75 lines
2.3 KiB
Matlab
75 lines
2.3 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief A structure from motion example
|
|
% @author Duy-Nguyen Ta
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
options.triangle = false;
|
|
options.nrCameras = 10;
|
|
options.showImages = false;
|
|
|
|
[data,truth] = VisualISAMGenerateData(options);
|
|
|
|
measurementNoiseSigma = 1.0;
|
|
pointNoiseSigma = 0.1;
|
|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
|
|
|
graph = visualSLAM.Graph;
|
|
|
|
%% Add factors for all measurements
|
|
import gtsam.*
|
|
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
|
|
for i=1:length(data.Z)
|
|
for k=1:length(data.Z{i})
|
|
j = data.J{i}{k};
|
|
graph.addMeasurement(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K);
|
|
end
|
|
end
|
|
|
|
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
|
|
graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise);
|
|
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
|
|
graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise);
|
|
|
|
%% Initial estimate
|
|
initialEstimate = visualSLAM.Values;
|
|
for i=1:size(truth.cameras,2)
|
|
pose_i = truth.cameras{i}.pose;
|
|
initialEstimate.insertPose(symbol('x',i), pose_i);
|
|
end
|
|
for j=1:size(truth.points,2)
|
|
point_j = truth.points{j};
|
|
initialEstimate.insertPoint(symbol('p',j), point_j);
|
|
end
|
|
|
|
%% Optimization
|
|
import gtsam.*
|
|
parameters = LevenbergMarquardtParams;
|
|
optimizer = graph.optimizer(initialEstimate, parameters);
|
|
for i=1:5
|
|
optimizer.iterate();
|
|
end
|
|
result = optimizer.values();
|
|
|
|
%% Marginalization
|
|
marginals = graph.marginals(result);
|
|
marginals.marginalCovariance(symbol('p',1));
|
|
marginals.marginalCovariance(symbol('x',1));
|
|
|
|
%% Check optimized results, should be equal to ground truth
|
|
for i=1:size(truth.cameras,2)
|
|
pose_i = result.pose(symbol('x',i));
|
|
CHECK('pose_i.equals(truth.cameras{i}.pose,1e-5)',pose_i.equals(truth.cameras{i}.pose,1e-5))
|
|
end
|
|
|
|
for j=1:size(truth.points,2)
|
|
point_j = result.point(symbol('p',j));
|
|
CHECK('point_j.equals(truth.points{j},1e-5)',point_j.equals(truth.points{j},1e-5))
|
|
end
|