Merge branch 'borglab:develop' into Fix-Cal3Fisheye-Jacobian

release/4.3a0
roderick-koehle 2021-11-22 21:05:15 +01:00 committed by GitHub
commit 8846324b34
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
92 changed files with 5279 additions and 2236 deletions

View File

@ -7,9 +7,9 @@ if (GTSAM_WITH_TBB)
if(TBB_FOUND)
set(GTSAM_USE_TBB 1) # This will go into config.h
if ((${TBB_VERSION} VERSION_GREATER "2021.1") OR (${TBB_VERSION} VERSION_EQUAL "2021.1"))
message(FATAL_ERROR "TBB version greater than 2021.1 (oneTBB API) is not yet supported. Use an older version instead.")
endif()
# if ((${TBB_VERSION} VERSION_GREATER "2021.1") OR (${TBB_VERSION} VERSION_EQUAL "2021.1"))
# message(FATAL_ERROR "TBB version greater than 2021.1 (oneTBB API) is not yet supported. Use an older version instead.")
# endif()
if ((${TBB_VERSION_MAJOR} GREATER 2020) OR (${TBB_VERSION_MAJOR} EQUAL 2020))
set(TBB_GREATER_EQUAL_2020 1)

View File

@ -5082,6 +5082,394 @@ reference "ex:projection"
\end_inset
\end_layout
\begin_layout Subsection
Derivative of Adjoint
\begin_inset CommandInset label
LatexCommand label
name "subsec:pose3_adjoint_deriv"
\end_inset
\end_layout
\begin_layout Standard
Consider
\begin_inset Formula $f:SE(3)\times\mathbb{R}^{6}\rightarrow\mathbb{R}^{6}$
\end_inset
is defined as
\begin_inset Formula $f(T,\xi_{b})=Ad_{T}\hat{\xi}_{b}$
\end_inset
.
The derivative is notated (see Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Derivatives-of-Actions"
plural "false"
caps "false"
noprefix "false"
\end_inset
):
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
Df_{(T,\xi_{b})}(\xi,\delta\xi_{b})=D_{1}f_{(T,\xi_{b})}(\xi)+D_{2}f_{(T,\xi_{b})}(\delta\xi_{b})
\]
\end_inset
First, computing
\begin_inset Formula $D_{2}f_{(T,\xi_{b})}(\xi_{b})$
\end_inset
is easy, as its matrix is simply
\begin_inset Formula $Ad_{T}$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
f(T,\xi_{b}+\delta\xi_{b})=Ad_{T}(\widehat{\xi_{b}+\delta\xi_{b}})=Ad_{T}(\hat{\xi}_{b})+Ad_{T}(\delta\hat{\xi}_{b})
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
D_{2}f_{(T,\xi_{b})}(\xi_{b})=Ad_{T}
\]
\end_inset
We will derive
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi)$
\end_inset
using two approaches.
In the first, we'll define
\begin_inset Formula $g(T,\xi)\triangleq T\exp\hat{\xi}$
\end_inset
.
From Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Derivatives-of-Actions"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
D_{2}g_{(T,\xi)}(\xi) & =T\hat{\xi}\\
D_{2}g_{(T,\xi)}^{-1}(\xi) & =-\hat{\xi}T^{-1}
\end{align*}
\end_inset
Now we can use the definition of the Adjoint representation
\begin_inset Formula $Ad_{g}\hat{\xi}=g\hat{\xi}g^{-1}$
\end_inset
(aka conjugation by
\begin_inset Formula $g$
\end_inset
) then apply product rule and simplify:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
D_{1}f_{(T,\xi_{b})}(\xi)=D_{1}\left(Ad_{T\exp(\hat{\xi})}\hat{\xi}_{b}\right)(\xi) & =D_{1}\left(g\hat{\xi}_{b}g^{-1}\right)(\xi)\\
& =\left(D_{2}g_{(T,\xi)}(\xi)\right)\hat{\xi}_{b}g^{-1}(T,0)+g(T,0)\hat{\xi}_{b}\left(D_{2}g_{(T,\xi)}^{-1}(\xi)\right)\\
& =T\hat{\xi}\hat{\xi}_{b}T^{-1}-T\hat{\xi}_{b}\hat{\xi}T^{-1}\\
& =T\left(\hat{\xi}\hat{\xi}_{b}-\hat{\xi}_{b}\hat{\xi}\right)T^{-1}\\
& =Ad_{T}(ad_{\hat{\xi}}\hat{\xi}_{b})\\
& =-Ad_{T}(ad_{\hat{\xi}_{b}}\hat{\xi})\\
D_{1}F_{(T,\xi_{b})} & =-(Ad_{T})(ad_{\hat{\xi}_{b}})
\end{align*}
\end_inset
Where
\begin_inset Formula $ad_{\hat{\xi}}:\mathfrak{g}\rightarrow\mathfrak{g}$
\end_inset
is the adjoint map of the lie algebra.
\end_layout
\begin_layout Standard
The second, perhaps more intuitive way of deriving
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi_{b})$
\end_inset
, would be to use the fact that the derivative at the origin
\begin_inset Formula $D_{1}Ad_{I}\hat{\xi}_{b}=ad_{\hat{\xi}_{b}}$
\end_inset
by definition of the adjoint
\begin_inset Formula $ad_{\xi}$
\end_inset
.
Then applying the property
\begin_inset Formula $Ad_{AB}=Ad_{A}Ad_{B}$
\end_inset
,
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
D_{1}Ad_{T}\hat{\xi}_{b}(\xi)=D_{1}Ad_{T*I}\hat{\xi}_{b}(\xi)=Ad_{T}\left(D_{1}Ad_{I}\hat{\xi}_{b}(\xi)\right)=Ad_{T}\left(ad_{\hat{\xi}}(\hat{\xi}_{b})\right)=-Ad_{T}\left(ad_{\hat{\xi}_{b}}(\hat{\xi})\right)
\]
\end_inset
\end_layout
\begin_layout Subsection
Derivative of AdjointTranspose
\end_layout
\begin_layout Standard
The transpose of the Adjoint,
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $Ad_{T}^{T}:\mathfrak{g^{*}\rightarrow g^{*}}$
\end_inset
, is useful as a way to change the reference frame of vectors in the dual
space
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
(note the
\begin_inset Formula $^{*}$
\end_inset
denoting that we are now in the dual space)
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
.
To be more concrete, where
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
as
\begin_inset Formula $Ad_{T}\hat{\xi}_{b}$
\end_inset
converts the
\emph on
twist
\emph default
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $\xi_{b}$
\end_inset
from the
\begin_inset Formula $T$
\end_inset
frame,
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
\end_inset
converts the
\family default
\series default
\shape default
\size default
\emph on
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
wrench
\emph default
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $\xi_{b}^{*}$
\end_inset
from the
\begin_inset Formula $T$
\end_inset
frame
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
.
It's difficult to apply a similar derivation as in Section
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:pose3_adjoint_deriv"
plural "false"
caps "false"
noprefix "false"
\end_inset
for the derivative of
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
\end_inset
because
\begin_inset Formula $Ad_{T}^{T}$
\end_inset
cannot be naturally defined as a conjugation, so we resort to crunching
through the algebra.
The details are omitted but the result is a form that vaguely resembles
(but does not exactly match)
\begin_inset Formula $ad(Ad_{T}^{T}\hat{\xi}_{b}^{*})$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
\begin{bmatrix}\omega_{T}\\
v_{T}
\end{bmatrix}^{*} & \triangleq Ad_{T}^{T}\hat{\xi}_{b}^{*}\\
D_{1}Ad_{T}^{T}\hat{\xi}_{b}^{*}(\xi) & =\begin{bmatrix}\hat{\omega}_{T} & \hat{v}_{T}\\
\hat{v}_{T} & 0
\end{bmatrix}
\end{align*}
\end_inset
\end_layout
\begin_layout Subsection

Binary file not shown.

View File

@ -370,4 +370,4 @@ public:
* the gtsam namespace to be more easily enforced as testable
*/
#define GTSAM_CONCEPT_LIE_INST(T) template class gtsam::IsLieGroup<T>;
#define GTSAM_CONCEPT_LIE_TYPE(T) typedef gtsam::IsLieGroup<T> _gtsam_IsLieGroup_##T;
#define GTSAM_CONCEPT_LIE_TYPE(T) using _gtsam_IsLieGroup_##T = gtsam::IsLieGroup<T>;

View File

@ -178,4 +178,4 @@ struct FixedDimension {
// * the gtsam namespace to be more easily enforced as testable
// */
#define GTSAM_CONCEPT_MANIFOLD_INST(T) template class gtsam::IsManifold<T>;
#define GTSAM_CONCEPT_MANIFOLD_TYPE(T) typedef gtsam::IsManifold<T> _gtsam_IsManifold_##T;
#define GTSAM_CONCEPT_MANIFOLD_TYPE(T) using _gtsam_IsManifold_##T = gtsam::IsManifold<T>;

View File

@ -46,28 +46,28 @@ typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> M
// Create handy typedefs and constants for square-size matrices
// MatrixMN, MatrixN = MatrixNN, I_NxN, and Z_NxN, for M,N=1..9
#define GTSAM_MAKE_MATRIX_DEFS(N) \
typedef Eigen::Matrix<double, N, N> Matrix##N; \
typedef Eigen::Matrix<double, 1, N> Matrix1##N; \
typedef Eigen::Matrix<double, 2, N> Matrix2##N; \
typedef Eigen::Matrix<double, 3, N> Matrix3##N; \
typedef Eigen::Matrix<double, 4, N> Matrix4##N; \
typedef Eigen::Matrix<double, 5, N> Matrix5##N; \
typedef Eigen::Matrix<double, 6, N> Matrix6##N; \
typedef Eigen::Matrix<double, 7, N> Matrix7##N; \
typedef Eigen::Matrix<double, 8, N> Matrix8##N; \
typedef Eigen::Matrix<double, 9, N> Matrix9##N; \
using Matrix##N = Eigen::Matrix<double, N, N>; \
using Matrix1##N = Eigen::Matrix<double, 1, N>; \
using Matrix2##N = Eigen::Matrix<double, 2, N>; \
using Matrix3##N = Eigen::Matrix<double, 3, N>; \
using Matrix4##N = Eigen::Matrix<double, 4, N>; \
using Matrix5##N = Eigen::Matrix<double, 5, N>; \
using Matrix6##N = Eigen::Matrix<double, 6, N>; \
using Matrix7##N = Eigen::Matrix<double, 7, N>; \
using Matrix8##N = Eigen::Matrix<double, 8, N>; \
using Matrix9##N = Eigen::Matrix<double, 9, N>; \
static const Eigen::MatrixBase<Matrix##N>::IdentityReturnType I_##N##x##N = Matrix##N::Identity(); \
static const Eigen::MatrixBase<Matrix##N>::ConstantReturnType Z_##N##x##N = Matrix##N::Zero();
GTSAM_MAKE_MATRIX_DEFS(1);
GTSAM_MAKE_MATRIX_DEFS(2);
GTSAM_MAKE_MATRIX_DEFS(3);
GTSAM_MAKE_MATRIX_DEFS(4);
GTSAM_MAKE_MATRIX_DEFS(5);
GTSAM_MAKE_MATRIX_DEFS(6);
GTSAM_MAKE_MATRIX_DEFS(7);
GTSAM_MAKE_MATRIX_DEFS(8);
GTSAM_MAKE_MATRIX_DEFS(9);
GTSAM_MAKE_MATRIX_DEFS(1)
GTSAM_MAKE_MATRIX_DEFS(2)
GTSAM_MAKE_MATRIX_DEFS(3)
GTSAM_MAKE_MATRIX_DEFS(4)
GTSAM_MAKE_MATRIX_DEFS(5)
GTSAM_MAKE_MATRIX_DEFS(6)
GTSAM_MAKE_MATRIX_DEFS(7)
GTSAM_MAKE_MATRIX_DEFS(8)
GTSAM_MAKE_MATRIX_DEFS(9)
// Matrix expressions for accessing parts of matrices
typedef Eigen::Block<Matrix> SubMatrix;

View File

@ -173,4 +173,4 @@ namespace gtsam {
* @deprecated please use BOOST_CONCEPT_ASSERT and
*/
#define GTSAM_CONCEPT_TESTABLE_INST(T) template class gtsam::IsTestable<T>;
#define GTSAM_CONCEPT_TESTABLE_TYPE(T) typedef gtsam::IsTestable<T> _gtsam_Testable_##T;
#define GTSAM_CONCEPT_TESTABLE_TYPE(T) using _gtsam_Testable_##T = gtsam::IsTestable<T>;

View File

@ -48,18 +48,18 @@ static const Eigen::MatrixBase<Vector3>::ConstantReturnType Z_3x1 = Vector3::Zer
// Create handy typedefs and constants for vectors with N>3
// VectorN and Z_Nx1, for N=1..9
#define GTSAM_MAKE_VECTOR_DEFS(N) \
typedef Eigen::Matrix<double, N, 1> Vector##N; \
using Vector##N = Eigen::Matrix<double, N, 1>; \
static const Eigen::MatrixBase<Vector##N>::ConstantReturnType Z_##N##x1 = Vector##N::Zero();
GTSAM_MAKE_VECTOR_DEFS(4);
GTSAM_MAKE_VECTOR_DEFS(5);
GTSAM_MAKE_VECTOR_DEFS(6);
GTSAM_MAKE_VECTOR_DEFS(7);
GTSAM_MAKE_VECTOR_DEFS(8);
GTSAM_MAKE_VECTOR_DEFS(9);
GTSAM_MAKE_VECTOR_DEFS(10);
GTSAM_MAKE_VECTOR_DEFS(11);
GTSAM_MAKE_VECTOR_DEFS(12);
GTSAM_MAKE_VECTOR_DEFS(4)
GTSAM_MAKE_VECTOR_DEFS(5)
GTSAM_MAKE_VECTOR_DEFS(6)
GTSAM_MAKE_VECTOR_DEFS(7)
GTSAM_MAKE_VECTOR_DEFS(8)
GTSAM_MAKE_VECTOR_DEFS(9)
GTSAM_MAKE_VECTOR_DEFS(10)
GTSAM_MAKE_VECTOR_DEFS(11)
GTSAM_MAKE_VECTOR_DEFS(12)
typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;

View File

@ -32,7 +32,7 @@ void testDefaultChart(TestResult& result_,
const std::string& name_,
const T& value) {
GTSAM_CONCEPT_TESTABLE_TYPE(T);
GTSAM_CONCEPT_TESTABLE_TYPE(T)
typedef typename gtsam::DefaultChart<T> Chart;
typedef typename Chart::vector Vector;

View File

@ -158,9 +158,8 @@ void DepthFirstForestParallel(FOREST& forest, DATA& rootData,
// Typedefs
typedef typename FOREST::Node Node;
tbb::task::spawn_root_and_wait(
internal::CreateRootTask<Node>(forest.roots(), rootData, visitorPre,
visitorPost, problemSizeThreshold));
internal::CreateRootTask<Node>(forest.roots(), rootData, visitorPre,
visitorPost, problemSizeThreshold);
#else
DepthFirstForest(forest, rootData, visitorPre, visitorPost);
#endif

