
proxyFile.oss << " end\n\n"; proxyFile.oss << " end\n\n";
// Deconstructor // Deconstructor
{ {
const int id = (int)functionNames.size(); const int id = (int)functionNames.size();
deconstructor.proxy_fragment(proxyFile, wrapperName, matlabName, id); deconstructor.proxy_fragment(proxyFile, wrapperName, matlabUniqueName, id);
proxyFile.oss << "\n"; proxyFile.oss << "\n";
const string functionName = deconstructor.wrapper_fragment(wrapperFile, cppName, matlabName, id, using_namespaces); const string functionName = deconstructor.wrapper_fragment(wrapperFile, cppName, matlabUniqueName, id, using_namespaces);
wrapperFile.oss << "\n"; wrapperFile.oss << "\n";
functionNames.push_back(functionName); functionNames.push_back(functionName);
} }
@ -99,7 +118,7 @@ void Class::matlab_proxy(const string& classFile, const string& wrapperName,
// Methods // Methods
BOOST_FOREACH(const Methods::value_type& name_m, methods) { BOOST_FOREACH(const Methods::value_type& name_m, methods) {
const Method& m = name_m.second; const Method& m = name_m.second;
m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabName, wrapperName, using_namespaces, typeAttributes, functionNames); m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabQualName, matlabUniqueName, wrapperName, using_namespaces, typeAttributes, functionNames);
proxyFile.oss << "\n"; proxyFile.oss << "\n";
wrapperFile.oss << "\n"; wrapperFile.oss << "\n";
} }
@ -111,7 +130,7 @@ void Class::matlab_proxy(const string& classFile, const string& wrapperName,
// Static methods // Static methods
BOOST_FOREACH(const StaticMethods::value_type& name_m, static_methods) { BOOST_FOREACH(const StaticMethods::value_type& name_m, static_methods) {
const StaticMethod& m = name_m.second; const StaticMethod& m = name_m.second;
m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabName, wrapperName, using_namespaces, typeAttributes, functionNames); m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabQualName, matlabUniqueName, wrapperName, using_namespaces, typeAttributes, functionNames);
proxyFile.oss << "\n"; proxyFile.oss << "\n";
wrapperFile.oss << "\n"; wrapperFile.oss << "\n";
} }
@ -131,19 +150,18 @@ string Class::qualifiedName(const string& delim) const {
/* ************************************************************************* */ /* ************************************************************************* */
void Class::pointer_constructor_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, const string& wrapperName, vector<string>& functionNames) const { void Class::pointer_constructor_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, const string& wrapperName, vector<string>& functionNames) const {
const string matlabName = qualifiedName(), cppName = qualifiedName("::"); const string matlabUniqueName = qualifiedName(), cppName = qualifiedName("::");
const string baseMatlabName = wrap::qualifiedName("", qualifiedParent);
const string baseCppName = wrap::qualifiedName("::", qualifiedParent); const string baseCppName = wrap::qualifiedName("::", qualifiedParent);
const int collectorInsertId = (int)functionNames.size(); const int collectorInsertId = (int)functionNames.size();
const string collectorInsertFunctionName = matlabName + "_collectorInsertAndMakeBase_" + boost::lexical_cast<string>(collectorInsertId); const string collectorInsertFunctionName = matlabUniqueName + "_collectorInsertAndMakeBase_" + boost::lexical_cast<string>(collectorInsertId);
functionNames.push_back(collectorInsertFunctionName); functionNames.push_back(collectorInsertFunctionName);
int upcastFromVoidId; int upcastFromVoidId;
string upcastFromVoidFunctionName; string upcastFromVoidFunctionName;
if(isVirtual) { if(isVirtual) {
upcastFromVoidId = (int)functionNames.size(); upcastFromVoidId = (int)functionNames.size();
upcastFromVoidFunctionName = matlabName + "_upcastFromVoid_" + boost::lexical_cast<string>(upcastFromVoidId); upcastFromVoidFunctionName = matlabUniqueName + "_upcastFromVoid_" + boost::lexical_cast<string>(upcastFromVoidId);
functionNames.push_back(upcastFromVoidFunctionName); functionNames.push_back(upcastFromVoidFunctionName);
} }
@ -184,7 +202,7 @@ void Class::pointer_constructor_fragments(FileWriter& proxyFile, FileWriter& wra
// Get self pointer passed in // Get self pointer passed in
wrapperFile.oss << " Shared *self = *reinterpret_cast<Shared**> (mxGetData(in[0]));\n"; wrapperFile.oss << " Shared *self = *reinterpret_cast<Shared**> (mxGetData(in[0]));\n";
// Add to collector // Add to collector
wrapperFile.oss << " collector_" << matlabName << ".insert(self);\n"; wrapperFile.oss << " collector_" << matlabUniqueName << ".insert(self);\n";
// If we have a base class, return the base class pointer (MATLAB will call the base class collectorInsertAndMakeBase to add this to the collector and recurse the heirarchy) // If we have a base class, return the base class pointer (MATLAB will call the base class collectorInsertAndMakeBase to add this to the collector and recurse the heirarchy)
if(!qualifiedParent.empty()) { if(!qualifiedParent.empty()) {
wrapperFile.oss << "\n"; wrapperFile.oss << "\n";