View File

@ -22,7 +22,7 @@
#include <boost/make_shared.hpp>
#ifdef GTSAM_USE_TBB
#include <tbb/task.h> // tbb::task, tbb::task_list
#include <tbb/task_group.h> // tbb::task_group
#include <tbb/scalable_allocator.h> // tbb::scalable_allocator
namespace gtsam {
@ -34,7 +34,7 @@ namespace gtsam {
/* ************************************************************************* */
template<typename NODE, typename DATA, typename VISITOR_PRE, typename VISITOR_POST>
class PreOrderTask : public tbb::task
class PreOrderTask
{
public:
const boost::shared_ptr<NODE>& treeNode;
@ -42,28 +42,30 @@ namespace gtsam {
VISITOR_PRE& visitorPre;
VISITOR_POST& visitorPost;
int problemSizeThreshold;
tbb::task_group& tg;
bool makeNewTasks;
bool isPostOrderPhase;
// Keep track of order phase across multiple calls to the same functor
mutable bool isPostOrderPhase;
PreOrderTask(const boost::shared_ptr<NODE>& treeNode, const boost::shared_ptr<DATA>& myData,
VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost, int problemSizeThreshold,
bool makeNewTasks = true)
tbb::task_group& tg, bool makeNewTasks = true)
: treeNode(treeNode),
myData(myData),
visitorPre(visitorPre),
visitorPost(visitorPost),
problemSizeThreshold(problemSizeThreshold),
tg(tg),
makeNewTasks(makeNewTasks),
isPostOrderPhase(false) {}
tbb::task* execute() override
void operator()() const
{
if(isPostOrderPhase)
{
// Run the post-order visitor since this task was recycled to run the post-order visitor
(void) visitorPost(treeNode, *myData);
return nullptr;
}
else
{
@ -71,14 +73,10 @@ namespace gtsam {
{
if(!treeNode->children.empty())
{
// Allocate post-order task as a continuation
isPostOrderPhase = true;
recycle_as_continuation();
bool overThreshold = (treeNode->problemSize() >= problemSizeThreshold);
tbb::task* firstChild = 0;
tbb::task_list childTasks;
// If we have child tasks, start subtasks and wait for them to complete
tbb::task_group ctg;
for(const boost::shared_ptr<NODE>& child: treeNode->children)
{
// Process child in a subtask. Important: Run visitorPre before calling
@ -86,37 +84,30 @@ namespace gtsam {
// allocated an extra child, this causes a TBB error.
boost::shared_ptr<DATA> childData = boost::allocate_shared<DATA>(
tbb::scalable_allocator<DATA>(), visitorPre(child, *myData));
tbb::task* childTask =
new (allocate_child()) PreOrderTask(child, childData, visitorPre, visitorPost,
problemSizeThreshold, overThreshold);
if (firstChild)
childTasks.push_back(*childTask);
else
firstChild = childTask;
ctg.run(PreOrderTask(child, childData, visitorPre, visitorPost,
problemSizeThreshold, ctg, overThreshold));
}
ctg.wait();
// If we have child tasks, start subtasks and wait for them to complete
set_ref_count((int)treeNode->children.size());
spawn(childTasks);
return firstChild;
// Allocate post-order task as a continuation
isPostOrderPhase = true;
tg.run(*this);
}
else
{
// Run the post-order visitor in this task if we have no children
(void) visitorPost(treeNode, *myData);
return nullptr;
}
}
else
{
// Process this node and its children in this task
processNodeRecursively(treeNode, *myData);
return nullptr;
}
}
}
void processNodeRecursively(const boost::shared_ptr<NODE>& node, DATA& myData)
void processNodeRecursively(const boost::shared_ptr<NODE>& node, DATA& myData) const
{
for(const boost::shared_ptr<NODE>& child: node->children)
{
@ -131,7 +122,7 @@ namespace gtsam {
/* ************************************************************************* */
template<typename ROOTS, typename NODE, typename DATA, typename VISITOR_PRE, typename VISITOR_POST>
class RootTask : public tbb::task
class RootTask
{
public:
const ROOTS& roots;
@ -139,38 +130,31 @@ namespace gtsam {
VISITOR_PRE& visitorPre;
VISITOR_POST& visitorPost;
int problemSizeThreshold;
tbb::task_group& tg;
RootTask(const ROOTS& roots, DATA& myData, VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost,
int problemSizeThreshold) :
int problemSizeThreshold, tbb::task_group& tg) :
roots(roots), myData(myData), visitorPre(visitorPre), visitorPost(visitorPost),
problemSizeThreshold(problemSizeThreshold) {}
problemSizeThreshold(problemSizeThreshold), tg(tg) {}
tbb::task* execute() override
void operator()() const
{
typedef PreOrderTask<NODE, DATA, VISITOR_PRE, VISITOR_POST> PreOrderTask;
// Create data and tasks for our children
tbb::task_list tasks;
for(const boost::shared_ptr<NODE>& root: roots)
{
boost::shared_ptr<DATA> rootData = boost::allocate_shared<DATA>(tbb::scalable_allocator<DATA>(), visitorPre(root, myData));
tasks.push_back(*new(allocate_child())
PreOrderTask(root, rootData, visitorPre, visitorPost, problemSizeThreshold));
tg.run(PreOrderTask(root, rootData, visitorPre, visitorPost, problemSizeThreshold, tg));
}
// Set TBB ref count
set_ref_count(1 + (int) roots.size());
// Spawn tasks
spawn_and_wait_for_all(tasks);
// Return nullptr
return nullptr;
}
};
template<typename NODE, typename ROOTS, typename DATA, typename VISITOR_PRE, typename VISITOR_POST>
RootTask<ROOTS, NODE, DATA, VISITOR_PRE, VISITOR_POST>&
CreateRootTask(const ROOTS& roots, DATA& rootData, VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost, int problemSizeThreshold)
void CreateRootTask(const ROOTS& roots, DATA& rootData, VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost, int problemSizeThreshold)
{
typedef RootTask<ROOTS, NODE, DATA, VISITOR_PRE, VISITOR_POST> RootTask;
return *new(tbb::task::allocate_root()) RootTask(roots, rootData, visitorPre, visitorPost, problemSizeThreshold);
}
tbb::task_group tg;
tg.run_and_wait(RootTask(roots, rootData, visitorPre, visitorPost, problemSizeThreshold, tg));
}
}

View File

@ -35,7 +35,7 @@ class GTSAM_EXPORT PinholeBaseK: public PinholeBase {
private:
GTSAM_CONCEPT_MANIFOLD_TYPE(CALIBRATION);
GTSAM_CONCEPT_MANIFOLD_TYPE(CALIBRATION)
// Get dimensions of calibration type at compile time
static const int DimK = FixedDimension<CALIBRATION>::value;

View File

@ -28,7 +28,7 @@ using namespace std;
namespace gtsam {
/** instantiate concept checks */
GTSAM_CONCEPT_POSE_INST(Pose2);
GTSAM_CONCEPT_POSE_INST(Pose2)
static const Rot2 R_PI_2(Rot2::fromCosSin(0., 1.));

View File

@ -30,7 +30,7 @@ using std::vector;
using Point3Pairs = vector<Point3Pair>;
/** instantiate concept checks */
GTSAM_CONCEPT_POSE_INST(Pose3);
GTSAM_CONCEPT_POSE_INST(Pose3)
/* ************************************************************************* */
Pose3::Pose3(const Pose2& pose2) :
@ -63,6 +63,46 @@ Matrix6 Pose3::AdjointMap() const {
return adj;
}
/* ************************************************************************* */
// Calculate AdjointMap applied to xi_b, with Jacobians
Vector6 Pose3::Adjoint(const Vector6& xi_b, OptionalJacobian<6, 6> H_pose,
OptionalJacobian<6, 6> H_xib) const {
const Matrix6 Ad = AdjointMap();
// Jacobians
// D1 Ad_T(xi_b) = D1 Ad_T Ad_I(xi_b) = Ad_T * D1 Ad_I(xi_b) = Ad_T * ad_xi_b
// D2 Ad_T(xi_b) = Ad_T
// See docs/math.pdf for more details.
// In D1 calculation, we could be more efficient by writing it out, but do not
// for readability
if (H_pose) *H_pose = -Ad * adjointMap(xi_b);
if (H_xib) *H_xib = Ad;
return Ad * xi_b;
}
/* ************************************************************************* */
/// The dual version of Adjoint
Vector6 Pose3::AdjointTranspose(const Vector6& x, OptionalJacobian<6, 6> H_pose,
OptionalJacobian<6, 6> H_x) const {
const Matrix6 Ad = AdjointMap();
const Vector6 AdTx = Ad.transpose() * x;
// Jacobians
// See docs/math.pdf for more details.
if (H_pose) {
const auto w_T_hat = skewSymmetric(AdTx.head<3>()),
v_T_hat = skewSymmetric(AdTx.tail<3>());
*H_pose << w_T_hat, v_T_hat, //
/* */ v_T_hat, Z_3x3;
}
if (H_x) {
*H_x = Ad.transpose();
}
return AdTx;
}
/* ************************************************************************* */
Matrix6 Pose3::adjointMap(const Vector6& xi) {
Matrix3 w_hat = skewSymmetric(xi(0), xi(1), xi(2));
@ -75,7 +115,7 @@ Matrix6 Pose3::adjointMap(const Vector6& xi) {
/* ************************************************************************* */
Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> Hxi) {
OptionalJacobian<6, 6> Hxi, OptionalJacobian<6, 6> H_y) {
if (Hxi) {
Hxi->setZero();
for (int i = 0; i < 6; ++i) {
@ -86,12 +126,14 @@ Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
Hxi->col(i) = Gi * y;
}
}
return adjointMap(xi) * y;
const Matrix6& ad_xi = adjointMap(xi);
if (H_y) *H_y = ad_xi;
return ad_xi * y;
}
/* ************************************************************************* */
Vector6 Pose3::adjointTranspose(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> Hxi) {
OptionalJacobian<6, 6> Hxi, OptionalJacobian<6, 6> H_y) {
if (Hxi) {
Hxi->setZero();
for (int i = 0; i < 6; ++i) {
@ -102,7 +144,9 @@ Vector6 Pose3::adjointTranspose(const Vector6& xi, const Vector6& y,
Hxi->col(i) = GTi * y;
}
}
return adjointMap(xi).transpose() * y;
const Matrix6& adT_xi = adjointMap(xi).transpose();
if (H_y) *H_y = adT_xi;
return adT_xi * y;
}
/* ************************************************************************* */

View File

@ -145,15 +145,22 @@ public:
* Calculate Adjoint map, transforming a twist in this pose's (i.e, body) frame to the world spatial frame
* Ad_pose is 6*6 matrix that when applied to twist xi \f$ [R_x,R_y,R_z,T_x,T_y,T_z] \f$, returns Ad_pose(xi)
*/
Matrix6 AdjointMap() const; /// FIXME Not tested - marked as incorrect
Matrix6 AdjointMap() const;
/**
* Apply this pose's AdjointMap Ad_g to a twist \f$ \xi_b \f$, i.e. a body-fixed velocity, transforming it to the spatial frame
* Apply this pose's AdjointMap Ad_g to a twist \f$ \xi_b \f$, i.e. a
* body-fixed velocity, transforming it to the spatial frame
* \f$ \xi^s = g*\xi^b*g^{-1} = Ad_g * \xi^b \f$
* Note that H_xib = AdjointMap()
*/
Vector6 Adjoint(const Vector6& xi_b) const {
return AdjointMap() * xi_b;
} /// FIXME Not tested - marked as incorrect
Vector6 Adjoint(const Vector6& xi_b,
OptionalJacobian<6, 6> H_this = boost::none,
OptionalJacobian<6, 6> H_xib = boost::none) const;
/// The dual version of Adjoint
Vector6 AdjointTranspose(const Vector6& x,
OptionalJacobian<6, 6> H_this = boost::none,
OptionalJacobian<6, 6> H_x = boost::none) const;
/**
* Compute the [ad(w,v)] operator as defined in [Kobilarov09siggraph], pg 11
@ -170,13 +177,14 @@ public:
* and its inverse transpose in the discrete Euler Poincare' (DEP) operator.
*
*/
static Matrix6 adjointMap(const Vector6 &xi);
static Matrix6 adjointMap(const Vector6& xi);
/**
* Action of the adjointMap on a Lie-algebra vector y, with optional derivatives
*/
static Vector6 adjoint(const Vector6 &xi, const Vector6 &y,
OptionalJacobian<6, 6> Hxi = boost::none);
static Vector6 adjoint(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> Hxi = boost::none,
OptionalJacobian<6, 6> H_y = boost::none);
// temporary fix for wrappers until case issue is resolved
static Matrix6 adjointMap_(const Vector6 &xi) { return adjointMap(xi);}
@ -186,7 +194,8 @@ public:
* The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
*/
static Vector6 adjointTranspose(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> Hxi = boost::none);
OptionalJacobian<6, 6> Hxi = boost::none,
OptionalJacobian<6, 6> H_y = boost::none);
/// Derivative of Expmap
static Matrix6 ExpmapDerivative(const Vector6& xi);

View File

@ -72,5 +72,5 @@ private:
/** Pose Concept macros */
#define GTSAM_CONCEPT_POSE_INST(T) template class gtsam::PoseConcept<T>;
#define GTSAM_CONCEPT_POSE_TYPE(T) typedef gtsam::PoseConcept<T> _gtsam_PoseConcept##T;
#define GTSAM_CONCEPT_POSE_TYPE(T) using _gtsam_PoseConcept##T = gtsam::PoseConcept<T>;

View File

@ -473,6 +473,9 @@ class Pose3 {
Vector logmap(const gtsam::Pose3& pose);
Matrix AdjointMap() const;
Vector Adjoint(Vector xi) const;
Vector AdjointTranspose(Vector xi) const;
static Matrix adjointMap(Vector xi);
static Vector adjoint(Vector xi, Vector y);
static Matrix adjointMap_(Vector xi);
static Vector adjoint_(Vector xi, Vector y);
static Vector adjointTranspose(Vector xi, Vector y);

View File

@ -145,6 +145,81 @@ TEST(Pose3, Adjoint_full)
EXPECT(assert_equal(expected3, Pose3::Expmap(xiprime3), 1e-6));
}
/* ************************************************************************* */
// Check Adjoint numerical derivatives
TEST(Pose3, Adjoint_jacobians)
{
Vector6 xi = (Vector6() << 0.1, 1.2, 2.3, 3.1, 1.4, 4.5).finished();
// Check evaluation sanity check
EQUALITY(static_cast<gtsam::Vector>(T.AdjointMap() * xi), T.Adjoint(xi));
EQUALITY(static_cast<gtsam::Vector>(T2.AdjointMap() * xi), T2.Adjoint(xi));
EQUALITY(static_cast<gtsam::Vector>(T3.AdjointMap() * xi), T3.Adjoint(xi));
// Check jacobians
Matrix6 actualH1, actualH2, expectedH1, expectedH2;
std::function<Vector6(const Pose3&, const Vector6&)> Adjoint_proxy =
[&](const Pose3& T, const Vector6& xi) { return T.Adjoint(xi); };
T.Adjoint(xi, actualH1, actualH2);
expectedH1 = numericalDerivative21(Adjoint_proxy, T, xi);
expectedH2 = numericalDerivative22(Adjoint_proxy, T, xi);
EXPECT(assert_equal(expectedH1, actualH1));
EXPECT(assert_equal(expectedH2, actualH2));
T2.Adjoint(xi, actualH1, actualH2);
expectedH1 = numericalDerivative21(Adjoint_proxy, T2, xi);
expectedH2 = numericalDerivative22(Adjoint_proxy, T2, xi);
EXPECT(assert_equal(expectedH1, actualH1));
EXPECT(assert_equal(expectedH2, actualH2));
T3.Adjoint(xi, actualH1, actualH2);
expectedH1 = numericalDerivative21(Adjoint_proxy, T3, xi);
expectedH2 = numericalDerivative22(Adjoint_proxy, T3, xi);
EXPECT(assert_equal(expectedH1, actualH1));
EXPECT(assert_equal(expectedH2, actualH2));
}
/* ************************************************************************* */
// Check AdjointTranspose and jacobians
TEST(Pose3, AdjointTranspose)
{
Vector6 xi = (Vector6() << 0.1, 1.2, 2.3, 3.1, 1.4, 4.5).finished();
// Check evaluation
EQUALITY(static_cast<Vector>(T.AdjointMap().transpose() * xi),
T.AdjointTranspose(xi));
EQUALITY(static_cast<Vector>(T2.AdjointMap().transpose() * xi),
T2.AdjointTranspose(xi));
EQUALITY(static_cast<Vector>(T3.AdjointMap().transpose() * xi),
T3.AdjointTranspose(xi));
// Check jacobians
Matrix6 actualH1, actualH2, expectedH1, expectedH2;
std::function<Vector6(const Pose3&, const Vector6&)> AdjointTranspose_proxy =
[&](const Pose3& T, const Vector6& xi) {
return T.AdjointTranspose(xi);
};
T.AdjointTranspose(xi, actualH1, actualH2);
expectedH1 = numericalDerivative21(AdjointTranspose_proxy, T, xi);
expectedH2 = numericalDerivative22(AdjointTranspose_proxy, T, xi);
EXPECT(assert_equal(expectedH1, actualH1, 1e-8));
EXPECT(assert_equal(expectedH2, actualH2));
T2.AdjointTranspose(xi, actualH1, actualH2);
expectedH1 = numericalDerivative21(AdjointTranspose_proxy, T2, xi);
expectedH2 = numericalDerivative22(AdjointTranspose_proxy, T2, xi);
EXPECT(assert_equal(expectedH1, actualH1, 1e-8));
EXPECT(assert_equal(expectedH2, actualH2));
T3.AdjointTranspose(xi, actualH1, actualH2);
expectedH1 = numericalDerivative21(AdjointTranspose_proxy, T3, xi);
expectedH2 = numericalDerivative22(AdjointTranspose_proxy, T3, xi);
EXPECT(assert_equal(expectedH1, actualH1, 1e-8));
EXPECT(assert_equal(expectedH2, actualH2));
}
/* ************************************************************************* */
// assert that T*wedge(xi)*T^-1 is equal to wedge(Ad_T(xi))
TEST(Pose3, Adjoint_hat)
@ -837,16 +912,20 @@ Vector6 testDerivAdjoint(const Vector6& xi, const Vector6& v) {
}
TEST( Pose3, adjoint) {
Vector expected = testDerivAdjoint(screwPose3::xi, screwPose3::xi);
Vector6 v = (Vector6() << 1, 2, 3, 4, 5, 6).finished();
Vector expected = testDerivAdjoint(screwPose3::xi, v);
Matrix actualH;
Vector actual = Pose3::adjoint(screwPose3::xi, screwPose3::xi, actualH);
Matrix actualH1, actualH2;
Vector actual = Pose3::adjoint(screwPose3::xi, v, actualH1, actualH2);
Matrix numericalH = numericalDerivative21<Vector6, Vector6, Vector6>(
testDerivAdjoint, screwPose3::xi, screwPose3::xi, 1e-5);
Matrix numericalH1 = numericalDerivative21<Vector6, Vector6, Vector6>(
testDerivAdjoint, screwPose3::xi, v, 1e-5);
Matrix numericalH2 = numericalDerivative22<Vector6, Vector6, Vector6>(
testDerivAdjoint, screwPose3::xi, v, 1e-5);
EXPECT(assert_equal(expected,actual,1e-5));
EXPECT(assert_equal(numericalH,actualH,1e-5));
EXPECT(assert_equal(numericalH1,actualH1,1e-5));
EXPECT(assert_equal(numericalH2,actualH2,1e-5));
}
/* ************************************************************************* */
@ -859,14 +938,17 @@ TEST( Pose3, adjointTranspose) {
Vector v = (Vector(6) << 0.04, 0.05, 0.06, 4.0, 5.0, 6.0).finished();
Vector expected = testDerivAdjointTranspose(xi, v);
Matrix actualH;
Vector actual = Pose3::adjointTranspose(xi, v, actualH);
Matrix actualH1, actualH2;
Vector actual = Pose3::adjointTranspose(xi, v, actualH1, actualH2);
Matrix numericalH = numericalDerivative21<Vector6, Vector6, Vector6>(
Matrix numericalH1 = numericalDerivative21<Vector6, Vector6, Vector6>(
testDerivAdjointTranspose, xi, v, 1e-5);
Matrix numericalH2 = numericalDerivative22<Vector6, Vector6, Vector6>(
testDerivAdjointTranspose, xi, v, 1e-5);
EXPECT(assert_equal(expected,actual,1e-15));
EXPECT(assert_equal(numericalH,actualH,1e-5));
EXPECT(assert_equal(numericalH1,actualH1,1e-5));
EXPECT(assert_equal(numericalH2,actualH2,1e-5));
}
/* ************************************************************************* */