View File

@ -53,7 +53,7 @@ struct Class {
bool verbose_; ///< verbose flag bool verbose_; ///< verbose flag
// And finally MATLAB code is emitted, methods below called by Module::matlab_code // And finally MATLAB code is emitted, methods below called by Module::matlab_code
void matlab_proxy(const std::string& classFile, const std::string& wrapperName, const TypeAttributesTable& typeAttributes, void matlab_proxy(const std::string& toolboxPath, const std::string& wrapperName, const TypeAttributesTable& typeAttributes,
FileWriter& wrapperFile, std::vector<std::string>& functionNames) const; ///< emit proxy class FileWriter& wrapperFile, std::vector<std::string>& functionNames) const; ///< emit proxy class
std::string qualifiedName(const std::string& delim = "") const; ///< creates a namespace-qualified name, optional delimiter std::string qualifiedName(const std::string& delim = "") const; ///< creates a namespace-qualified name, optional delimiter

View File

@ -38,7 +38,7 @@ string Constructor::matlab_wrapper_name(const string& className) const {
/* ************************************************************************* */ /* ************************************************************************* */
void Constructor::proxy_fragment(FileWriter& file, const std::string& wrapperName, void Constructor::proxy_fragment(FileWriter& file, const std::string& wrapperName,
const string& matlabName, const string& matlabBaseName, const int id, const ArgumentList args) const { bool hasParent, const int id, const ArgumentList args) const {
size_t nrArgs = args.size(); size_t nrArgs = args.size();
// check for number of arguments... // check for number of arguments...
file.oss << " elseif nargin == " << nrArgs; file.oss << " elseif nargin == " << nrArgs;
@ -47,14 +47,14 @@ void Constructor::proxy_fragment(FileWriter& file, const std::string& wrapperNam
bool first = true; bool first = true;
for(size_t i=0;i<nrArgs;i++) { for(size_t i=0;i<nrArgs;i++) {
if (!first) file.oss << " && "; if (!first) file.oss << " && ";
file.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass() << "')"; file.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass(".") << "')";
first=false; first=false;
} }
// emit code for calling constructor // emit code for calling constructor
if(matlabBaseName.empty()) if(hasParent)
file.oss << "\n my_ptr = ";
else
file.oss << "\n [ my_ptr, base_ptr ] = "; file.oss << "\n [ my_ptr, base_ptr ] = ";
else
file.oss << "\n my_ptr = ";
file.oss << wrapperName << "(" << id; file.oss << wrapperName << "(" << id;
// emit constructor arguments // emit constructor arguments
for(size_t i=0;i<nrArgs;i++) { for(size_t i=0;i<nrArgs;i++) {
@ -67,13 +67,13 @@ void Constructor::proxy_fragment(FileWriter& file, const std::string& wrapperNam
/* ************************************************************************* */ /* ************************************************************************* */
string Constructor::wrapper_fragment(FileWriter& file, string Constructor::wrapper_fragment(FileWriter& file,
const string& cppClassName, const string& cppClassName,
const string& matlabClassName, const string& matlabUniqueName,
const string& cppBaseClassName, const string& cppBaseClassName,
int id, int id,
const vector<string>& using_namespaces, const vector<string>& using_namespaces,
const ArgumentList& al) const { const ArgumentList& al) const {
const string wrapFunctionName = matlabClassName + "_constructor_" + boost::lexical_cast<string>(id); const string wrapFunctionName = matlabUniqueName + "_constructor_" + boost::lexical_cast<string>(id);
file.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])" << endl; file.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])" << endl;
file.oss << "{\n"; file.oss << "{\n";
@ -87,7 +87,7 @@ string Constructor::wrapper_fragment(FileWriter& file,
if(al.size() > 0) if(al.size() > 0)
al.matlab_unwrap(file); // unwrap arguments al.matlab_unwrap(file); // unwrap arguments
file.oss << " Shared *self = new Shared(new " << cppClassName << "(" << al.names() << "));" << endl; file.oss << " Shared *self = new Shared(new " << cppClassName << "(" << al.names() << "));" << endl;
file.oss << " collector_" << matlabClassName << ".insert(self);\n"; file.oss << " collector_" << matlabUniqueName << ".insert(self);\n";
if(verbose_) if(verbose_)
file.oss << " std::cout << \"constructed \" << self << \" << std::endl;" << endl; file.oss << " std::cout << \"constructed \" << self << \" << std::endl;" << endl;