View File

@ -110,7 +110,7 @@ class ClusterTree {
typedef sharedCluster sharedNode;
/** concept check */
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType);
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType)
protected:
FastVector<sharedNode> roots_;

View File

@ -36,17 +36,17 @@ namespace gtsam {
// no Ordering is provided. When removing optional from VariableIndex, create VariableIndex
// before creating ordering.
VariableIndex computedVariableIndex(asDerived());
return eliminateSequential(function, computedVariableIndex, orderingType);
return eliminateSequential(orderingType, function, computedVariableIndex);
}
else {
// Compute an ordering and call this function again. We are guaranteed to have a
// VariableIndex already here because we computed one if needed in the previous 'if' block.
if (orderingType == Ordering::METIS) {
Ordering computedOrdering = Ordering::Metis(asDerived());
return eliminateSequential(computedOrdering, function, variableIndex, orderingType);
return eliminateSequential(computedOrdering, function, variableIndex);
} else {
Ordering computedOrdering = Ordering::Colamd(*variableIndex);
return eliminateSequential(computedOrdering, function, variableIndex, orderingType);
return eliminateSequential(computedOrdering, function, variableIndex);
}
}
}
@ -78,29 +78,31 @@ namespace gtsam {
}
/* ************************************************************************* */
template<class FACTORGRAPH>
boost::shared_ptr<typename EliminateableFactorGraph<FACTORGRAPH>::BayesTreeType>
EliminateableFactorGraph<FACTORGRAPH>::eliminateMultifrontal(
OptionalOrderingType orderingType, const Eliminate& function,
OptionalVariableIndex variableIndex) const
{
if(!variableIndex) {
// If no VariableIndex provided, compute one and call this function again IMPORTANT: we check
// for no variable index first so that it's always computed if we need to call COLAMD because
// no Ordering is provided. When removing optional from VariableIndex, create VariableIndex
// before creating ordering.
template <class FACTORGRAPH>
boost::shared_ptr<
typename EliminateableFactorGraph<FACTORGRAPH>::BayesTreeType>
EliminateableFactorGraph<FACTORGRAPH>::eliminateMultifrontal(
OptionalOrderingType orderingType, const Eliminate& function,
OptionalVariableIndex variableIndex) const {
if (!variableIndex) {
// If no VariableIndex provided, compute one and call this function again
// IMPORTANT: we check for no variable index first so that it's always
// computed if we need to call COLAMD because no Ordering is provided.
// When removing optional from VariableIndex, create VariableIndex before
// creating ordering.
VariableIndex computedVariableIndex(asDerived());
return eliminateMultifrontal(function, computedVariableIndex, orderingType);
}
else {
// Compute an ordering and call this function again. We are guaranteed to have a
// VariableIndex already here because we computed one if needed in the previous 'if' block.
return eliminateMultifrontal(orderingType, function,
computedVariableIndex);
} else {
// Compute an ordering and call this function again. We are guaranteed to
// have a VariableIndex already here because we computed one if needed in
// the previous 'if' block.
if (orderingType == Ordering::METIS) {
Ordering computedOrdering = Ordering::Metis(asDerived());
return eliminateMultifrontal(computedOrdering, function, variableIndex, orderingType);
return eliminateMultifrontal(computedOrdering, function, variableIndex);
} else {
Ordering computedOrdering = Ordering::Colamd(*variableIndex);
return eliminateMultifrontal(computedOrdering, function, variableIndex, orderingType);
return eliminateMultifrontal(computedOrdering, function, variableIndex);
}
}
}
@ -273,7 +275,7 @@ namespace gtsam {
else
{
// No ordering was provided for the unmarginalized variables, so order them with COLAMD.
return factorGraph->eliminateSequential(function);
return factorGraph->eliminateSequential(Ordering::COLAMD, function);
}
}
}
@ -340,7 +342,7 @@ namespace gtsam {
else
{
// No ordering was provided for the unmarginalized variables, so order them with COLAMD.
return factorGraph->eliminateMultifrontal(function);
return factorGraph->eliminateMultifrontal(Ordering::COLAMD, function);
}
}
}

View File

@ -288,6 +288,7 @@ namespace gtsam {
FactorGraphType& asDerived() { return static_cast<FactorGraphType&>(*this); }
public:
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V41
/** \deprecated ordering and orderingType shouldn't both be specified */
boost::shared_ptr<BayesNetType> eliminateSequential(
const Ordering& ordering,
@ -339,6 +340,7 @@ namespace gtsam {
OptionalVariableIndex variableIndex = boost::none) const {
return marginalMultifrontalBayesTree(variables, function, variableIndex);
}
#endif
};
}

View File

@ -81,7 +81,7 @@ namespace gtsam {
protected:
/** concept check */
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType);
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType)
FastVector<sharedNode> roots_;
FastVector<sharedFactor> remainingFactors_;

View File

@ -19,7 +19,6 @@
*/
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <gtsam/linear/GaussianJunctionTree.h>
@ -290,10 +289,11 @@ namespace gtsam {
return blocks;
}
/* ************************************************************************* */
/* ************************************************************************ */
VectorValues GaussianFactorGraph::optimize(const Eliminate& function) const {
gttic(GaussianFactorGraph_optimize);
return BaseEliminateable::eliminateMultifrontal(function)->optimize();
return BaseEliminateable::eliminateMultifrontal(Ordering::COLAMD, function)
->optimize();
}
/* ************************************************************************* */
@ -504,10 +504,32 @@ namespace gtsam {
}
/* ************************************************************************* */
/** \deprecated */
VectorValues GaussianFactorGraph::optimize(boost::none_t,
const Eliminate& function) const {
return optimize(function);
void GaussianFactorGraph::printErrors(
const VectorValues& values, const std::string& str,
const KeyFormatter& keyFormatter,
const std::function<bool(const Factor* /*factor*/,
double /*whitenedError*/, size_t /*index*/)>&
printCondition) const {
cout << str << "size: " << size() << endl << endl;
for (size_t i = 0; i < (*this).size(); i++) {
const sharedFactor& factor = (*this)[i];
const double errorValue =
(factor != nullptr ? (*this)[i]->error(values) : .0);
if (!printCondition(factor.get(), errorValue, i))
continue; // User-provided filter did not pass
stringstream ss;
ss << "Factor " << i << ": ";
if (factor == nullptr) {
cout << "nullptr"
<< "\n";
} else {
factor->print(ss.str(), keyFormatter);
cout << "error = " << errorValue << "\n";
}
cout << endl; // only one "endl" at end might be faster, \n for each
// factor
}
}
} // namespace gtsam

View File

@ -21,12 +21,13 @@
#pragma once
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/EliminateableFactorGraph.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/linear/Errors.h> // Included here instead of fw-declared so we can use Errors::iterator
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/linear/Errors.h> // Included here instead of fw-declared so we can use Errors::iterator
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
@ -375,6 +376,14 @@ namespace gtsam {
/** In-place version e <- A*x that takes an iterator. */
void multiplyInPlace(const VectorValues& x, const Errors::iterator& e) const;
void printErrors(
const VectorValues& x,
const std::string& str = "GaussianFactorGraph: ",
const KeyFormatter& keyFormatter = DefaultKeyFormatter,
const std::function<bool(const Factor* /*factor*/,
double /*whitenedError*/, size_t /*index*/)>&
printCondition =
[](const Factor*, double, size_t) { return true; }) const;
/// @}
private:
@ -387,9 +396,14 @@ namespace gtsam {
public:
/** \deprecated */
VectorValues optimize(boost::none_t,
const Eliminate& function = EliminationTraitsType::DefaultEliminate) const;
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V41
/** \deprecated */
VectorValues optimize(boost::none_t,
const Eliminate& function =
EliminationTraitsType::DefaultEliminate) const {
return optimize(function);
}
#endif
};

View File

@ -302,6 +302,7 @@ virtual class JacobianFactor : gtsam::GaussianFactor {
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
void printKeys(string s) const;
gtsam::KeyVector& keys() const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
size_t size() const;
Vector unweighted_error(const gtsam::VectorValues& c) const;
@ -401,6 +402,7 @@ class GaussianFactorGraph {
// error and probability
double error(const gtsam::VectorValues& c) const;
double probPrime(const gtsam::VectorValues& c) const;
void printErrors(const gtsam::VectorValues& c, string str = "GaussianFactorGraph: ", const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const;
gtsam::GaussianFactorGraph clone() const;
gtsam::GaussianFactorGraph negate() const;
@ -513,9 +515,9 @@ virtual class GaussianBayesNet {
size_t size() const;
// FactorGraph derived interface
// size_t size() const;
gtsam::GaussianConditional* at(size_t idx) const;
gtsam::KeySet keys() const;
gtsam::KeyVector keyVector() const;
bool exists(size_t idx) const;
void saveGraph(const string& s) const;

View File

@ -39,14 +39,14 @@ using namespace gtsam::serializationTestHelpers;
/* ************************************************************************* */
// Export Noisemodels
// See http://www.boost.org/doc/libs/1_32_0/libs/serialization/doc/special.html
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
/* ************************************************************************* */
// example noise models
@ -129,9 +129,9 @@ TEST (Serialization, SharedDiagonal_noiseModels) {
/* Create GUIDs for factors */
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::GaussianConditional , "gtsam::GaussianConditional");
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor")
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor")
BOOST_CLASS_EXPORT_GUID(gtsam::GaussianConditional , "gtsam::GaussianConditional")
/* ************************************************************************* */
TEST (Serialization, linear_factors) {

View File

@ -257,5 +257,5 @@ std::ostream& operator<<(std::ostream& os, const CombinedImuFactor& f) {
/// namespace gtsam
/// Boost serialization export definition for derived class
BOOST_CLASS_EXPORT_IMPLEMENT(gtsam::PreintegrationCombinedParams);
BOOST_CLASS_EXPORT_IMPLEMENT(gtsam::PreintegrationCombinedParams)

View File

@ -353,4 +353,4 @@ struct traits<CombinedImuFactor> : public Testable<CombinedImuFactor> {};
} // namespace gtsam
/// Add Boost serialization export key (declaration) for derived class
BOOST_CLASS_EXPORT_KEY(gtsam::PreintegrationCombinedParams);
BOOST_CLASS_EXPORT_KEY(gtsam::PreintegrationCombinedParams)

View File

@ -88,6 +88,8 @@ virtual class PreintegratedRotationParams {
virtual class PreintegrationParams : gtsam::PreintegratedRotationParams {
PreintegrationParams(Vector n_gravity);
gtsam::Vector n_gravity;
static gtsam::PreintegrationParams* MakeSharedD(double g);
static gtsam::PreintegrationParams* MakeSharedU(double g);
static gtsam::PreintegrationParams* MakeSharedD(); // default g = 9.81

View File

@ -66,7 +66,7 @@ TEST( Rot3AttitudeFactor, Constructor ) {
/* ************************************************************************* */
// Export Noisemodels
// See http://www.boost.org/doc/libs/1_32_0/libs/serialization/doc/special.html
BOOST_CLASS_EXPORT(gtsam::noiseModel::Isotropic);
BOOST_CLASS_EXPORT(gtsam::noiseModel::Isotropic)
/* ************************************************************************* */
TEST(Rot3AttitudeFactor, Serialization) {

View File

@ -72,7 +72,7 @@ TEST( GPSFactor, Constructor ) {
// Calculate numerical derivatives
Matrix expectedH = numericalDerivative11<Vector,Pose3>(
std::bind(&GPSFactor::evaluateError, &factor, _1, boost::none), T);
std::bind(&GPSFactor::evaluateError, &factor, std::placeholders::_1, boost::none), T);
// Use the factor to calculate the derivative
Matrix actualH;
@ -101,7 +101,7 @@ TEST( GPSFactor2, Constructor ) {
// Calculate numerical derivatives
Matrix expectedH = numericalDerivative11<Vector,NavState>(
std::bind(&GPSFactor2::evaluateError, &factor, _1, boost::none), T);
std::bind(&GPSFactor2::evaluateError, &factor, std::placeholders::_1, boost::none), T);
// Use the factor to calculate the derivative
Matrix actualH;

View File

@ -31,16 +31,16 @@ using namespace gtsam;
using namespace gtsam::serializationTestHelpers;
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained,
"gtsam_noiseModel_Constrained");
"gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal,
"gtsam_noiseModel_Diagonal");
"gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian,
"gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
"gtsam_noiseModel_Gaussian")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic,
"gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
"gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
template <typename P>
P getPreintegratedMeasurements() {

View File

@ -64,7 +64,7 @@ TEST( MagFactor, unrotate ) {
Point3 expected(22735.5, 314.502, 44202.5);
EXPECT( assert_equal(expected, MagFactor::unrotate(theta,nM,H),1e-1));
EXPECT( assert_equal(numericalDerivative11<Point3,Rot2> //
(std::bind(&MagFactor::unrotate, _1, nM, none), theta), H, 1e-6));
(std::bind(&MagFactor::unrotate, std::placeholders::_1, nM, none), theta), H, 1e-6));
}
// *************************************************************************
@ -76,35 +76,35 @@ TEST( MagFactor, Factors ) {
MagFactor f(1, measured, s, dir, bias, model);
EXPECT( assert_equal(Z_3x1,f.evaluateError(theta,H1),1e-5));
EXPECT( assert_equal((Matrix)numericalDerivative11<Vector,Rot2> //
(std::bind(&MagFactor::evaluateError, &f, _1, none), theta), H1, 1e-7));
(std::bind(&MagFactor::evaluateError, &f, std::placeholders::_1, none), theta), H1, 1e-7));
// MagFactor1
MagFactor1 f1(1, measured, s, dir, bias, model);
EXPECT( assert_equal(Z_3x1,f1.evaluateError(nRb,H1),1e-5));
EXPECT( assert_equal(numericalDerivative11<Vector,Rot3> //
(std::bind(&MagFactor1::evaluateError, &f1, _1, none), nRb), H1, 1e-7));
(std::bind(&MagFactor1::evaluateError, &f1, std::placeholders::_1, none), nRb), H1, 1e-7));
// MagFactor2
MagFactor2 f2(1, 2, measured, nRb, model);
EXPECT( assert_equal(Z_3x1,f2.evaluateError(scaled,bias,H1,H2),1e-5));
EXPECT( assert_equal(numericalDerivative11<Vector,Point3> //
(std::bind(&MagFactor2::evaluateError, &f2, _1, bias, none, none), scaled),//
(std::bind(&MagFactor2::evaluateError, &f2, std::placeholders::_1, bias, none, none), scaled),//
H1, 1e-7));
EXPECT( assert_equal(numericalDerivative11<Vector,Point3> //
(std::bind(&MagFactor2::evaluateError, &f2, scaled, _1, none, none), bias),//
(std::bind(&MagFactor2::evaluateError, &f2, scaled, std::placeholders::_1, none, none), bias),//
H2, 1e-7));
// MagFactor2
MagFactor3 f3(1, 2, 3, measured, nRb, model);
EXPECT(assert_equal(Z_3x1,f3.evaluateError(s,dir,bias,H1,H2,H3),1e-5));
EXPECT(assert_equal((Matrix)numericalDerivative11<Vector,double> //
(std::bind(&MagFactor3::evaluateError, &f3, _1, dir, bias, none, none, none), s),//
(std::bind(&MagFactor3::evaluateError, &f3, std::placeholders::_1, dir, bias, none, none, none), s),//
H1, 1e-7));
EXPECT(assert_equal(numericalDerivative11<Vector,Unit3> //
(std::bind(&MagFactor3::evaluateError, &f3, s, _1, bias, none, none, none), dir),//
(std::bind(&MagFactor3::evaluateError, &f3, s, std::placeholders::_1, bias, none, none, none), dir),//
H2, 1e-7));
EXPECT(assert_equal(numericalDerivative11<Vector,Point3> //
(std::bind(&MagFactor3::evaluateError, &f3, s, dir, _1, none, none, none), bias),//
(std::bind(&MagFactor3::evaluateError, &f3, s, dir, std::placeholders::_1, none, none, none), bias),//
H3, 1e-7));
}

View File

@ -101,4 +101,4 @@ private:
}
};
};
}

View File

@ -246,6 +246,18 @@ struct apply_compose {
return x.compose(y, H1, H2);
}
};
template <>
struct apply_compose<double> {
double operator()(const double& x, const double& y,
OptionalJacobian<1, 1> H1 = boost::none,
OptionalJacobian<1, 1> H2 = boost::none) const {
if (H1) H1->setConstant(y);
if (H2) H2->setConstant(x);
return x * y;
}
};
}
// Global methods:

View File

@ -142,8 +142,9 @@ class GTSAM_EXPORT GncOptimizer {
* provides an extra interface for the user to initialize the weightst
* */
void setWeights(const Vector w) {
if(w.size() != nfg_.size()){
throw std::runtime_error("GncOptimizer::setWeights: the number of specified weights"
if (size_t(w.size()) != nfg_.size()) {
throw std::runtime_error(
"GncOptimizer::setWeights: the number of specified weights"
" does not match the size of the factor graph.");
}
weights_ = w;

View File

@ -80,11 +80,15 @@ Marginals::Marginals(const GaussianFactorGraph& graph, const VectorValues& solut
/* ************************************************************************* */
void Marginals::computeBayesTree() {
// The default ordering to use.
const Ordering::OrderingType defaultOrderingType = Ordering::COLAMD;
// Compute BayesTree
if(factorization_ == CHOLESKY)
bayesTree_ = *graph_.eliminateMultifrontal(EliminatePreferCholesky);
else if(factorization_ == QR)
bayesTree_ = *graph_.eliminateMultifrontal(EliminateQR);
if (factorization_ == CHOLESKY)
bayesTree_ = *graph_.eliminateMultifrontal(defaultOrderingType,
EliminatePreferCholesky);
else if (factorization_ == QR)
bayesTree_ =
*graph_.eliminateMultifrontal(defaultOrderingType, EliminateQR);
}
/* ************************************************************************* */

View File

@ -131,6 +131,7 @@ protected:
void computeBayesTree(const Ordering& ordering);
public:
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V41
/** \deprecated argument order changed due to removing boost::optional<Ordering> */
Marginals(const NonlinearFactorGraph& graph, const Values& solution, Factorization factorization,
const Ordering& ordering) : Marginals(graph, solution, ordering, factorization) {}
@ -142,6 +143,7 @@ public:
/** \deprecated argument order changed due to removing boost::optional<Ordering> */
Marginals(const GaussianFactorGraph& graph, const VectorValues& solution, Factorization factorization,
const Ordering& ordering) : Marginals(graph, solution, ordering, factorization) {}
#endif
};

View File

@ -149,7 +149,7 @@ boost::tuple<V, int> nonlinearConjugateGradient(const S &system,
const V &initial, const NonlinearOptimizerParams &params,
const bool singleIteration, const bool gradientDescent = false) {
// GTSAM_CONCEPT_MANIFOLD_TYPE(V);
// GTSAM_CONCEPT_MANIFOLD_TYPE(V)
size_t iteration = 0;

View File

@ -219,7 +219,6 @@ protected:
X value_; /// fixed value for variable
GTSAM_CONCEPT_MANIFOLD_TYPE(X)
GTSAM_CONCEPT_TESTABLE_TYPE(X)
public:

View File

@ -265,6 +265,7 @@ namespace gtsam {
public:
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V41
/** \deprecated */
boost::shared_ptr<HessianFactor> linearizeToHessianFactor(
const Values& values, boost::none_t, const Dampen& dampen = nullptr) const
@ -274,6 +275,7 @@ namespace gtsam {
Values updateCholesky(const Values& values, boost::none_t,
const Dampen& dampen = nullptr) const
{return updateCholesky(values, dampen);}
#endif
};

View File

@ -147,11 +147,13 @@ VectorValues NonlinearOptimizer::solve(const GaussianFactorGraph& gfg,
} else if (params.isSequential()) {
// Sequential QR or Cholesky (decided by params.getEliminationFunction())
if (params.ordering)
delta = gfg.eliminateSequential(*params.ordering, params.getEliminationFunction(),
boost::none, params.orderingType)->optimize();
delta = gfg.eliminateSequential(*params.ordering,
params.getEliminationFunction())
->optimize();
else
delta = gfg.eliminateSequential(params.getEliminationFunction(), boost::none,
params.orderingType)->optimize();
delta = gfg.eliminateSequential(params.orderingType,
params.getEliminationFunction())
->optimize();
} else if (params.isIterative()) {
// Conjugate Gradient -> needs params.iterativeParams
if (!params.iterativeParams)

View File

@ -35,8 +35,7 @@ namespace gtsam {
* zero errors anyway. However, it means that below will only be exact for the correct measurement.
*/
JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
const Values& values, double delta = 1e-5) {
const Values& values, double delta = 1e-5) {
// We will fill a vector of key/Jacobians pairs (a map would sort)
std::vector<std::pair<Key, Matrix> > jacobians;
@ -46,24 +45,24 @@ JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
// Loop over all variables
const double one_over_2delta = 1.0 / (2.0 * delta);
for(Key key: factor) {
for (Key key : factor) {
// Compute central differences using the values struct.
VectorValues dX = values.zeroVectors();
const size_t cols = dX.dim(key);
Matrix J = Matrix::Zero(rows, cols);
for (size_t col = 0; col < cols; ++col) {
Eigen::VectorXd dx = Eigen::VectorXd::Zero(cols);
dx[col] = delta;
dx(col) = delta;
dX[key] = dx;
Values eval_values = values.retract(dX);
const Eigen::VectorXd left = factor.whitenedError(eval_values);
dx[col] = -delta;
dx(col) = -delta;
dX[key] = dx;
eval_values = values.retract(dX);
const Eigen::VectorXd right = factor.whitenedError(eval_values);
J.col(col) = (left - right) * one_over_2delta;
}
jacobians.push_back(std::make_pair(key,J));
jacobians.push_back(std::make_pair(key, J));
}
// Next step...return JacobianFactor

View File

@ -115,6 +115,10 @@ class Ordering {
Ordering();
Ordering(const gtsam::Ordering& other);
template <FACTOR_GRAPH = {gtsam::NonlinearFactorGraph,
gtsam::GaussianFactorGraph}>
static gtsam::Ordering Colamd(const FACTOR_GRAPH& graph);
// Testable
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;

View File

@ -293,6 +293,19 @@ TEST(Expression, compose3) {
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test compose with double type (should be multiplication).
TEST(Expression, compose4) {
// Create expression
gtsam::Key key = 1;
Double_ R1(key), R2(key);
Double_ R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(1);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test with ternary function.
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3, OptionalJacobian<3, 3> H1,

View File

@ -35,37 +35,37 @@ using namespace gtsam::serializationTestHelpers;
/* ************************************************************************* */
// Create GUIDs for Noisemodels
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Base , "gtsam_noiseModel_mEstimator_Base");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Null , "gtsam_noiseModel_mEstimator_Null");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Fair , "gtsam_noiseModel_mEstimator_Fair");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Huber, "gtsam_noiseModel_mEstimator_Huber");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Tukey, "gtsam_noiseModel_mEstimator_Tukey");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic,"gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Robust, "gtsam_noiseModel_Robust");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Base , "gtsam_noiseModel_mEstimator_Base")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Null , "gtsam_noiseModel_mEstimator_Null")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Fair , "gtsam_noiseModel_mEstimator_Fair")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Huber, "gtsam_noiseModel_mEstimator_Huber")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Tukey, "gtsam_noiseModel_mEstimator_Tukey")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic,"gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Robust, "gtsam_noiseModel_Robust")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
/* ************************************************************************* */
// Create GUIDs for factors
BOOST_CLASS_EXPORT_GUID(gtsam::PriorFactor<gtsam::Pose3>, "gtsam::PriorFactor<gtsam::Pose3>");
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::GaussianConditional , "gtsam::GaussianConditional");
BOOST_CLASS_EXPORT_GUID(gtsam::PriorFactor<gtsam::Pose3>, "gtsam::PriorFactor<gtsam::Pose3>")
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor")
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor")
BOOST_CLASS_EXPORT_GUID(gtsam::GaussianConditional , "gtsam::GaussianConditional")
/* ************************************************************************* */
// Export all classes derived from Value
GTSAM_VALUE_EXPORT(gtsam::Cal3_S2);
GTSAM_VALUE_EXPORT(gtsam::Cal3Bundler);
GTSAM_VALUE_EXPORT(gtsam::Point3);
GTSAM_VALUE_EXPORT(gtsam::Pose3);
GTSAM_VALUE_EXPORT(gtsam::Rot3);
GTSAM_VALUE_EXPORT(gtsam::PinholeCamera<Cal3_S2>);
GTSAM_VALUE_EXPORT(gtsam::PinholeCamera<Cal3DS2>);
GTSAM_VALUE_EXPORT(gtsam::PinholeCamera<Cal3Bundler>);
GTSAM_VALUE_EXPORT(gtsam::Cal3_S2)
GTSAM_VALUE_EXPORT(gtsam::Cal3Bundler)
GTSAM_VALUE_EXPORT(gtsam::Point3)
GTSAM_VALUE_EXPORT(gtsam::Pose3)
GTSAM_VALUE_EXPORT(gtsam::Rot3)
GTSAM_VALUE_EXPORT(gtsam::PinholeCamera<Cal3_S2>)
GTSAM_VALUE_EXPORT(gtsam::PinholeCamera<Cal3DS2>)
GTSAM_VALUE_EXPORT(gtsam::PinholeCamera<Cal3Bundler>)
namespace detail {
template<class T> struct pack {

View File

@ -59,8 +59,8 @@ namespace gtsam {
template<class CAMERA, class LANDMARK>
class GeneralSFMFactor: public NoiseModelFactor2<CAMERA, LANDMARK> {
GTSAM_CONCEPT_MANIFOLD_TYPE(CAMERA);
GTSAM_CONCEPT_MANIFOLD_TYPE(LANDMARK);
GTSAM_CONCEPT_MANIFOLD_TYPE(CAMERA)
GTSAM_CONCEPT_MANIFOLD_TYPE(LANDMARK)
static const int DimC = FixedDimension<CAMERA>::value;
static const int DimL = FixedDimension<LANDMARK>::value;
@ -202,7 +202,7 @@ struct traits<GeneralSFMFactor<CAMERA, LANDMARK> > : Testable<
template<class CALIBRATION>
class GeneralSFMFactor2: public NoiseModelFactor3<Pose3, Point3, CALIBRATION> {
GTSAM_CONCEPT_MANIFOLD_TYPE(CALIBRATION);
GTSAM_CONCEPT_MANIFOLD_TYPE(CALIBRATION)
static const int DimK = FixedDimension<CALIBRATION>::value;
protected:

View File

@ -9,20 +9,21 @@
namespace gtsam {
/**
* JacobianFactor for Schur complement that uses the "Nullspace Trick" by Mourikis
* JacobianFactor for Schur complement that uses the "Nullspace Trick" by
* Mourikis et al.
*
* This trick is equivalent to the Schur complement, but can be faster.
* In essence, the linear factor |E*dp + F*dX - b|, where p is point and X are poses,
* is multiplied by Enull, a matrix that spans the left nullspace of E, i.e.,
* The mx3 matrix is analyzed with SVD as E = [Erange Enull]*S*V (mxm * mx3 * 3x3)
* where Enull is an m x (m-3) matrix
* Then Enull'*E*dp = 0, and
* In essence, the linear factor |E*dp + F*dX - b|, where p is point and X are
* poses, is multiplied by Enull, a matrix that spans the left nullspace of E,
* i.e., The mx3 matrix is analyzed with SVD as E = [Erange Enull]*S*V (mxm *
* mx3 * 3x3) where Enull is an m x (m-3) matrix Then Enull'*E*dp = 0, and
* |Enull'*E*dp + Enull'*F*dX - Enull'*b| == |Enull'*F*dX - Enull'*b|
* Normally F is m x 6*numKeys, and Enull'*F yields an (m-3) x 6*numKeys matrix.
*
* The code below assumes that F is block diagonal and is given as a vector of ZDim*D blocks.
* Example: m = 4 (2 measurements), Enull = 4*1, F = 4*12 (for D=6)
* Then Enull'*F = 1*4 * 4*12 = 1*12, but each 1*6 piece can be computed as a 1x2 * 2x6 mult
* The code below assumes that F is block diagonal and is given as a vector of
* ZDim*D blocks. Example: m = 4 (2 measurements), Enull = 4*1, F = 4*12 (for
* D=6) Then Enull'*F = 1*4 * 4*12 = 1*12, but each 1*6 piece can be computed as
* a 1x2 * 2x6 multiplication.
*/
template<size_t D, size_t ZDim>
class JacobianFactorSVD: public RegularJacobianFactor<D> {
@ -37,10 +38,10 @@ public:
JacobianFactorSVD() {
}
/// Empty constructor with keys
JacobianFactorSVD(const KeyVector& keys, //
const SharedDiagonal& model = SharedDiagonal()) :
Base() {
/// Empty constructor with keys.
JacobianFactorSVD(const KeyVector& keys,
const SharedDiagonal& model = SharedDiagonal())
: Base() {
Matrix zeroMatrix = Matrix::Zero(0, D);
Vector zeroVector = Vector::Zero(0);
std::vector<KeyMatrix> QF;
@ -51,18 +52,21 @@ public:
}
/**
* @brief Constructor
* Takes the CameraSet derivatives (as ZDim*D blocks of block-diagonal F)
* and a reduced point derivative, Enull
* and creates a reduced-rank Jacobian factor on the CameraSet
* @brief Construct a new JacobianFactorSVD object, createing a reduced-rank
* Jacobian factor on the CameraSet.
*
* @Fblocks:
* @param keys keys associated with F blocks.
* @param Fblocks CameraSet derivatives, ZDim*D blocks of block-diagonal F
* @param Enull a reduced point derivative
* @param b right-hand side
* @param model noise model
*/
JacobianFactorSVD(const KeyVector& keys,
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& Fblocks, const Matrix& Enull,
const Vector& b, //
const SharedDiagonal& model = SharedDiagonal()) :
Base() {
JacobianFactorSVD(
const KeyVector& keys,
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& Fblocks,
const Matrix& Enull, const Vector& b,
const SharedDiagonal& model = SharedDiagonal())
: Base() {
size_t numKeys = Enull.rows() / ZDim;
size_t m2 = ZDim * numKeys - 3; // TODO: is this not just Enull.rows()?
// PLAIN nullptr SPACE TRICK
@ -74,9 +78,8 @@ public:
QF.reserve(numKeys);
for (size_t k = 0; k < Fblocks.size(); ++k) {
Key key = keys[k];
QF.push_back(
KeyMatrix(key,
(Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]));
QF.emplace_back(
key, (Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]);
}
JacobianFactor::fillTerms(QF, Enull.transpose() * b, model);
}

View File

@ -11,7 +11,7 @@
/**
* @file ProjectionFactor.h
* @brief Basic bearing factor from 2D measurement
* @brief Reprojection of a LANDMARK to a 2D point.
* @author Chris Beall
* @author Richard Roberts
* @author Frank Dellaert
@ -22,17 +22,21 @@
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <boost/optional.hpp>
namespace gtsam {
/**
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
* i.e. the main building block for visual SLAM.
* Non-linear factor for a constraint derived from a 2D measurement.
* The calibration is known here.
* The main building block for visual SLAM.
* @addtogroup SLAM
*/
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
template <class POSE = Pose3, class LANDMARK = Point3,
class CALIBRATION = Cal3_S2>
class GenericProjectionFactor: public NoiseModelFactor2<POSE, LANDMARK> {
protected:
@ -57,9 +61,9 @@ namespace gtsam {
typedef boost::shared_ptr<This> shared_ptr;
/// Default constructor
GenericProjectionFactor() :
measured_(0, 0), throwCheirality_(false), verboseCheirality_(false) {
}
GenericProjectionFactor() :
measured_(0, 0), throwCheirality_(false), verboseCheirality_(false) {
}
/**
* Constructor

68
gtsam/slam/ReadMe.md Normal file
View File

@ -0,0 +1,68 @@
# SLAM Factors
## GenericProjectionFactor (defined in ProjectionFactor.h)
Non-linear factor that minimizes the re-projection error with respect to a 2D measurement.
The calibration is assumed known and passed in the constructor.
The main building block for visual SLAM.
Templated on
- `POSE`, default `Pose3`
- `LANDMARK`, default `Point3`
- `CALIBRATION`, default `Cal3_S2`
## SmartFactors
These are "structure-less" factors, i.e., rather than introducing a new variable for an observed 3D point or landmark, a single factor is created that provides a multi-view constraint on several poses and/or cameras.
While one typically adds multiple GenericProjectionFactors (one for each observation of a landmark), a SmartFactor collects all measurements for a landmark, i.e., the factor graph contains 1 smart factor per landmark.
### SmartFactorBase
This is the base class for smart factors, templated on a `CAMERA` type.
It has no internal point, but it saves the measurements, keeps a noise model, and an optional sensor pose.
### SmartProjectionFactor
Also templated on `CAMERA`. Triangulates a 3D point and keeps an estimate of it around.
This factor operates with monocular cameras, and is used to optimize the camera pose
*and* calibration for each camera, and requires variables of type `CAMERA` in values.
If the calibration is fixed use `SmartProjectionPoseFactor` instead!
### SmartProjectionPoseFactor
Derives from `SmartProjectionFactor` but is templated on a `CALIBRATION` type, setting `CAMERA = PinholePose<CALIBRATION>`.
This factor assumes that the camera calibration is fixed and the same for all cameras involved in this factor.
The factor only constrains poses.
If the calibration should be optimized, as well, use `SmartProjectionFactor` instead!
### SmartProjectionRigFactor
Same as `SmartProjectionPoseFactor`, except:
- it is templated on `CAMERA`, i.e., it allows cameras beyond pinhole;
- it allows measurements from multiple cameras, each camera with fixed but potentially different intrinsics and extrinsics;
- it allows multiple observations from the same pose/key, again, to model a multi-camera system.
## Linearized Smart Factors
The factors below are less likely to be relevant to the user, but result from using the non-linear smart factors above.
### RegularImplicitSchurFactor
A specialization of a GaussianFactor to structure-less SFM, which is very fast in a conjugate gradient (CG) solver.
It is produced by calling `createRegularImplicitSchurFactor` in `SmartFactorBase` or `SmartProjectionFactor`.
### JacobianFactorQ
A RegularJacobianFactor that uses some badly documented reduction on the Jacobians.
### JacobianFactorQR
A RegularJacobianFactor that eliminates a point using sequential elimination.
### JacobianFactorQR
A RegularJacobianFactor that uses the "Nullspace Trick" by Mourikis et al. See the documentation in the file, which *is* well documented.