View File

@ -50,13 +50,12 @@ struct Constructor {
* if nargin == 2, obj.self = new_Pose3_RP(varargin{1},varargin{2}); end * if nargin == 2, obj.self = new_Pose3_RP(varargin{1},varargin{2}); end
*/ */
void proxy_fragment(FileWriter& file, const std::string& wrapperName, void proxy_fragment(FileWriter& file, const std::string& wrapperName,
const std::string& className, const std::string& matlabBaseName, const int id, bool hasParent, const int id, const ArgumentList args) const;
const ArgumentList args) const;
/// cpp wrapper /// cpp wrapper
std::string wrapper_fragment(FileWriter& file, std::string wrapper_fragment(FileWriter& file,
const std::string& cppClassName, const std::string& cppClassName,
const std::string& matlabClassName, const std::string& matlabUniqueName,
const std::string& cppBaseClassName, const std::string& cppBaseClassName,
int id, int id,
const std::vector<std::string>& using_namespaces, const std::vector<std::string>& using_namespaces,

View File

@ -37,23 +37,23 @@ string Deconstructor::matlab_wrapper_name(const string& className) const {
/* ************************************************************************* */ /* ************************************************************************* */
void Deconstructor::proxy_fragment(FileWriter& file, void Deconstructor::proxy_fragment(FileWriter& file,
const std::string& wrapperName, const std::string& wrapperName,
const std::string& qualifiedMatlabName, int id) const { const std::string& matlabUniqueName, int id) const {
file.oss << " function delete(obj)\n"; file.oss << " function delete(obj)\n";
file.oss << " " << wrapperName << "(" << id << ", obj.ptr_" << qualifiedMatlabName << ");\n"; file.oss << " " << wrapperName << "(" << id << ", obj.ptr_" << matlabUniqueName << ");\n";
file.oss << " end\n"; file.oss << " end\n";
} }
/* ************************************************************************* */ /* ************************************************************************* */
string Deconstructor::wrapper_fragment(FileWriter& file, string Deconstructor::wrapper_fragment(FileWriter& file,
const string& cppClassName, const string& cppClassName,
const string& matlabClassName, const string& matlabUniqueName,
int id, int id,
const vector<string>& using_namespaces) const { const vector<string>& using_namespaces) const {
const string matlabName = matlab_wrapper_name(matlabClassName); const string matlabName = matlab_wrapper_name(matlabUniqueName);
const string wrapFunctionName = matlabClassName + "_deconstructor_" + boost::lexical_cast<string>(id); const string wrapFunctionName = matlabUniqueName + "_deconstructor_" + boost::lexical_cast<string>(id);
file.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])" << endl; file.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])" << endl;
file.oss << "{" << endl; file.oss << "{" << endl;
@ -62,11 +62,11 @@ string Deconstructor::wrapper_fragment(FileWriter& file,
//Deconstructor takes 1 arg, the mxArray obj //Deconstructor takes 1 arg, the mxArray obj
file.oss << " checkArguments(\"" << matlabName << "\",nargout,nargin," << "1" << ");" << endl; file.oss << " checkArguments(\"" << matlabName << "\",nargout,nargin," << "1" << ");" << endl;
file.oss << " Shared *self = *reinterpret_cast<Shared**>(mxGetData(in[0]));\n"; file.oss << " Shared *self = *reinterpret_cast<Shared**>(mxGetData(in[0]));\n";
file.oss << " Collector_" << matlabClassName << "::iterator item;\n"; file.oss << " Collector_" << matlabUniqueName << "::iterator item;\n";
file.oss << " item = collector_" << matlabClassName << ".find(self);\n"; file.oss << " item = collector_" << matlabUniqueName << ".find(self);\n";
file.oss << " if(item != collector_" << matlabClassName << ".end()) {\n"; file.oss << " if(item != collector_" << matlabUniqueName << ".end()) {\n";
file.oss << " delete self;\n"; file.oss << " delete self;\n";
file.oss << " collector_" << matlabClassName << ".erase(item);\n"; file.oss << " collector_" << matlabUniqueName << ".erase(item);\n";
file.oss << " }\n"; file.oss << " }\n";
file.oss << "}" << endl; file.oss << "}" << endl;

View File

@ -48,12 +48,12 @@ struct Deconstructor {
/// m-file /// m-file
void proxy_fragment(FileWriter& file, void proxy_fragment(FileWriter& file,
const std::string& wrapperName, const std::string& wrapperName,
const std::string& qualifiedMatlabName, int id) const; const std::string& matlabUniqueName, int id) const;
/// cpp wrapper /// cpp wrapper
std::string wrapper_fragment(FileWriter& file, std::string wrapper_fragment(FileWriter& file,
const std::string& cppClassName, const std::string& cppClassName,
const std::string& matlabClassName, const std::string& matlabUniqueName,
int id, int id,
const std::vector<std::string>& using_namespaces) const; const std::vector<std::string>& using_namespaces) const;
}; };