View File

@ -1,6 +1,6 @@
/**
* @file RegularImplicitSchurFactor.h
* @brief A new type of linear factor (GaussianFactor), which is subclass of GaussianFactor
* @brief A subclass of GaussianFactor specialized to structureless SFM.
* @author Frank Dellaert
* @author Luca Carlone
*/
@ -20,6 +20,20 @@ namespace gtsam {
/**
* RegularImplicitSchurFactor
*
* A specialization of a GaussianFactor to structure-less SFM, which is very
* fast in a conjugate gradient (CG) solver. Specifically, as measured in
* timeSchurFactors.cpp, it stays very fast for an increasing number of cameras.
* The magic is in multiplyHessianAdd, which does the Hessian-vector multiply at
* the core of CG, and implements
* y += F'*alpha*(I - E*P*E')*F*x
* where
* - F is the 2mx6m Jacobian of the m 2D measurements wrpt m 6DOF poses
* - E is the 2mx3 Jacabian of the m 2D measurements wrpt a 3D point
* - P is the covariance on the point
* The equation above implicitly executes the Schur complement by removing the
* information E*P*E' from the Hessian. It is also very fast as we do not use
* the full 6m*6m F matrix, but rather only it's m 6x6 diagonal blocks.
*/
template<class CAMERA>
class RegularImplicitSchurFactor: public GaussianFactor {
@ -38,9 +52,10 @@ protected:
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; ///< type of an F block
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera hessian
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera Hessian
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks;
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks_; ///< All ZDim*D F blocks (one for each camera)
FBlocks FBlocks_; ///< All ZDim*D F blocks (one for each camera)
const Matrix PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (2*2 if degenerate)
const Matrix E_; ///< The 2m*3 E Jacobian with respect to the point
const Vector b_; ///< 2m-dimensional RHS vector
@ -52,17 +67,25 @@ public:
}
/// Construct from blocks of F, E, inv(E'*E), and RHS vector b
RegularImplicitSchurFactor(const KeyVector& keys,
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& FBlocks, const Matrix& E, const Matrix& P,
const Vector& b) :
GaussianFactor(keys), FBlocks_(FBlocks), PointCovariance_(P), E_(E), b_(b) {
}
/**
* @brief Construct a new RegularImplicitSchurFactor object.
*
* @param keys keys corresponding to cameras
* @param Fs All ZDim*D F blocks (one for each camera)
* @param E Jacobian of measurements wrpt point.
* @param P point covariance matrix
* @param b RHS vector
*/
RegularImplicitSchurFactor(const KeyVector& keys, const FBlocks& Fs,
const Matrix& E, const Matrix& P, const Vector& b)
: GaussianFactor(keys), FBlocks_(Fs), PointCovariance_(P), E_(E), b_(b) {}
/// Destructor
~RegularImplicitSchurFactor() override {
}
std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& FBlocks() const {
const FBlocks& Fs() const {
return FBlocks_;
}

View File

@ -37,12 +37,14 @@
namespace gtsam {
/**
* @brief Base class for smart factors
* @brief Base class for smart factors.
* This base class has no internal point, but it has a measurement, noise model
* and an optional sensor pose.
* This class mainly computes the derivatives and returns them as a variety of factors.
* The methods take a Cameras argument, which should behave like PinholeCamera, and
* the value of a point, which is kept in the base class.
* This class mainly computes the derivatives and returns them as a variety of
* factors. The methods take a CameraSet<CAMERA> argument and the value of a
* point, which is kept in the derived class.
*
* @tparam CAMERA should behave like a PinholeCamera.
*/
template<class CAMERA>
class SmartFactorBase: public NonlinearFactor {
@ -64,19 +66,20 @@ protected:
/**
* As of Feb 22, 2015, the noise model is the same for all measurements and
* is isotropic. This allows for moving most calculations of Schur complement
* etc to be moved to CameraSet very easily, and also agrees pragmatically
* etc. to be easily moved to CameraSet, and also agrees pragmatically
* with what is normally done.
*/
SharedIsotropic noiseModel_;
/**
* 2D measurement and noise model for each of the m views
* We keep a copy of measurements for I/O and computing the error.
* Measurements for each of the m views.
* We keep a copy of the measurements for I/O and computing the error.
* The order is kept the same as the keys that we use to create the factor.
*/
ZVector measured_;
boost::optional<Pose3> body_P_sensor_; ///< Pose of the camera in the body frame
boost::optional<Pose3>
body_P_sensor_; ///< Pose of the camera in the body frame
// Cache for Fblocks, to avoid a malloc ever time we re-linearize
mutable FBlocks Fs;
@ -84,16 +87,16 @@ protected:
public:
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
/// shorthand for a smart pointer to a factor
/// shorthand for a smart pointer to a factor.
typedef boost::shared_ptr<This> shared_ptr;
/// We use the new CameraSte data structure to refer to a set of cameras
/// The CameraSet data structure is used to refer to a set of cameras.
typedef CameraSet<CAMERA> Cameras;
/// Default Constructor, for serialization
/// Default Constructor, for serialization.
SmartFactorBase() {}
/// Constructor
/// Construct with given noise model and optional arguments.
SmartFactorBase(const SharedNoiseModel& sharedNoiseModel,
boost::optional<Pose3> body_P_sensor = boost::none,
size_t expectedNumberCameras = 10)
@ -111,12 +114,12 @@ protected:
noiseModel_ = sharedIsotropic;
}
/// Virtual destructor, subclasses from NonlinearFactor
/// Virtual destructor, subclasses from NonlinearFactor.
~SmartFactorBase() override {
}
/**
* Add a new measurement and pose/camera key
* Add a new measurement and pose/camera key.
* @param measured is the 2m dimensional projection of a single landmark
* @param key is the index corresponding to the camera observing the landmark
*/
@ -129,9 +132,7 @@ protected:
this->keys_.push_back(key);
}
/**
* Add a bunch of measurements, together with the camera keys
*/
/// Add a bunch of measurements, together with the camera keys.
void add(const ZVector& measurements, const KeyVector& cameraKeys) {
assert(measurements.size() == cameraKeys.size());
for (size_t i = 0; i < measurements.size(); i++) {
@ -140,8 +141,8 @@ protected:
}
/**
* Adds an entire SfM_track (collection of cameras observing a single point).
* The noise is assumed to be the same for all measurements
* Add an entire SfM_track (collection of cameras observing a single point).
* The noise is assumed to be the same for all measurements.
*/
template<class SFM_TRACK>
void add(const SFM_TRACK& trackToAdd) {
@ -151,17 +152,13 @@ protected:
}
}
/// get the dimension (number of rows!) of the factor
size_t dim() const override {
return ZDim * this->measured_.size();
}
/// Return the dimension (number of rows!) of the factor.
size_t dim() const override { return ZDim * this->measured_.size(); }
/** return the measurements */
const ZVector& measured() const {
return measured_;
}
/// Return the 2D measurements (ZDim, in general).
const ZVector& measured() const { return measured_; }
/// Collect all cameras: important that in key order
/// Collect all cameras: important that in key order.
virtual Cameras cameras(const Values& values) const {
Cameras cameras;
for(const Key& k: this->keys_)
@ -188,25 +185,30 @@ protected:
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const This *e = dynamic_cast<const This*>(&p);
bool areMeasurementsEqual = true;
for (size_t i = 0; i < measured_.size(); i++) {
if (traits<Z>::Equals(this->measured_.at(i), e->measured_.at(i), tol) == false)
areMeasurementsEqual = false;
break;
if (const This* e = dynamic_cast<const This*>(&p)) {
// Check that all measurements are the same.
for (size_t i = 0; i < measured_.size(); i++) {
if (!traits<Z>::Equals(this->measured_.at(i), e->measured_.at(i), tol))
return false;
}
// If so, check base class.
return Base::equals(p, tol);
} else {
return false;
}
return e && Base::equals(p, tol) && areMeasurementsEqual;
}
/// Compute reprojection errors [h(x)-z] = [cameras.project(p)-z] and
/// derivatives
/// derivatives. This is the error before the noise model is applied.
template <class POINT>
Vector unwhitenedError(
const Cameras& cameras, const POINT& point,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, //
boost::optional<Matrix&> E = boost::none) const {
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
// Reproject, with optional derivatives.
Vector error = cameras.reprojectionError(point, measured_, Fs, E);
// Apply chain rule if body_P_sensor_ is given.
if (body_P_sensor_ && Fs) {
const Pose3 sensor_P_body = body_P_sensor_->inverse();
constexpr int camera_dim = traits<CAMERA>::dimension;
@ -224,52 +226,60 @@ protected:
Fs->at(i) = Fs->at(i) * J;
}
}
correctForMissingMeasurements(cameras, ue, Fs, E);
return ue;
// Correct the Jacobians in case some measurements are missing.
correctForMissingMeasurements(cameras, error, Fs, E);
return error;
}
/**
* This corrects the Jacobians for the case in which some pixel measurement is missing (nan)
* In practice, this does not do anything in the monocular case, but it is implemented in the stereo version
* This corrects the Jacobians for the case in which some 2D measurement is
* missing (nan). In practice, this does not do anything in the monocular
* case, but it is implemented in the stereo version.
*/
virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const {}
virtual void correctForMissingMeasurements(
const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const {}
/**
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
* Noise model applied
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) -
* z], with the noise model applied.
*/
template<class POINT>
Vector whitenedError(const Cameras& cameras, const POINT& point) const {
Vector e = cameras.reprojectionError(point, measured_);
Vector error = cameras.reprojectionError(point, measured_);
if (noiseModel_)
noiseModel_->whitenInPlace(e);
return e;
noiseModel_->whitenInPlace(error);
return error;
}
/** Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
* Will be used in "error(Values)" function required by NonlinearFactor base class
/**
* Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of
* Gaussian. In this class, we take the raw prediction error \f$ h(x)-z \f$,
* ask the noise model to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and
* then multiply by 0.5. Will be used in "error(Values)" function required by
* NonlinearFactor base class
*/
template<class POINT>
double totalReprojectionError(const Cameras& cameras,
const POINT& point) const {
Vector e = whitenedError(cameras, point);
return 0.5 * e.dot(e);
Vector error = whitenedError(cameras, point);
return 0.5 * error.dot(error);
}
/// Computes Point Covariance P from E
static Matrix PointCov(Matrix& E) {
/// Computes Point Covariance P from the "point Jacobian" E.
static Matrix PointCov(const Matrix& E) {
return (E.transpose() * E).inverse();
}
/**
* Compute F, E, and b (called below in both vanilla and SVD versions), where
* F is a vector of derivatives wrpt the cameras, and E the stacked derivatives
* with respect to the point. The value of cameras/point are passed as parameters.
* TODO: Kill this obsolete method
* Compute F, E, and b (called below in both vanilla and SVD versions), where
* F is a vector of derivatives wrpt the cameras, and E the stacked
* derivatives with respect to the point. The value of cameras/point are
* passed as parameters.
*/
template<class POINT>
void computeJacobians(FBlocks& Fs, Matrix& E, Vector& b,
@ -281,7 +291,11 @@ protected:
b = -unwhitenedError(cameras, point, Fs, E);
}
/// SVD version
/**
* SVD version that produces smaller Jacobian matrices by doing an SVD
* decomposition on E, and returning the left nulkl-space of E.
* See JacobianFactorSVD for more documentation.
* */
template<class POINT>
void computeJacobiansSVD(FBlocks& Fs, Matrix& Enull,
Vector& b, const Cameras& cameras, const POINT& point) const {
@ -291,14 +305,14 @@ protected:
static const int N = FixedDimension<POINT>::value; // 2 (Unit3) or 3 (Point3)
// Do SVD on A
// Do SVD on A.
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
Vector s = svd.singularValues();
size_t m = this->keys_.size();
Enull = svd.matrixU().block(0, N, ZDim * m, ZDim * m - N); // last ZDim*m-N columns
}
/// Linearize to a Hessianfactor
/// Linearize to a Hessianfactor.
// TODO(dellaert): Not used/tested anywhere and not properly whitened.
boost::shared_ptr<RegularHessianFactor<Dim> > createHessianFactor(
const Cameras& cameras, const Point3& point, const double lambda = 0.0,
bool diagonalDamping = false) const {
@ -351,9 +365,7 @@ protected:
P, b);
}
/**
* Return Jacobians as JacobianFactorQ
*/
/// Return Jacobians as JacobianFactorQ.
boost::shared_ptr<JacobianFactorQ<Dim, ZDim> > createJacobianQFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0,
bool diagonalDamping = false) const {
@ -368,8 +380,8 @@ protected:
}
/**
* Return Jacobians as JacobianFactorSVD
* TODO lambda is currently ignored
* Return Jacobians as JacobianFactorSVD.
* TODO(dellaert): lambda is currently ignored
*/
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0) const {
@ -393,7 +405,7 @@ protected:
F.block<ZDim, Dim>(ZDim * i, Dim * i) = Fs.at(i);
}
// Return sensor pose.
Pose3 body_P_sensor() const{
if(body_P_sensor_)
return *body_P_sensor_;

View File

@ -61,15 +61,17 @@ protected:
/// @name Caching triangulation
/// @{
mutable TriangulationResult result_; ///< result from triangulateSafe
mutable std::vector<Pose3, Eigen::aligned_allocator<Pose3> > cameraPosesTriangulation_; ///< current triangulation poses
mutable std::vector<Pose3, Eigen::aligned_allocator<Pose3> >
cameraPosesTriangulation_; ///< current triangulation poses
/// @}
public:
public:
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// shorthand for a set of cameras
typedef CAMERA Camera;
typedef CameraSet<CAMERA> Cameras;
/**
@ -116,21 +118,31 @@ public:
&& Base::equals(p, tol);
}
/// Check if the new linearization point is the same as the one used for previous triangulation
/**
* @brief Check if the new linearization point is the same as the one used for
* previous triangulation.
*
* @param cameras
* @return true if we need to re-triangulate.
*/
bool decideIfTriangulate(const Cameras& cameras) const {
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
// Several calls to linearize will be done from the same linearization
// point, hence it is not needed to re-triangulate. Note that this is not
// yet "selecting linearization", that will come later, and we only check if
// the current linearization is the "same" (up to tolerance) w.r.t. the last
// time we triangulated the point.
size_t m = cameras.size();
bool retriangulate = false;
// if we do not have a previous linearization point or the new linearization point includes more poses
// Definitely true if we do not have a previous linearization point or the
// new linearization point includes more poses.
if (cameraPosesTriangulation_.empty()
|| cameras.size() != cameraPosesTriangulation_.size())
retriangulate = true;
// Otherwise, check poses against cache.
if (!retriangulate) {
for (size_t i = 0; i < cameras.size(); i++) {
if (!cameras[i].pose().equals(cameraPosesTriangulation_[i],
@ -141,7 +153,8 @@ public:
}
}
if (retriangulate) { // we store the current poses used for triangulation
// Store the current poses used for triangulation if we will re-triangulate.
if (retriangulate) {
cameraPosesTriangulation_.clear();
cameraPosesTriangulation_.reserve(m);
for (size_t i = 0; i < m; i++)
@ -149,10 +162,15 @@ public:
cameraPosesTriangulation_.push_back(cameras[i].pose());
}
return retriangulate; // if we arrive to this point all poses are the same and we don't need re-triangulation
return retriangulate;
}
/// triangulateSafe
/**
* @brief Call gtsam::triangulateSafe iff we need to re-triangulate.
*
* @param cameras
* @return TriangulationResult
*/
TriangulationResult triangulateSafe(const Cameras& cameras) const {
size_t m = cameras.size();
@ -166,17 +184,21 @@ public:
return result_;
}
/// triangulate
/**
* @brief Possibly re-triangulate before calculating Jacobians.
*
* @param cameras
* @return true if we could safely triangulate
*/
bool triangulateForLinearize(const Cameras& cameras) const {
triangulateSafe(cameras); // imperative, might reset result_
return bool(result_);
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
/// Create a Hessianfactor that is an approximation of error(p).
boost::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor(
const Cameras& cameras, const double lambda = 0.0, bool diagonalDamping =
false) const {
const Cameras& cameras, const double lambda = 0.0,
bool diagonalDamping = false) const {
size_t numKeys = this->keys_.size();
// Create structures for Hessian Factors
KeyVector js;
@ -184,39 +206,38 @@ public:
std::vector<Vector> gs(numKeys);
if (this->measured_.size() != cameras.size())
throw std::runtime_error("SmartProjectionHessianFactor: this->measured_"
".size() inconsistent with input");
throw std::runtime_error(
"SmartProjectionHessianFactor: this->measured_"
".size() inconsistent with input");
triangulateSafe(cameras);
if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) {
// failed: return"empty" Hessian
for(Matrix& m: Gs)
m = Matrix::Zero(Base::Dim, Base::Dim);
for(Vector& v: gs)
v = Vector::Zero(Base::Dim);
for (Matrix& m : Gs) m = Matrix::Zero(Base::Dim, Base::Dim);
for (Vector& v : gs) v = Vector::Zero(Base::Dim);
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
Gs, gs, 0.0);
Gs, gs, 0.0);
}
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> > Fblocks;
typename Base::FBlocks Fs;
Matrix E;
Vector b;
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
// Whiten using noise model
Base::whitenJacobians(Fblocks, E, b);
Base::whitenJacobians(Fs, E, b);
// build augmented hessian
SymmetricBlockMatrix augmentedHessian = //
Cameras::SchurComplement(Fblocks, E, b, lambda, diagonalDamping);
SymmetricBlockMatrix augmentedHessian = //
Cameras::SchurComplement(Fs, E, b, lambda, diagonalDamping);
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
augmentedHessian);
return boost::make_shared<RegularHessianFactor<Base::Dim> >(
this->keys_, augmentedHessian);
}
// create factor
// Create RegularImplicitSchurFactor factor.
boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > createRegularImplicitSchurFactor(
const Cameras& cameras, double lambda) const {
if (triangulateForLinearize(cameras))
@ -226,7 +247,7 @@ public:
return boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> >();
}
/// create factor
/// Create JacobianFactorQ factor.
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
const Cameras& cameras, double lambda) const {
if (triangulateForLinearize(cameras))
@ -236,13 +257,13 @@ public:
return boost::make_shared<JacobianFactorQ<Base::Dim, 2> >(this->keys_);
}
/// Create a factor, takes values
/// Create JacobianFactorQ factor, takes values.
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
const Values& values, double lambda) const {
return createJacobianQFactor(this->cameras(values), lambda);
}
/// different (faster) way to compute Jacobian factor
/// Different (faster) way to compute a JacobianFactorSVD factor.
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
const Cameras& cameras, double lambda) const {
if (triangulateForLinearize(cameras))
@ -252,19 +273,19 @@ public:
return boost::make_shared<JacobianFactorSVD<Base::Dim, 2> >(this->keys_);
}
/// linearize to a Hessianfactor
/// Linearize to a Hessianfactor.
virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
const Values& values, double lambda = 0.0) const {
return createHessianFactor(this->cameras(values), lambda);
}
/// linearize to an Implicit Schur factor
/// Linearize to an Implicit Schur factor.
virtual boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > linearizeToImplicit(
const Values& values, double lambda = 0.0) const {
return createRegularImplicitSchurFactor(this->cameras(values), lambda);
}
/// linearize to a JacobianfactorQ
/// Linearize to a JacobianfactorQ.
virtual boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > linearizeToJacobian(
const Values& values, double lambda = 0.0) const {
return createJacobianQFactor(this->cameras(values), lambda);
@ -334,7 +355,7 @@ public:
/// Assumes the point has been computed
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
void computeJacobiansWithTriangulatedPoint(
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> >& Fblocks, Matrix& E, Vector& b,
typename Base::FBlocks& Fs, Matrix& E, Vector& b,
const Cameras& cameras) const {
if (!result_) {
@ -342,32 +363,32 @@ public:
// TODO check flag whether we should do this
Unit3 backProjected = cameras[0].backprojectPointAtInfinity(
this->measured_.at(0));
Base::computeJacobians(Fblocks, E, b, cameras, backProjected);
Base::computeJacobians(Fs, E, b, cameras, backProjected);
} else {
// valid result: just return Base version
Base::computeJacobians(Fblocks, E, b, cameras, *result_);
Base::computeJacobians(Fs, E, b, cameras, *result_);
}
}
/// Version that takes values, and creates the point
bool triangulateAndComputeJacobians(
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> >& Fblocks, Matrix& E, Vector& b,
typename Base::FBlocks& Fs, Matrix& E, Vector& b,
const Values& values) const {
Cameras cameras = this->cameras(values);
bool nonDegenerate = triangulateForLinearize(cameras);
if (nonDegenerate)
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
return nonDegenerate;
}
/// takes values
bool triangulateAndComputeJacobiansSVD(
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> >& Fblocks, Matrix& Enull, Vector& b,
typename Base::FBlocks& Fs, Matrix& Enull, Vector& b,
const Values& values) const {
Cameras cameras = this->cameras(values);
bool nonDegenerate = triangulateForLinearize(cameras);
if (nonDegenerate)
Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, *result_);
Base::computeJacobiansSVD(Fs, Enull, b, cameras, *result_);
return nonDegenerate;
}