View File

@ -39,7 +39,8 @@ void Method::addOverload(bool verbose, bool is_const, const std::string& name,
void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const string& cppClassName, const string& cppClassName,
const string& matlabClassName, const std::string& matlabQualName,
const std::string& matlabUniqueName,
const string& wrapperName, const string& wrapperName,
const vector<string>& using_namespaces, const vector<string>& using_namespaces,
const TypeAttributesTable& typeAttributes, const TypeAttributesTable& typeAttributes,
@ -63,7 +64,7 @@ void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperF
bool first = true; bool first = true;
for(size_t i=0;i<nrArgs;i++) { for(size_t i=0;i<nrArgs;i++) {
if (!first) proxyFile.oss << " && "; if (!first) proxyFile.oss << " && ";
proxyFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass() << "')"; proxyFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass(".") << "')";
first=false; first=false;
} }
proxyFile.oss << "\n"; proxyFile.oss << "\n";
@ -81,7 +82,7 @@ void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperF
// Output C++ wrapper code // Output C++ wrapper code
const string wrapFunctionName = wrapper_fragment( const string wrapFunctionName = wrapper_fragment(
wrapperFile, cppClassName, matlabClassName, overload, id, using_namespaces, typeAttributes); wrapperFile, cppClassName, matlabUniqueName, overload, id, using_namespaces, typeAttributes);
// Add to function list // Add to function list
functionNames.push_back(wrapFunctionName); functionNames.push_back(wrapFunctionName);
@ -90,7 +91,7 @@ void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperF
proxyFile.oss << " else\n"; proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of function " << proxyFile.oss << " error('Arguments do not match any overload of function " <<
matlabClassName << "." << name << "');" << endl; matlabQualName << "." << name << "');" << endl;
proxyFile.oss << " end\n"; proxyFile.oss << " end\n";
proxyFile.oss << " end\n"; proxyFile.oss << " end\n";
@ -99,7 +100,7 @@ void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperF
/* ************************************************************************* */ /* ************************************************************************* */
string Method::wrapper_fragment(FileWriter& file, string Method::wrapper_fragment(FileWriter& file,
const string& cppClassName, const string& cppClassName,
const string& matlabClassName, const string& matlabUniqueName,
int overload, int overload,
int id, int id,
const vector<string>& using_namespaces, const vector<string>& using_namespaces,
@ -107,7 +108,7 @@ string Method::wrapper_fragment(FileWriter& file,
// generate code // generate code
const string wrapFunctionName = matlabClassName + "_" + name + "_" + boost::lexical_cast<string>(id); const string wrapFunctionName = matlabUniqueName + "_" + name + "_" + boost::lexical_cast<string>(id);
const ArgumentList& args = argLists[overload]; const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload]; const ReturnValue& returnVal = returnVals[overload];
@ -138,7 +139,7 @@ string Method::wrapper_fragment(FileWriter& file,
// get class pointer // get class pointer
// example: shared_ptr<Test> = unwrap_shared_ptr< Test >(in[0], "Test"); // example: shared_ptr<Test> = unwrap_shared_ptr< Test >(in[0], "Test");
file.oss << " Shared obj = unwrap_shared_ptr<" << cppClassName << ">(in[0], \"ptr_" << matlabClassName << "\");" << endl; file.oss << " Shared obj = unwrap_shared_ptr<" << cppClassName << ">(in[0], \"ptr_" << matlabUniqueName << "\");" << endl;
// unwrap arguments, see Argument.cpp // unwrap arguments, see Argument.cpp
args.matlab_unwrap(file,1); args.matlab_unwrap(file,1);

View File

@ -50,7 +50,7 @@ struct Method {
// MATLAB code generation // MATLAB code generation
// classPath is class directory, e.g., ../matlab/@Point2 // classPath is class directory, e.g., ../matlab/@Point2
void proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, void proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const std::string& cppClassName, const std::string& matlabClassName, const std::string& cppClassName, const std::string& matlabQualName, const std::string& matlabUniqueName,
const std::string& wrapperName, const std::vector<std::string>& using_namespaces, const std::string& wrapperName, const std::vector<std::string>& using_namespaces,
const TypeAttributesTable& typeAttributes, const TypeAttributesTable& typeAttributes,
std::vector<std::string>& functionNames) const; std::vector<std::string>& functionNames) const;
@ -58,7 +58,7 @@ struct Method {
private: private:
std::string wrapper_fragment(FileWriter& file, std::string wrapper_fragment(FileWriter& file,
const std::string& cppClassName, const std::string& cppClassName,
const std::string& matlabClassname, const std::string& matlabUniqueName,
int overload, int overload,
int id, int id,
const std::vector<std::string>& using_namespaces, const std::vector<std::string>& using_namespaces,