View File

@ -0,0 +1,370 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionRigFactor.h
* @brief Smart factor on poses, assuming camera calibration is fixed.
* Same as SmartProjectionPoseFactor, except:
* - it is templated on CAMERA (i.e., it allows cameras beyond pinhole)
* - it admits a different calibration for each measurement (i.e., it
* can model a multi-camera rig system)
* - it allows multiple observations from the same pose/key (again, to
* model a multi-camera system)
* @author Luca Carlone
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/slam/SmartProjectionFactor.h>
namespace gtsam {
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
* conditionally independent sets in factor graphs: a unifying perspective based
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
*/
/**
* This factor assumes that camera calibration is fixed (but each measurement
* can be taken by a different camera in the rig, hence can have a different
* extrinsic and intrinsic calibration). The factor only constrains poses
* (variable dimension is 6 for each pose). This factor requires that values
* contains the involved poses (Pose3). If all measurements share the same
* calibration (i.e., are from the same camera), use SmartProjectionPoseFactor
* instead! If the calibration should be optimized, as well, use
* SmartProjectionFactor instead!
* @addtogroup SLAM
*/
template <class CAMERA>
class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
private:
typedef SmartProjectionFactor<CAMERA> Base;
typedef SmartProjectionRigFactor<CAMERA> This;
typedef typename CAMERA::CalibrationType CALIBRATION;
static const int DimPose = 6; ///< Pose3 dimension
static const int ZDim = 2; ///< Measurement dimension
protected:
/// vector of keys (one for each observation) with potentially repeated keys
KeyVector nonUniqueKeys_;
/// cameras in the rig (fixed poses wrt body and intrinsics, for each camera)
boost::shared_ptr<typename Base::Cameras> cameraRig_;
/// vector of camera Ids (one for each observation, in the same order),
/// identifying which camera took the measurement
FastVector<size_t> cameraIds_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
typedef CAMERA Camera;
typedef CameraSet<CAMERA> Cameras;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// Default constructor, only for serialization
SmartProjectionRigFactor() {}
/**
* Constructor
* @param sharedNoiseModel isotropic noise model for the 2D feature
* measurements
* @param cameraRig set of cameras (fixed poses wrt body and intrinsics) in
* the camera rig
* @param params parameters for the smart projection factors
*/
SmartProjectionRigFactor(
const SharedNoiseModel& sharedNoiseModel,
const boost::shared_ptr<Cameras>& cameraRig,
const SmartProjectionParams& params = SmartProjectionParams())
: Base(sharedNoiseModel, params), cameraRig_(cameraRig) {
// throw exception if configuration is not supported by this factor
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
throw std::runtime_error(
"SmartProjectionRigFactor: "
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
if (Base::params_.linearizationMode != gtsam::HESSIAN)
throw std::runtime_error(
"SmartProjectionRigFactor: "
"linearizationMode must be set to HESSIAN");
}
/** Virtual destructor */
~SmartProjectionRigFactor() override = default;
/**
* add a new measurement, corresponding to an observation from pose "poseKey"
* and taken from the camera in the rig identified by "cameraId"
* @param measured 2-dimensional location of the projection of a
* single landmark in a single view (the measurement)
* @param poseKey key corresponding to the body pose of the camera taking the
* measurement
* @param cameraId ID of the camera in the rig taking the measurement (default
* 0)
*/
void add(const Point2& measured, const Key& poseKey,
const size_t& cameraId = 0) {
// store measurement and key
this->measured_.push_back(measured);
this->nonUniqueKeys_.push_back(poseKey);
// also store keys in the keys_ vector: these keys are assumed to be
// unique, so we avoid duplicates here
if (std::find(this->keys_.begin(), this->keys_.end(), poseKey) ==
this->keys_.end())
this->keys_.push_back(poseKey); // add only unique keys
// store id of the camera taking the measurement
cameraIds_.push_back(cameraId);
}
/**
* Variant of the previous "add" function in which we include multiple
* measurements
* @param measurements vector of the 2m dimensional location of the projection
* of a single landmark in the m views (the measurements)
* @param poseKeys keys corresponding to the body poses of the cameras taking
* the measurements
* @param cameraIds IDs of the cameras in the rig taking each measurement
* (same order as the measurements)
*/
void add(const Point2Vector& measurements, const KeyVector& poseKeys,
const FastVector<size_t>& cameraIds = FastVector<size_t>()) {
if (poseKeys.size() != measurements.size() ||
(poseKeys.size() != cameraIds.size() && cameraIds.size() != 0)) {
throw std::runtime_error(
"SmartProjectionRigFactor: "
"trying to add inconsistent inputs");
}
if (cameraIds.size() == 0 && cameraRig_->size() > 1) {
throw std::runtime_error(
"SmartProjectionRigFactor: "
"camera rig includes multiple camera "
"but add did not input cameraIds");
}
for (size_t i = 0; i < measurements.size(); i++) {
add(measurements[i], poseKeys[i],
cameraIds.size() == 0 ? 0 : cameraIds[i]);
}
}
/// return (for each observation) the (possibly non unique) keys involved in
/// the measurements
const KeyVector& nonUniqueKeys() const { return nonUniqueKeys_; }
/// return the calibration object
const boost::shared_ptr<Cameras>& cameraRig() const { return cameraRig_; }
/// return the calibration object
const FastVector<size_t>& cameraIds() const { return cameraIds_; }
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "SmartProjectionRigFactor: \n ";
for (size_t i = 0; i < nonUniqueKeys_.size(); i++) {
std::cout << "-- Measurement nr " << i << std::endl;
std::cout << "key: " << keyFormatter(nonUniqueKeys_[i]) << std::endl;
std::cout << "cameraId: " << cameraIds_[i] << std::endl;
(*cameraRig_)[cameraIds_[i]].print("camera in rig:\n");
}
Base::print("", keyFormatter);
}
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const This* e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol) && nonUniqueKeys_ == e->nonUniqueKeys() &&
cameraRig_->equals(*(e->cameraRig())) &&
std::equal(cameraIds_.begin(), cameraIds_.end(),
e->cameraIds().begin());
}
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain body poses corresponding
* to keys involved in this factor
* @return vector of cameras
*/
typename Base::Cameras cameras(const Values& values) const override {
typename Base::Cameras cameras;
cameras.reserve(nonUniqueKeys_.size()); // preallocate
for (size_t i = 0; i < nonUniqueKeys_.size(); i++) {
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
const Pose3 world_P_sensor_i =
values.at<Pose3>(nonUniqueKeys_[i]) // = world_P_body
* camera_i.pose(); // = body_P_cam_i
cameras.emplace_back(world_P_sensor_i,
make_shared<typename CAMERA::CalibrationType>(
camera_i.calibration()));
}
return cameras;
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override {
if (this->active(values)) {
return this->totalReprojectionError(this->cameras(values));
} else { // else of active flag
return 0.0;
}
}
/**
* Compute jacobian F, E and error vector at a given linearization point
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Return arguments are the camera jacobians Fs (including the
* jacobian with respect to both body poses we interpolate from), the point
* Jacobian E, and the error vector b. Note that the jacobians are computed
* for a given point.
*/
void computeJacobiansWithTriangulatedPoint(typename Base::FBlocks& Fs,
Matrix& E, Vector& b,
const Cameras& cameras) const {
if (!this->result_) {
throw("computeJacobiansWithTriangulatedPoint");
} else { // valid result: compute jacobians
b = -cameras.reprojectionError(*this->result_, this->measured_, Fs, E);
for (size_t i = 0; i < Fs.size(); i++) {
const Pose3& body_P_sensor = (*cameraRig_)[cameraIds_[i]].pose();
const Pose3 world_P_body = cameras[i].pose() * body_P_sensor.inverse();
Eigen::Matrix<double, DimPose, DimPose> H;
world_P_body.compose(body_P_sensor, H);
Fs.at(i) = Fs.at(i) * H;
}
}
}
/// linearize and return a Hessianfactor that is an approximation of error(p)
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
const Values& values, const double& lambda = 0.0,
bool diagonalDamping = false) const {
// we may have multiple observation sharing the same keys (e.g., 2 cameras
// measuring from the same body pose), hence the number of unique keys may
// be smaller than nrMeasurements
size_t nrUniqueKeys =
this->keys_
.size(); // note: by construction, keys_ only contains unique keys
Cameras cameras = this->cameras(values);
// Create structures for Hessian Factors
std::vector<size_t> js;
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector<Vector> gs(nrUniqueKeys);
if (this->measured_.size() != cameras.size()) // 1 observation per camera
throw std::runtime_error(
"SmartProjectionRigFactor: "
"measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
this->triangulateSafe(cameras);
if (!this->result_) { // failed: return "empty/zero" Hessian
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs) v = Vector::Zero(DimPose);
return boost::make_shared<RegularHessianFactor<DimPose> >(this->keys_,
Gs, gs, 0.0);
} else {
throw std::runtime_error(
"SmartProjectionRigFactor: "
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
}
}
// compute Jacobian given triangulated 3D Point
typename Base::FBlocks Fs;
Matrix E;
Vector b;
this->computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
// Whiten using noise model
this->noiseModel_->WhitenSystem(E, b);
for (size_t i = 0; i < Fs.size(); i++) {
Fs[i] = this->noiseModel_->Whiten(Fs[i]);
}
const Matrix3 P = Base::Cameras::PointCov(E, lambda, diagonalDamping);
// Build augmented Hessian (with last row/column being the information
// vector) Note: we need to get the augumented hessian wrt the unique keys
// in key_
SymmetricBlockMatrix augmentedHessianUniqueKeys =
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 6, 6>(
Fs, E, P, b, nonUniqueKeys_, this->keys_);
return boost::make_shared<RegularHessianFactor<DimPose> >(
this->keys_, augmentedHessianUniqueKeys);
}
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
* LM)
* @param values Values structure which must contain camera poses and
* extrinsic pose for this factor
* @return a Gaussian factor
*/
boost::shared_ptr<GaussianFactor> linearizeDamped(
const Values& values, const double& lambda = 0.0) const {
// depending on flag set on construction we may linearize to different
// linear factors
switch (this->params_.linearizationMode) {
case HESSIAN:
return this->createHessianFactor(values, lambda);
default:
throw std::runtime_error(
"SmartProjectionRigFactor: unknown linearization mode");
}
}
/// linearize
boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const override {
return this->linearizeDamped(values);
}
private:
/// Serialization function
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
// ar& BOOST_SERIALIZATION_NVP(nonUniqueKeys_);
// ar& BOOST_SERIALIZATION_NVP(cameraRig_);
// ar& BOOST_SERIALIZATION_NVP(cameraIds_);
}
};
// end of class declaration
/// traits
template <class CAMERA>
struct traits<SmartProjectionRigFactor<CAMERA> >
: public Testable<SmartProjectionRigFactor<CAMERA> > {};
} // namespace gtsam

View File

@ -22,6 +22,7 @@
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include "../SmartProjectionRigFactor.h"
using namespace std;
using namespace gtsam;
@ -68,7 +69,9 @@ SmartProjectionParams params;
// default Cal3_S2 poses
namespace vanillaPose {
typedef PinholePose<Cal3_S2> Camera;
typedef CameraSet<Camera> Cameras;
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
Camera level_camera(level_pose, sharedK);
Camera level_camera_right(pose_right, sharedK);
@ -81,7 +84,9 @@ Camera cam3(pose_above, sharedK);
// default Cal3_S2 poses
namespace vanillaPose2 {
typedef PinholePose<Cal3_S2> Camera;
typedef CameraSet<Camera> Cameras;
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
static Cal3_S2::shared_ptr sharedK2(new Cal3_S2(1500, 1200, 0, 640, 480));
Camera level_camera(level_pose, sharedK2);
Camera level_camera_right(pose_right, sharedK2);
@ -94,6 +99,7 @@ Camera cam3(pose_above, sharedK2);
// Cal3Bundler cameras
namespace bundler {
typedef PinholeCamera<Cal3Bundler> Camera;
typedef CameraSet<Camera> Cameras;
typedef SmartProjectionFactor<Camera> SmartFactor;
static Cal3Bundler K(500, 1e-3, 1e-3, 0, 0);
Camera level_camera(level_pose, K);
@ -110,7 +116,9 @@ typedef GeneralSFMFactor<Camera, Point3> SFMFactor;
// Cal3Bundler poses
namespace bundlerPose {
typedef PinholePose<Cal3Bundler> Camera;
typedef CameraSet<Camera> Cameras;
typedef SmartProjectionPoseFactor<Cal3Bundler> SmartFactor;
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
static boost::shared_ptr<Cal3Bundler> sharedBundlerK(
new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000));
Camera level_camera(level_pose, sharedBundlerK);

View File

@ -127,13 +127,13 @@ TEST(SmartFactorBase, Stereo) {
}
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
TEST(SmartFactorBase, serialize) {
using namespace gtsam::serializationTestHelpers;

View File

@ -811,13 +811,13 @@ TEST(SmartProjectionFactor, implicitJacobianFactor ) {
}
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
TEST(SmartProjectionFactor, serialize) {
using namespace vanilla;

View File

@ -1333,13 +1333,13 @@ TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
}
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
TEST(SmartProjectionPoseFactor, serialize) {
using namespace vanillaPose;