View File

@ -14,7 +14,7 @@
* @author Frank Dellaert * @author Frank Dellaert
* @author Alex Cunningham * @author Alex Cunningham
* @author Andrew Melim * @author Andrew Melim
* @author Richard Roberts * @author Richard Roberts
**/ **/
#include "Module.h" #include "Module.h"
@ -448,8 +448,7 @@ void Module::matlab_code(const string& toolboxPath, const string& headerPath) co
// create proxy class and wrapper code // create proxy class and wrapper code
BOOST_FOREACH(const Class& cls, expandedClasses) { BOOST_FOREACH(const Class& cls, expandedClasses) {
string classFile = toolboxPath + "/" + cls.qualifiedName() + ".m"; cls.matlab_proxy(toolboxPath, wrapperName, typeAttributes, wrapperFile, functionNames);
cls.matlab_proxy(classFile, wrapperName, typeAttributes, wrapperFile, functionNames);
} }
// finish wrapper file // finish wrapper file
@ -527,11 +526,12 @@ vector<string> Module::GenerateValidTypes(const vector<Class>& classes, const ve
void Module::WriteCollectorsAndCleanupFcn(FileWriter& wrapperFile, const std::string& moduleName, const std::vector<Class>& classes) { void Module::WriteCollectorsAndCleanupFcn(FileWriter& wrapperFile, const std::string& moduleName, const std::vector<Class>& classes) {
// Generate all collectors // Generate all collectors
BOOST_FOREACH(const Class& cls, classes) { BOOST_FOREACH(const Class& cls, classes) {
const string matlabName = cls.qualifiedName(), cppName = cls.qualifiedName("::"); const string matlabUniqueName = cls.qualifiedName(),
cppName = cls.qualifiedName("::");
wrapperFile.oss << "typedef std::set<boost::shared_ptr<" << cppName << ">*> " wrapperFile.oss << "typedef std::set<boost::shared_ptr<" << cppName << ">*> "
<< "Collector_" << matlabName << ";\n"; << "Collector_" << matlabUniqueName << ";\n";
wrapperFile.oss << "static Collector_" << matlabName << wrapperFile.oss << "static Collector_" << matlabUniqueName <<
" collector_" << matlabName << ";\n"; " collector_" << matlabUniqueName << ";\n";
} }
// generate mexAtExit cleanup function // generate mexAtExit cleanup function
@ -542,10 +542,10 @@ void Module::WriteCollectorsAndCleanupFcn(FileWriter& wrapperFile, const std::st
" std::streambuf *outbuf = std::cout.rdbuf(&mout);\n\n" " std::streambuf *outbuf = std::cout.rdbuf(&mout);\n\n"
" bool anyDeleted = false;\n"; " bool anyDeleted = false;\n";
BOOST_FOREACH(const Class& cls, classes) { BOOST_FOREACH(const Class& cls, classes) {
const string matlabName = cls.qualifiedName(); const string matlabUniqueName = cls.qualifiedName();
const string cppName = cls.qualifiedName("::"); const string cppName = cls.qualifiedName("::");
const string collectorType = "Collector_" + matlabName; const string collectorType = "Collector_" + matlabUniqueName;
const string collectorName = "collector_" + matlabName; const string collectorName = "collector_" + matlabUniqueName;
wrapperFile.oss << wrapperFile.oss <<
" for(" << collectorType << "::iterator iter = " << collectorName << ".begin();\n" " for(" << collectorType << "::iterator iter = " << collectorName << ".begin();\n"
" iter != " << collectorName << ".end(); ) {\n" " iter != " << collectorName << ".end(); ) {\n"
@ -574,7 +574,7 @@ void Module::WriteRTTIRegistry(FileWriter& wrapperFile, const std::string& modul
BOOST_FOREACH(const Class& cls, classes) { BOOST_FOREACH(const Class& cls, classes) {
if(cls.isVirtual) if(cls.isVirtual)
wrapperFile.oss << wrapperFile.oss <<
" types.insert(std::make_pair(typeid(" << cls.qualifiedName("::") << ").name(), \"" << cls.qualifiedName() << "\"));\n"; " types.insert(std::make_pair(typeid(" << cls.qualifiedName("::") << ").name(), \"" << cls.qualifiedName(".") << "\"));\n";
} }
wrapperFile.oss << "\n"; wrapperFile.oss << "\n";

View File

@ -48,8 +48,8 @@ string ReturnValue::qualifiedType2(const string& delim) const {
/* ************************************************************************* */ /* ************************************************************************* */
//TODO:Fix this //TODO:Fix this
void ReturnValue::wrap_result(const string& result, FileWriter& file, const TypeAttributesTable& typeAttributes) const { void ReturnValue::wrap_result(const string& result, FileWriter& file, const TypeAttributesTable& typeAttributes) const {
string cppType1 = qualifiedType1("::"), matlabType1 = qualifiedType1(); string cppType1 = qualifiedType1("::"), matlabType1 = qualifiedType1(".");
string cppType2 = qualifiedType2("::"), matlabType2 = qualifiedType2(); string cppType2 = qualifiedType2("::"), matlabType2 = qualifiedType2(".");
if (isPair) { if (isPair) {
// first return value in pair // first return value in pair