File diff suppressed because it is too large Load Diff

View File

@ -5,107 +5,105 @@
* @author Frank Dellaert
*/
#include <gtsam_unstable/discrete/Domain.h>
#include <gtsam_unstable/discrete/AllDiff.h>
#include <gtsam/base/Testable.h>
#include <gtsam_unstable/discrete/AllDiff.h>
#include <gtsam_unstable/discrete/Domain.h>
#include <boost/make_shared.hpp>
namespace gtsam {
/* ************************************************************************* */
AllDiff::AllDiff(const DiscreteKeys& dkeys) :
Constraint(dkeys.indices()) {
for(const DiscreteKey& dkey: dkeys)
cardinalities_.insert(dkey);
}
/* ************************************************************************* */
AllDiff::AllDiff(const DiscreteKeys& dkeys) : Constraint(dkeys.indices()) {
for (const DiscreteKey& dkey : dkeys) cardinalities_.insert(dkey);
}
/* ************************************************************************* */
void AllDiff::print(const std::string& s,
const KeyFormatter& formatter) const {
std::cout << s << "AllDiff on ";
for (Key dkey: keys_)
std::cout << formatter(dkey) << " ";
std::cout << std::endl;
}
/* ************************************************************************* */
void AllDiff::print(const std::string& s, const KeyFormatter& formatter) const {
std::cout << s << "AllDiff on ";
for (Key dkey : keys_) std::cout << formatter(dkey) << " ";
std::cout << std::endl;
}
/* ************************************************************************* */
double AllDiff::operator()(const Values& values) const {
std::set < size_t > taken; // record values taken by keys
for(Key dkey: keys_) {
size_t value = values.at(dkey); // get the value for that key
if (taken.count(value)) return 0.0;// check if value alreday taken
taken.insert(value);// if not, record it as taken and keep checking
/* ************************************************************************* */
double AllDiff::operator()(const Values& values) const {
std::set<size_t> taken; // record values taken by keys
for (Key dkey : keys_) {
size_t value = values.at(dkey); // get the value for that key
if (taken.count(value)) return 0.0; // check if value alreday taken
taken.insert(value); // if not, record it as taken and keep checking
}
return 1.0;
}
/* ************************************************************************* */
DecisionTreeFactor AllDiff::toDecisionTreeFactor() const {
// We will do this by converting the allDif into many BinaryAllDiff
// constraints
DecisionTreeFactor converted;
size_t nrKeys = keys_.size();
for (size_t i1 = 0; i1 < nrKeys; i1++)
for (size_t i2 = i1 + 1; i2 < nrKeys; i2++) {
BinaryAllDiff binary12(discreteKey(i1), discreteKey(i2));
converted = converted * binary12.toDecisionTreeFactor();
}
return 1.0;
}
return converted;
}
/* ************************************************************************* */
DecisionTreeFactor AllDiff::toDecisionTreeFactor() const {
// We will do this by converting the allDif into many BinaryAllDiff constraints
DecisionTreeFactor converted;
size_t nrKeys = keys_.size();
for (size_t i1 = 0; i1 < nrKeys; i1++)
for (size_t i2 = i1 + 1; i2 < nrKeys; i2++) {
BinaryAllDiff binary12(discreteKey(i1),discreteKey(i2));
converted = converted * binary12.toDecisionTreeFactor();
}
return converted;
}
/* ************************************************************************* */
DecisionTreeFactor AllDiff::operator*(const DecisionTreeFactor& f) const {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/* ************************************************************************* */
DecisionTreeFactor AllDiff::operator*(const DecisionTreeFactor& f) const {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/* ************************************************************************* */
bool AllDiff::ensureArcConsistency(size_t j,
std::vector<Domain>& domains) const {
// Though strictly not part of allDiff, we check for
// a value in domains[j] that does not occur in any other connected domain.
// If found, we make this a singleton...
// TODO: make a new constraint where this really is true
Domain& Dj = domains[j];
if (Dj.checkAllDiff(keys_, domains)) return true;
/* ************************************************************************* */
bool AllDiff::ensureArcConsistency(size_t j, std::vector<Domain>& domains) const {
// Though strictly not part of allDiff, we check for
// a value in domains[j] that does not occur in any other connected domain.
// If found, we make this a singleton...
// TODO: make a new constraint where this really is true
Domain& Dj = domains[j];
if (Dj.checkAllDiff(keys_, domains)) return true;
// Check all other domains for singletons and erase corresponding values
// This is the same as arc-consistency on the equivalent binary constraints
bool changed = false;
for(Key k: keys_)
if (k != j) {
const Domain& Dk = domains[k];
if (Dk.isSingleton()) { // check if singleton
size_t value = Dk.firstValue();
if (Dj.contains(value)) {
Dj.erase(value); // erase value if true
changed = true;
}
// Check all other domains for singletons and erase corresponding values
// This is the same as arc-consistency on the equivalent binary constraints
bool changed = false;
for (Key k : keys_)
if (k != j) {
const Domain& Dk = domains[k];
if (Dk.isSingleton()) { // check if singleton
size_t value = Dk.firstValue();
if (Dj.contains(value)) {
Dj.erase(value); // erase value if true
changed = true;
}
}
return changed;
}
}
return changed;
}
/* ************************************************************************* */
Constraint::shared_ptr AllDiff::partiallyApply(const Values& values) const {
DiscreteKeys newKeys;
// loop over keys and add them only if they do not appear in values
for(Key k: keys_)
if (values.find(k) == values.end()) {
newKeys.push_back(DiscreteKey(k,cardinalities_.at(k)));
}
return boost::make_shared<AllDiff>(newKeys);
}
/* ************************************************************************* */
Constraint::shared_ptr AllDiff::partiallyApply(const Values& values) const {
DiscreteKeys newKeys;
// loop over keys and add them only if they do not appear in values
for (Key k : keys_)
if (values.find(k) == values.end()) {
newKeys.push_back(DiscreteKey(k, cardinalities_.at(k)));
}
return boost::make_shared<AllDiff>(newKeys);
}
/* ************************************************************************* */
Constraint::shared_ptr AllDiff::partiallyApply(
const std::vector<Domain>& domains) const {
DiscreteFactor::Values known;
for(Key k: keys_) {
const Domain& Dk = domains[k];
if (Dk.isSingleton())
known[k] = Dk.firstValue();
}
return partiallyApply(known);
/* ************************************************************************* */
Constraint::shared_ptr AllDiff::partiallyApply(
const std::vector<Domain>& domains) const {
DiscreteFactor::Values known;
for (Key k : keys_) {
const Domain& Dk = domains[k];
if (Dk.isSingleton()) known[k] = Dk.firstValue();
}
return partiallyApply(known);
}
/* ************************************************************************* */
} // namespace gtsam
/* ************************************************************************* */
} // namespace gtsam

View File

@ -7,71 +7,71 @@
#pragma once
#include <gtsam_unstable/discrete/BinaryAllDiff.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam_unstable/discrete/BinaryAllDiff.h>
namespace gtsam {
/**
* General AllDiff constraint
* Returns 1 if values for all keys are different, 0 otherwise
* DiscreteFactors are all awkward in that they have to store two types of keys:
* for each variable we have a Key and an Key. In this factor, we
* keep the Indices locally, and the Indices are stored in IndexFactor.
/**
* General AllDiff constraint
* Returns 1 if values for all keys are different, 0 otherwise
* DiscreteFactors are all awkward in that they have to store two types of keys:
* for each variable we have a Key and an Key. In this factor, we
* keep the Indices locally, and the Indices are stored in IndexFactor.
*/
class GTSAM_UNSTABLE_EXPORT AllDiff : public Constraint {
std::map<Key, size_t> cardinalities_;
DiscreteKey discreteKey(size_t i) const {
Key j = keys_[i];
return DiscreteKey(j, cardinalities_.at(j));
}
public:
/// Constructor
AllDiff(const DiscreteKeys& dkeys);
// print
void print(const std::string& s = "", const KeyFormatter& formatter =
DefaultKeyFormatter) const override;
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if (!dynamic_cast<const AllDiff*>(&other))
return false;
else {
const AllDiff& f(static_cast<const AllDiff&>(other));
return cardinalities_.size() == f.cardinalities_.size() &&
std::equal(cardinalities_.begin(), cardinalities_.end(),
f.cardinalities_.begin());
}
}
/// Calculate value = expensive !
double operator()(const Values& values) const override;
/// Convert into a decisiontree, can be *very* expensive !
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
/*
* Ensure Arc-consistency
* Arc-consistency involves creating binaryAllDiff constraints
* In which case the combinatorial hyper-arc explosion disappears.
* @param j domain to be checked
* @param domains all other domains
*/
class GTSAM_UNSTABLE_EXPORT AllDiff: public Constraint {
bool ensureArcConsistency(size_t j,
std::vector<Domain>& domains) const override;
std::map<Key,size_t> cardinalities_;
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values&) const override;
DiscreteKey discreteKey(size_t i) const {
Key j = keys_[i];
return DiscreteKey(j,cardinalities_.at(j));
}
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>&) const override;
};
public:
/// Constructor
AllDiff(const DiscreteKeys& dkeys);
// print
void print(const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if(!dynamic_cast<const AllDiff*>(&other))
return false;
else {
const AllDiff& f(static_cast<const AllDiff&>(other));
return cardinalities_.size() == f.cardinalities_.size()
&& std::equal(cardinalities_.begin(), cardinalities_.end(),
f.cardinalities_.begin());
}
}
/// Calculate value = expensive !
double operator()(const Values& values) const override;
/// Convert into a decisiontree, can be *very* expensive !
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
/*
* Ensure Arc-consistency
* Arc-consistency involves creating binaryAllDiff constraints
* In which case the combinatorial hyper-arc explosion disappears.
* @param j domain to be checked
* @param domains all other domains
*/
bool ensureArcConsistency(size_t j, std::vector<Domain>& domains) const override;
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values&) const override;
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(const std::vector<Domain>&) const override;
};
} // namespace gtsam
} // namespace gtsam

View File

@ -7,94 +7,93 @@
#pragma once
#include <gtsam_unstable/discrete/Domain.h>
#include <gtsam_unstable/discrete/Constraint.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam_unstable/discrete/Constraint.h>
#include <gtsam_unstable/discrete/Domain.h>
namespace gtsam {
/**
* Binary AllDiff constraint
* Returns 1 if values for two keys are different, 0 otherwise
* DiscreteFactors are all awkward in that they have to store two types of keys:
* for each variable we have a Index and an Index. In this factor, we
* keep the Indices locally, and the Indices are stored in IndexFactor.
*/
class BinaryAllDiff: public Constraint {
/**
* Binary AllDiff constraint
* Returns 1 if values for two keys are different, 0 otherwise
* DiscreteFactors are all awkward in that they have to store two types of keys:
* for each variable we have a Index and an Index. In this factor, we
* keep the Indices locally, and the Indices are stored in IndexFactor.
*/
class BinaryAllDiff : public Constraint {
size_t cardinality0_, cardinality1_; /// cardinality
size_t cardinality0_, cardinality1_; /// cardinality
public:
/// Constructor
BinaryAllDiff(const DiscreteKey& key1, const DiscreteKey& key2)
: Constraint(key1.first, key2.first),
cardinality0_(key1.second),
cardinality1_(key2.second) {}
public:
// print
void print(
const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override {
std::cout << s << "BinaryAllDiff on " << formatter(keys_[0]) << " and "
<< formatter(keys_[1]) << std::endl;
}
/// Constructor
BinaryAllDiff(const DiscreteKey& key1, const DiscreteKey& key2) :
Constraint(key1.first, key2.first),
cardinality0_(key1.second), cardinality1_(key2.second) {
}
// print
void print(const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override {
std::cout << s << "BinaryAllDiff on " << formatter(keys_[0]) << " and "
<< formatter(keys_[1]) << std::endl;
}
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if(!dynamic_cast<const BinaryAllDiff*>(&other))
return false;
else {
const BinaryAllDiff& f(static_cast<const BinaryAllDiff&>(other));
return (cardinality0_==f.cardinality0_) && (cardinality1_==f.cardinality1_);
}
}
/// Calculate value
double operator()(const Values& values) const override {
return (double) (values.at(keys_[0]) != values.at(keys_[1]));
}
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override {
DiscreteKeys keys;
keys.push_back(DiscreteKey(keys_[0],cardinality0_));
keys.push_back(DiscreteKey(keys_[1],cardinality1_));
std::vector<double> table;
for (size_t i1 = 0; i1 < cardinality0_; i1++)
for (size_t i2 = 0; i2 < cardinality1_; i2++)
table.push_back(i1 != i2);
DecisionTreeFactor converted(keys, table);
return converted;
}
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
///
bool ensureArcConsistency(size_t j, std::vector<Domain>& domains) const override {
// throw std::runtime_error(
// "BinaryAllDiff::ensureArcConsistency not implemented");
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if (!dynamic_cast<const BinaryAllDiff*>(&other))
return false;
else {
const BinaryAllDiff& f(static_cast<const BinaryAllDiff&>(other));
return (cardinality0_ == f.cardinality0_) &&
(cardinality1_ == f.cardinality1_);
}
}
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values&) const override {
throw std::runtime_error("BinaryAllDiff::partiallyApply not implemented");
}
/// Calculate value
double operator()(const Values& values) const override {
return (double)(values.at(keys_[0]) != values.at(keys_[1]));
}
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>&) const override {
throw std::runtime_error("BinaryAllDiff::partiallyApply not implemented");
}
};
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override {
DiscreteKeys keys;
keys.push_back(DiscreteKey(keys_[0], cardinality0_));
keys.push_back(DiscreteKey(keys_[1], cardinality1_));
std::vector<double> table;
for (size_t i1 = 0; i1 < cardinality0_; i1++)
for (size_t i2 = 0; i2 < cardinality1_; i2++) table.push_back(i1 != i2);
DecisionTreeFactor converted(keys, table);
return converted;
}
} // namespace gtsam
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
bool ensureArcConsistency(size_t j,
std::vector<Domain>& domains) const override {
// throw std::runtime_error(
// "BinaryAllDiff::ensureArcConsistency not implemented");
return false;
}
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values&) const override {
throw std::runtime_error("BinaryAllDiff::partiallyApply not implemented");
}
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>&) const override {
throw std::runtime_error("BinaryAllDiff::partiallyApply not implemented");
}
};
} // namespace gtsam

View File

@ -5,99 +5,104 @@
* @author Frank Dellaert
*/
#include <gtsam_unstable/discrete/Domain.h>
#include <gtsam_unstable/discrete/CSP.h>
#include <gtsam/base/Testable.h>
#include <gtsam_unstable/discrete/CSP.h>
#include <gtsam_unstable/discrete/Domain.h>
using namespace std;
namespace gtsam {
/// Find the best total assignment - can be expensive
CSP::sharedValues CSP::optimalAssignment() const {
DiscreteBayesNet::shared_ptr chordal = this->eliminateSequential();
sharedValues mpe = chordal->optimize();
return mpe;
}
/// Find the best total assignment - can be expensive
CSP::sharedValues CSP::optimalAssignment() const {
DiscreteBayesNet::shared_ptr chordal = this->eliminateSequential();
sharedValues mpe = chordal->optimize();
return mpe;
}
/// Find the best total assignment - can be expensive
CSP::sharedValues CSP::optimalAssignment(const Ordering& ordering) const {
DiscreteBayesNet::shared_ptr chordal = this->eliminateSequential(ordering);
sharedValues mpe = chordal->optimize();
return mpe;
}
/// Find the best total assignment - can be expensive
CSP::sharedValues CSP::optimalAssignment(const Ordering& ordering) const {
DiscreteBayesNet::shared_ptr chordal = this->eliminateSequential(ordering);
sharedValues mpe = chordal->optimize();
return mpe;
}
void CSP::runArcConsistency(size_t cardinality, size_t nrIterations, bool print) const {
// Create VariableIndex
VariableIndex index(*this);
// index.print();
void CSP::runArcConsistency(size_t cardinality, size_t nrIterations,
bool print) const {
// Create VariableIndex
VariableIndex index(*this);
// index.print();
size_t n = index.size();
size_t n = index.size();
// Initialize domains
std::vector < Domain > domains;
for (size_t j = 0; j < n; j++)
domains.push_back(Domain(DiscreteKey(j,cardinality)));
// Initialize domains
std::vector<Domain> domains;
for (size_t j = 0; j < n; j++)
domains.push_back(Domain(DiscreteKey(j, cardinality)));
// Create array of flags indicating a domain changed or not
std::vector<bool> changed(n);
// Create array of flags indicating a domain changed or not
std::vector<bool> changed(n);
// iterate nrIterations over entire grid
for (size_t it = 0; it < nrIterations; it++) {
bool anyChange = false;
// iterate over all cells
for (size_t v = 0; v < n; v++) {
// keep track of which domains changed
changed[v] = false;
// loop over all factors/constraints for variable v
const FactorIndices& factors = index[v];
for(size_t f: factors) {
// if not already a singleton
if (!domains[v].isSingleton()) {
// get the constraint and call its ensureArcConsistency method
Constraint::shared_ptr constraint = boost::dynamic_pointer_cast<Constraint>((*this)[f]);
if (!constraint) throw runtime_error("CSP:runArcConsistency: non-constraint factor");
changed[v] = constraint->ensureArcConsistency(v,domains) || changed[v];
}
} // f
if (changed[v]) anyChange = true;
} // v
if (!anyChange) break;
// TODO: Sudoku specific hack
if (print) {
if (cardinality == 9 && n == 81) {
for (size_t i = 0, v = 0; i < (size_t)std::sqrt((double)n); i++) {
for (size_t j = 0; j < (size_t)std::sqrt((double)n); j++, v++) {
if (changed[v]) cout << "*";
domains[v].print();
cout << "\t";
} // i
cout << endl;
} // j
} else {
for (size_t v = 0; v < n; v++) {
// iterate nrIterations over entire grid
for (size_t it = 0; it < nrIterations; it++) {
bool anyChange = false;
// iterate over all cells
for (size_t v = 0; v < n; v++) {
// keep track of which domains changed
changed[v] = false;
// loop over all factors/constraints for variable v
const FactorIndices& factors = index[v];
for (size_t f : factors) {
// if not already a singleton
if (!domains[v].isSingleton()) {
// get the constraint and call its ensureArcConsistency method
Constraint::shared_ptr constraint =
boost::dynamic_pointer_cast<Constraint>((*this)[f]);
if (!constraint)
throw runtime_error("CSP:runArcConsistency: non-constraint factor");
changed[v] =
constraint->ensureArcConsistency(v, domains) || changed[v];
}
} // f
if (changed[v]) anyChange = true;
} // v
if (!anyChange) break;
// TODO: Sudoku specific hack
if (print) {
if (cardinality == 9 && n == 81) {
for (size_t i = 0, v = 0; i < (size_t)std::sqrt((double)n); i++) {
for (size_t j = 0; j < (size_t)std::sqrt((double)n); j++, v++) {
if (changed[v]) cout << "*";
domains[v].print();
cout << "\t";
} // v
}
cout << endl;
} // print
} // it
} // i
cout << endl;
} // j
} else {
for (size_t v = 0; v < n; v++) {
if (changed[v]) cout << "*";
domains[v].print();
cout << "\t";
} // v
}
cout << endl;
} // print
} // it
#ifndef INPROGRESS
// Now create new problem with all singleton variables removed
// We do this by adding simplifying all factors using parial application
// TODO: create a new ordering as we go, to ensure a connected graph
// KeyOrdering ordering;
// vector<Index> dkeys;
for(const DiscreteFactor::shared_ptr& f: factors_) {
Constraint::shared_ptr constraint = boost::dynamic_pointer_cast<Constraint>(f);
if (!constraint) throw runtime_error("CSP:runArcConsistency: non-constraint factor");
Constraint::shared_ptr reduced = constraint->partiallyApply(domains);
if (print) reduced->print();
}
#endif
// Now create new problem with all singleton variables removed
// We do this by adding simplifying all factors using parial application
// TODO: create a new ordering as we go, to ensure a connected graph
// KeyOrdering ordering;
// vector<Index> dkeys;
for (const DiscreteFactor::shared_ptr& f : factors_) {
Constraint::shared_ptr constraint =
boost::dynamic_pointer_cast<Constraint>(f);
if (!constraint)
throw runtime_error("CSP:runArcConsistency: non-constraint factor");
Constraint::shared_ptr reduced = constraint->partiallyApply(domains);
if (print) reduced->print();
}
} // gtsam
#endif
}
} // namespace gtsam