View File

@ -40,7 +40,8 @@ void StaticMethod::addOverload(bool verbose, const std::string& name,
void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const string& cppClassName, const string& cppClassName,
const string& matlabClassName, const std::string& matlabQualName,
const std::string& matlabUniqueName,
const string& wrapperName, const string& wrapperName,
const vector<string>& using_namespaces, const vector<string>& using_namespaces,
const TypeAttributesTable& typeAttributes, const TypeAttributesTable& typeAttributes,
@ -66,7 +67,7 @@ void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wr
bool first = true; bool first = true;
for(size_t i=0;i<nrArgs;i++) { for(size_t i=0;i<nrArgs;i++) {
if (!first) proxyFile.oss << " && "; if (!first) proxyFile.oss << " && ";
proxyFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass() << "')"; proxyFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass(".") << "')";
first=false; first=false;
} }
proxyFile.oss << "\n"; proxyFile.oss << "\n";
@ -84,7 +85,7 @@ void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wr
// Output C++ wrapper code // Output C++ wrapper code
const string wrapFunctionName = wrapper_fragment( const string wrapFunctionName = wrapper_fragment(
wrapperFile, cppClassName, matlabClassName, overload, id, using_namespaces, typeAttributes); wrapperFile, cppClassName, matlabUniqueName, overload, id, using_namespaces, typeAttributes);
// Add to function list // Add to function list
functionNames.push_back(wrapFunctionName); functionNames.push_back(wrapFunctionName);
@ -93,7 +94,7 @@ void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wr
proxyFile.oss << " else\n"; proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of function " << proxyFile.oss << " error('Arguments do not match any overload of function " <<
matlabClassName << "." << upperName << "');" << endl; matlabQualName << "." << upperName << "');" << endl;
proxyFile.oss << " end\n"; proxyFile.oss << " end\n";
proxyFile.oss << " end\n"; proxyFile.oss << " end\n";
@ -102,7 +103,7 @@ void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wr
/* ************************************************************************* */ /* ************************************************************************* */
string StaticMethod::wrapper_fragment(FileWriter& file, string StaticMethod::wrapper_fragment(FileWriter& file,
const string& cppClassName, const string& cppClassName,
const string& matlabClassName, const string& matlabUniqueName,
int overload, int overload,
int id, int id,
const vector<string>& using_namespaces, const vector<string>& using_namespaces,
@ -110,7 +111,7 @@ string StaticMethod::wrapper_fragment(FileWriter& file,
// generate code // generate code
const string wrapFunctionName = matlabClassName + "_" + name + "_" + boost::lexical_cast<string>(id); const string wrapFunctionName = matlabUniqueName + "_" + name + "_" + boost::lexical_cast<string>(id);
const ArgumentList& args = argLists[overload]; const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload]; const ReturnValue& returnVal = returnVals[overload];
@ -136,7 +137,7 @@ string StaticMethod::wrapper_fragment(FileWriter& file,
// check arguments // check arguments
// NOTE: for static functions, there is no object passed // NOTE: for static functions, there is no object passed
file.oss << " checkArguments(\"" << matlabClassName << "." << name << "\",nargout,nargin," << args.size() << ");\n"; file.oss << " checkArguments(\"" << matlabUniqueName << "." << name << "\",nargout,nargin," << args.size() << ");\n";
// unwrap arguments, see Argument.cpp // unwrap arguments, see Argument.cpp
args.matlab_unwrap(file,0); // We start at 0 because there is no self object args.matlab_unwrap(file,0); // We start at 0 because there is no self object

View File

@ -50,7 +50,7 @@ struct StaticMethod {
// MATLAB code generation // MATLAB code generation
// classPath is class directory, e.g., ../matlab/@Point2 // classPath is class directory, e.g., ../matlab/@Point2
void proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, void proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const std::string& cppClassName, const std::string& matlabClassName, const std::string& cppClassName, const std::string& matlabQualName, const std::string& matlabUniqueName,
const std::string& wrapperName, const std::vector<std::string>& using_namespaces, const std::string& wrapperName, const std::vector<std::string>& using_namespaces,
const TypeAttributesTable& typeAttributes, const TypeAttributesTable& typeAttributes,
std::vector<std::string>& functionNames) const; std::vector<std::string>& functionNames) const;
@ -58,7 +58,7 @@ struct StaticMethod {
private: private:
std::string wrapper_fragment(FileWriter& file, std::string wrapper_fragment(FileWriter& file,
const std::string& cppClassName, const std::string& cppClassName,
const std::string& matlabClassname, const std::string& matlabUniqueName,
int overload, int overload,
int id, int id,
const std::vector<std::string>& using_namespaces, const std::vector<std::string>& using_namespaces,

View File

@ -1,17 +1,17 @@
% automatically generated by wrap % automatically generated by wrap
classdef ns1ClassA < handle classdef ClassA < handle
properties properties
ptr_ns1ClassA = 0 ptr_ns1ClassA = 0
end end
methods methods
function obj = ns1ClassA(varargin) function obj = ClassA(varargin)
if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682) if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682)
my_ptr = varargin{2}; my_ptr = varargin{2};
testNamespaces_wrapper(0, my_ptr); testNamespaces_wrapper(0, my_ptr);
elseif nargin == 0 elseif nargin == 0
my_ptr = testNamespaces_wrapper(1); my_ptr = testNamespaces_wrapper(1);
else else
error('Arguments do not match any overload of ns1ClassA constructor'); error('Arguments do not match any overload of ns1.ClassA constructor');
end end
obj.ptr_ns1ClassA = my_ptr; obj.ptr_ns1ClassA = my_ptr;
end end

View File

@ -1,17 +1,17 @@
% automatically generated by wrap % automatically generated by wrap
classdef ns1ClassB < handle classdef ClassB < handle
properties properties
ptr_ns1ClassB = 0 ptr_ns1ClassB = 0
end end
methods methods
function obj = ns1ClassB(varargin) function obj = ClassB(varargin)
if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682) if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682)
my_ptr = varargin{2}; my_ptr = varargin{2};
testNamespaces_wrapper(3, my_ptr); testNamespaces_wrapper(3, my_ptr);
elseif nargin == 0 elseif nargin == 0
my_ptr = testNamespaces_wrapper(4); my_ptr = testNamespaces_wrapper(4);
else else
error('Arguments do not match any overload of ns1ClassB constructor'); error('Arguments do not match any overload of ns1.ClassB constructor');
end end
obj.ptr_ns1ClassB = my_ptr; obj.ptr_ns1ClassB = my_ptr;
end end

View File

@ -1,17 +1,17 @@
% automatically generated by wrap % automatically generated by wrap
classdef ns2ns3ClassB < handle classdef ClassB < handle
properties properties
ptr_ns2ns3ClassB = 0 ptr_ns2ns3ClassB = 0
end end
methods methods
function obj = ns2ns3ClassB(varargin) function obj = ClassB(varargin)
if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682) if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682)
my_ptr = varargin{2}; my_ptr = varargin{2};
testNamespaces_wrapper(13, my_ptr); testNamespaces_wrapper(13, my_ptr);
elseif nargin == 0 elseif nargin == 0
my_ptr = testNamespaces_wrapper(14); my_ptr = testNamespaces_wrapper(14);
else else
error('Arguments do not match any overload of ns2ns3ClassB constructor'); error('Arguments do not match any overload of ns2.ns3.ClassB constructor');
end end
obj.ptr_ns2ns3ClassB = my_ptr; obj.ptr_ns2ns3ClassB = my_ptr;
end end

View File

@ -1,17 +1,17 @@
% automatically generated by wrap % automatically generated by wrap
classdef ns2ClassA < handle classdef ClassA < handle
properties properties
ptr_ns2ClassA = 0 ptr_ns2ClassA = 0
end end
methods methods
function obj = ns2ClassA(varargin) function obj = ClassA(varargin)
if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682) if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682)
my_ptr = varargin{2}; my_ptr = varargin{2};
testNamespaces_wrapper(6, my_ptr); testNamespaces_wrapper(6, my_ptr);
elseif nargin == 0 elseif nargin == 0
my_ptr = testNamespaces_wrapper(7); my_ptr = testNamespaces_wrapper(7);
else else
error('Arguments do not match any overload of ns2ClassA constructor'); error('Arguments do not match any overload of ns2.ClassA constructor');
end end
obj.ptr_ns2ClassA = my_ptr; obj.ptr_ns2ClassA = my_ptr;
end end
@ -28,15 +28,15 @@ classdef ns2ClassA < handle
if length(varargin) == 0 if length(varargin) == 0
varargout{1} = testNamespaces_wrapper(9, this, varargin{:}); varargout{1} = testNamespaces_wrapper(9, this, varargin{:});
else else
error('Arguments do not match any overload of function ns2ClassA.memberFunction'); error('Arguments do not match any overload of function ns2.ClassA.memberFunction');
end end
end end
function varargout = nsArg(this, varargin) function varargout = nsArg(this, varargin)
if length(varargin) == 1 && isa(varargin{1},'ns1ClassB') if length(varargin) == 1 && isa(varargin{1},'ns1.ClassB')
varargout{1} = testNamespaces_wrapper(10, this, varargin{:}); varargout{1} = testNamespaces_wrapper(10, this, varargin{:});
else else
error('Arguments do not match any overload of function ns2ClassA.nsArg'); error('Arguments do not match any overload of function ns2.ClassA.nsArg');
end end
end end
@ -44,7 +44,7 @@ classdef ns2ClassA < handle
if length(varargin) == 1 && isa(varargin{1},'double') if length(varargin) == 1 && isa(varargin{1},'double')
varargout{1} = testNamespaces_wrapper(11, this, varargin{:}); varargout{1} = testNamespaces_wrapper(11, this, varargin{:});
else else
error('Arguments do not match any overload of function ns2ClassA.nsReturn'); error('Arguments do not match any overload of function ns2.ClassA.nsReturn');
end end
end end
@ -55,7 +55,7 @@ classdef ns2ClassA < handle
if length(varargin) == 0 if length(varargin) == 0
varargout{1} = testNamespaces_wrapper(12, varargin{:}); varargout{1} = testNamespaces_wrapper(12, varargin{:});
else else
error('Arguments do not match any overload of function ns2ClassA.Afunction'); error('Arguments do not match any overload of function ns2.ClassA.Afunction');
end end
end end

View File

@ -1,17 +1,17 @@
% automatically generated by wrap % automatically generated by wrap
classdef ns2ClassC < handle classdef ClassC < handle
properties properties
ptr_ns2ClassC = 0 ptr_ns2ClassC = 0
end end
methods methods
function obj = ns2ClassC(varargin) function obj = ClassC(varargin)
if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682) if nargin == 2 && isa(varargin{1}, 'uint64') && varargin{1} == uint64(5139824614673773682)
my_ptr = varargin{2}; my_ptr = varargin{2};
testNamespaces_wrapper(16, my_ptr); testNamespaces_wrapper(16, my_ptr);
elseif nargin == 0 elseif nargin == 0
my_ptr = testNamespaces_wrapper(17); my_ptr = testNamespaces_wrapper(17);
else else
error('Arguments do not match any overload of ns2ClassC constructor'); error('Arguments do not match any overload of ns2.ClassC constructor');
end end
obj.ptr_ns2ClassC = my_ptr; obj.ptr_ns2ClassC = my_ptr;
end end

View File

@ -223,7 +223,7 @@ void ns2ClassA_nsReturn_11(int nargout, mxArray *out[], int nargin, const mxArra
checkArguments("nsReturn",nargout,nargin-1,1); checkArguments("nsReturn",nargout,nargin-1,1);
Shared obj = unwrap_shared_ptr<ns2::ClassA>(in[0], "ptr_ns2ClassA"); Shared obj = unwrap_shared_ptr<ns2::ClassA>(in[0], "ptr_ns2ClassA");
double q = unwrap< double >(in[1]); double q = unwrap< double >(in[1]);
out[0] = wrap_shared_ptr(SharedClassB(new ns2::ns3::ClassB(obj->nsReturn(q))),"ns2ns3ClassB", false); out[0] = wrap_shared_ptr(SharedClassB(new ns2::ns3::ClassB(obj->nsReturn(q))),"ns2.ns3.ClassB", false);
} }
void ns2ClassA_afunction_12(int nargout, mxArray *out[], int nargin, const mxArray *in[]) void ns2ClassA_afunction_12(int nargout, mxArray *out[], int nargin, const mxArray *in[])

View File

@ -227,11 +227,11 @@ TEST( wrap, matlab_code_namespaces ) {
EXPECT(files_equal(exp_path + "ClassD.m" , act_path + "ClassD.m" )); EXPECT(files_equal(exp_path + "ClassD.m" , act_path + "ClassD.m" ));
EXPECT(files_equal(exp_path + "ns1ClassA.m" , act_path + "ns1ClassA.m" )); EXPECT(files_equal(exp_path + "+ns1/ClassA.m" , act_path + "+ns1/ClassA.m" ));
EXPECT(files_equal(exp_path + "ns1ClassB.m" , act_path + "ns1ClassB.m" )); EXPECT(files_equal(exp_path + "+ns1/ClassB.m" , act_path + "+ns1/ClassB.m" ));
EXPECT(files_equal(exp_path + "ns2ClassA.m" , act_path + "ns2ClassA.m" )); EXPECT(files_equal(exp_path + "+ns2/ClassA.m" , act_path + "+ns2/ClassA.m" ));
EXPECT(files_equal(exp_path + "ns2ClassC.m" , act_path + "ns2ClassC.m" )); EXPECT(files_equal(exp_path + "+ns2/ClassC.m" , act_path + "+ns2/ClassC.m" ));
EXPECT(files_equal(exp_path + "ns2ns3ClassB.m" , act_path + "ns2ns3ClassB.m" )); EXPECT(files_equal(exp_path + "+ns2/+ns3/ClassB.m" , act_path + "+ns2/+ns3/ClassB.m" ));
EXPECT(files_equal(exp_path + "testNamespaces_wrapper.cpp" , act_path + "testNamespaces_wrapper.cpp" )); EXPECT(files_equal(exp_path + "testNamespaces_wrapper.cpp" , act_path + "testNamespaces_wrapper.cpp" ));
} }

View File

@ -41,6 +41,15 @@ class CantOpenFile : public std::exception {
virtual const char* what() const throw() { return what_.c_str(); } virtual const char* what() const throw() { return what_.c_str(); }
}; };
class OutputError : public std::exception {
private:
const std::string what_;
public:
OutputError(const std::string& what) : what_(what) {}
~OutputError() throw() {}
virtual const char* what() const throw() { return what_.c_str(); }
};
class ParseFailed : public std::exception { class ParseFailed : public std::exception {
private: private:
const std::string what_; const std::string what_;