View File

@ -7,84 +7,81 @@
#pragma once
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam_unstable/discrete/AllDiff.h>
#include <gtsam_unstable/discrete/SingleValue.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
namespace gtsam {
/**
* Constraint Satisfaction Problem class
* A specialization of a DiscreteFactorGraph.
* It knows about CSP-specific constraints and algorithms
/**
* Constraint Satisfaction Problem class
* A specialization of a DiscreteFactorGraph.
* It knows about CSP-specific constraints and algorithms
*/
class GTSAM_UNSTABLE_EXPORT CSP : public DiscreteFactorGraph {
public:
/** A map from keys to values */
typedef KeyVector Indices;
typedef Assignment<Key> Values;
typedef boost::shared_ptr<Values> sharedValues;
public:
// /// Constructor
// CSP() {
// }
/// Add a unary constraint, allowing only a single value
void addSingleValue(const DiscreteKey& dkey, size_t value) {
boost::shared_ptr<SingleValue> factor(new SingleValue(dkey, value));
push_back(factor);
}
/// Add a binary AllDiff constraint
void addAllDiff(const DiscreteKey& key1, const DiscreteKey& key2) {
boost::shared_ptr<BinaryAllDiff> factor(new BinaryAllDiff(key1, key2));
push_back(factor);
}
/// Add a general AllDiff constraint
void addAllDiff(const DiscreteKeys& dkeys) {
boost::shared_ptr<AllDiff> factor(new AllDiff(dkeys));
push_back(factor);
}
// /** return product of all factors as a single factor */
// DecisionTreeFactor product() const {
// DecisionTreeFactor result;
// for(const sharedFactor& factor: *this)
// if (factor) result = (*factor) * result;
// return result;
// }
/// Find the best total assignment - can be expensive
sharedValues optimalAssignment() const;
/// Find the best total assignment - can be expensive
sharedValues optimalAssignment(const Ordering& ordering) const;
// /*
// * Perform loopy belief propagation
// * True belief propagation would check for each value in domain
// * whether any satisfying separator assignment can be found.
// * This corresponds to hyper-arc consistency in CSP speak.
// * This can be done by creating a mini-factor graph and search.
// * For a nine-by-nine Sudoku, the search tree will be 8+6+6=20 levels
// deep.
// * It will be very expensive to exclude values that way.
// */
// void applyBeliefPropagation(size_t nrIterations = 10) const;
/*
* Apply arc-consistency ~ Approximate loopy belief propagation
* We need to give the domains to a constraint, and it returns
* a domain whose values don't conflict in the arc-consistency way.
* TODO: should get cardinality from Indices
*/
class GTSAM_UNSTABLE_EXPORT CSP: public DiscreteFactorGraph {
public:
/** A map from keys to values */
typedef KeyVector Indices;
typedef Assignment<Key> Values;
typedef boost::shared_ptr<Values> sharedValues;
public:
// /// Constructor
// CSP() {
// }
/// Add a unary constraint, allowing only a single value
void addSingleValue(const DiscreteKey& dkey, size_t value) {
boost::shared_ptr<SingleValue> factor(new SingleValue(dkey, value));
push_back(factor);
}
/// Add a binary AllDiff constraint
void addAllDiff(const DiscreteKey& key1, const DiscreteKey& key2) {
boost::shared_ptr<BinaryAllDiff> factor(
new BinaryAllDiff(key1, key2));
push_back(factor);
}
/// Add a general AllDiff constraint
void addAllDiff(const DiscreteKeys& dkeys) {
boost::shared_ptr<AllDiff> factor(new AllDiff(dkeys));
push_back(factor);
}
// /** return product of all factors as a single factor */
// DecisionTreeFactor product() const {
// DecisionTreeFactor result;
// for(const sharedFactor& factor: *this)
// if (factor) result = (*factor) * result;
// return result;
// }
/// Find the best total assignment - can be expensive
sharedValues optimalAssignment() const;
/// Find the best total assignment - can be expensive
sharedValues optimalAssignment(const Ordering& ordering) const;
// /*
// * Perform loopy belief propagation
// * True belief propagation would check for each value in domain
// * whether any satisfying separator assignment can be found.
// * This corresponds to hyper-arc consistency in CSP speak.
// * This can be done by creating a mini-factor graph and search.
// * For a nine-by-nine Sudoku, the search tree will be 8+6+6=20 levels deep.
// * It will be very expensive to exclude values that way.
// */
// void applyBeliefPropagation(size_t nrIterations = 10) const;
/*
* Apply arc-consistency ~ Approximate loopy belief propagation
* We need to give the domains to a constraint, and it returns
* a domain whose values don't conflict in the arc-consistency way.
* TODO: should get cardinality from Indices
*/
void runArcConsistency(size_t cardinality, size_t nrIterations = 10,
bool print = false) const;
}; // CSP
} // gtsam
void runArcConsistency(size_t cardinality, size_t nrIterations = 10,
bool print = false) const;
}; // CSP
} // namespace gtsam

View File

@ -17,77 +17,68 @@
#pragma once
#include <gtsam_unstable/dllexport.h>
#include <gtsam/discrete/DiscreteFactor.h>
#include <gtsam_unstable/dllexport.h>
#include <boost/assign.hpp>
namespace gtsam {
class Domain;
class Domain;
/**
* Base class for discrete probabilistic factors
* The most general one is the derived DecisionTreeFactor
/**
* Base class for discrete probabilistic factors
* The most general one is the derived DecisionTreeFactor
*/
class Constraint : public DiscreteFactor {
public:
typedef boost::shared_ptr<Constraint> shared_ptr;
protected:
/// Construct n-way factor
Constraint(const KeyVector& js) : DiscreteFactor(js) {}
/// Construct unary factor
Constraint(Key j) : DiscreteFactor(boost::assign::cref_list_of<1>(j)) {}
/// Construct binary factor
Constraint(Key j1, Key j2)
: DiscreteFactor(boost::assign::cref_list_of<2>(j1)(j2)) {}
/// construct from container
template <class KeyIterator>
Constraint(KeyIterator beginKey, KeyIterator endKey)
: DiscreteFactor(beginKey, endKey) {}
public:
/// @name Standard Constructors
/// @{
/// Default constructor for I/O
Constraint();
/// Virtual destructor
~Constraint() override {}
/// @}
/// @name Standard Interface
/// @{
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
class Constraint : public DiscreteFactor {
virtual bool ensureArcConsistency(size_t j,
std::vector<Domain>& domains) const = 0;
public:
/// Partially apply known values
virtual shared_ptr partiallyApply(const Values&) const = 0;
typedef boost::shared_ptr<Constraint> shared_ptr;
protected:
/// Construct n-way factor
Constraint(const KeyVector& js) :
DiscreteFactor(js) {
}
/// Construct unary factor
Constraint(Key j) :
DiscreteFactor(boost::assign::cref_list_of<1>(j)) {
}
/// Construct binary factor
Constraint(Key j1, Key j2) :
DiscreteFactor(boost::assign::cref_list_of<2>(j1)(j2)) {
}
/// construct from container
template<class KeyIterator>
Constraint(KeyIterator beginKey, KeyIterator endKey) :
DiscreteFactor(beginKey, endKey) {
}
public:
/// @name Standard Constructors
/// @{
/// Default constructor for I/O
Constraint();
/// Virtual destructor
~Constraint() override {}
/// @}
/// @name Standard Interface
/// @{
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
virtual bool ensureArcConsistency(size_t j, std::vector<Domain>& domains) const = 0;
/// Partially apply known values
virtual shared_ptr partiallyApply(const Values&) const = 0;
/// Partially apply known values, domain version
virtual shared_ptr partiallyApply(const std::vector<Domain>&) const = 0;
/// @}
};
/// Partially apply known values, domain version
virtual shared_ptr partiallyApply(const std::vector<Domain>&) const = 0;
/// @}
};
// DiscreteFactor
}// namespace gtsam
} // namespace gtsam

View File

@ -5,92 +5,89 @@
* @author Frank Dellaert
*/
#include <gtsam_unstable/discrete/Domain.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam_unstable/discrete/Domain.h>
#include <boost/make_shared.hpp>
namespace gtsam {
using namespace std;
/* ************************************************************************* */
void Domain::print(const string& s,
const KeyFormatter& formatter) const {
// cout << s << ": Domain on " << formatter(keys_[0]) << " (j=" <<
// formatter(keys_[0]) << ") with values";
// for (size_t v: values_) cout << " " << v;
// cout << endl;
for (size_t v: values_) cout << v;
}
/* ************************************************************************* */
double Domain::operator()(const Values& values) const {
return contains(values.at(keys_[0]));
}
/* ************************************************************************* */
DecisionTreeFactor Domain::toDecisionTreeFactor() const {
DiscreteKeys keys;
keys += DiscreteKey(keys_[0],cardinality_);
vector<double> table;
for (size_t i1 = 0; i1 < cardinality_; ++i1)
table.push_back(contains(i1));
DecisionTreeFactor converted(keys, table);
return converted;
}
/* ************************************************************************* */
DecisionTreeFactor Domain::operator*(const DecisionTreeFactor& f) const {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/* ************************************************************************* */
bool Domain::ensureArcConsistency(size_t j, vector<Domain>& domains) const {
if (j != keys_[0]) throw invalid_argument("Domain check on wrong domain");
Domain& D = domains[j];
for(size_t value: values_)
if (!D.contains(value)) throw runtime_error("Unsatisfiable");
D = *this;
return true;
}
/* ************************************************************************* */
bool Domain::checkAllDiff(const KeyVector keys, vector<Domain>& domains) {
Key j = keys_[0];
// for all values in this domain
for(size_t value: values_) {
// for all connected domains
for(Key k: keys)
// if any domain contains the value we cannot make this domain singleton
if (k!=j && domains[k].contains(value))
goto found;
values_.clear();
values_.insert(value);
return true; // we changed it
found:;
}
return false; // we did not change it
}
/* ************************************************************************* */
Constraint::shared_ptr Domain::partiallyApply(
const Values& values) const {
Values::const_iterator it = values.find(keys_[0]);
if (it != values.end() && !contains(it->second)) throw runtime_error(
"Domain::partiallyApply: unsatisfiable");
return boost::make_shared < Domain > (*this);
}
/* ************************************************************************* */
Constraint::shared_ptr Domain::partiallyApply(
const vector<Domain>& domains) const {
const Domain& Dk = domains[keys_[0]];
if (Dk.isSingleton() && !contains(*Dk.begin())) throw runtime_error(
"Domain::partiallyApply: unsatisfiable");
return boost::make_shared < Domain > (Dk);
}
using namespace std;
/* ************************************************************************* */
} // namespace gtsam
void Domain::print(const string& s, const KeyFormatter& formatter) const {
// cout << s << ": Domain on " << formatter(keys_[0]) << " (j=" <<
// formatter(keys_[0]) << ") with values";
// for (size_t v: values_) cout << " " << v;
// cout << endl;
for (size_t v : values_) cout << v;
}
/* ************************************************************************* */
double Domain::operator()(const Values& values) const {
return contains(values.at(keys_[0]));
}
/* ************************************************************************* */
DecisionTreeFactor Domain::toDecisionTreeFactor() const {
DiscreteKeys keys;
keys += DiscreteKey(keys_[0], cardinality_);
vector<double> table;
for (size_t i1 = 0; i1 < cardinality_; ++i1) table.push_back(contains(i1));
DecisionTreeFactor converted(keys, table);
return converted;
}
/* ************************************************************************* */
DecisionTreeFactor Domain::operator*(const DecisionTreeFactor& f) const {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/* ************************************************************************* */
bool Domain::ensureArcConsistency(size_t j, vector<Domain>& domains) const {
if (j != keys_[0]) throw invalid_argument("Domain check on wrong domain");
Domain& D = domains[j];
for (size_t value : values_)
if (!D.contains(value)) throw runtime_error("Unsatisfiable");
D = *this;
return true;
}
/* ************************************************************************* */
bool Domain::checkAllDiff(const KeyVector keys, vector<Domain>& domains) {
Key j = keys_[0];
// for all values in this domain
for (size_t value : values_) {
// for all connected domains
for (Key k : keys)
// if any domain contains the value we cannot make this domain singleton
if (k != j && domains[k].contains(value)) goto found;
values_.clear();
values_.insert(value);
return true; // we changed it
found:;
}
return false; // we did not change it
}
/* ************************************************************************* */
Constraint::shared_ptr Domain::partiallyApply(const Values& values) const {
Values::const_iterator it = values.find(keys_[0]);
if (it != values.end() && !contains(it->second))
throw runtime_error("Domain::partiallyApply: unsatisfiable");
return boost::make_shared<Domain>(*this);
}
/* ************************************************************************* */
Constraint::shared_ptr Domain::partiallyApply(
const vector<Domain>& domains) const {
const Domain& Dk = domains[keys_[0]];
if (Dk.isSingleton() && !contains(*Dk.begin()))
throw runtime_error("Domain::partiallyApply: unsatisfiable");
return boost::make_shared<Domain>(Dk);
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -7,111 +7,97 @@
#pragma once
#include <gtsam_unstable/discrete/Constraint.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam_unstable/discrete/Constraint.h>
namespace gtsam {
/**
* Domain restriction constraint
/**
* Domain restriction constraint
*/
class GTSAM_UNSTABLE_EXPORT Domain : public Constraint {
size_t cardinality_; /// Cardinality
std::set<size_t> values_; /// allowed values
public:
typedef boost::shared_ptr<Domain> shared_ptr;
// Constructor on Discrete Key initializes an "all-allowed" domain
Domain(const DiscreteKey& dkey)
: Constraint(dkey.first), cardinality_(dkey.second) {
for (size_t v = 0; v < cardinality_; v++) values_.insert(v);
}
// Constructor on Discrete Key with single allowed value
// Consider SingleValue constraint
Domain(const DiscreteKey& dkey, size_t v)
: Constraint(dkey.first), cardinality_(dkey.second) {
values_.insert(v);
}
/// Constructor
Domain(const Domain& other)
: Constraint(other.keys_[0]), values_(other.values_) {}
/// insert a value, non const :-(
void insert(size_t value) { values_.insert(value); }
/// erase a value, non const :-(
void erase(size_t value) { values_.erase(value); }
size_t nrValues() const { return values_.size(); }
bool isSingleton() const { return nrValues() == 1; }
size_t firstValue() const { return *values_.begin(); }
// print
void print(const std::string& s = "", const KeyFormatter& formatter =
DefaultKeyFormatter) const override;
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if (!dynamic_cast<const Domain*>(&other))
return false;
else {
const Domain& f(static_cast<const Domain&>(other));
return (cardinality_ == f.cardinality_) && (values_ == f.values_);
}
}
bool contains(size_t value) const { return values_.count(value) > 0; }
/// Calculate value
double operator()(const Values& values) const override;
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
class GTSAM_UNSTABLE_EXPORT Domain: public Constraint {
bool ensureArcConsistency(size_t j,
std::vector<Domain>& domains) const override;
size_t cardinality_; /// Cardinality
std::set<size_t> values_; /// allowed values
/**
* Check for a value in domain that does not occur in any other connected
* domain. If found, we make this a singleton... Called in
* AllDiff::ensureArcConsistency
* @param keys connected domains through alldiff
*/
bool checkAllDiff(const KeyVector keys, std::vector<Domain>& domains);
public:
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values& values) const override;
typedef boost::shared_ptr<Domain> shared_ptr;
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>& domains) const override;
};
// Constructor on Discrete Key initializes an "all-allowed" domain
Domain(const DiscreteKey& dkey) :
Constraint(dkey.first), cardinality_(dkey.second) {
for (size_t v = 0; v < cardinality_; v++)
values_.insert(v);
}
// Constructor on Discrete Key with single allowed value
// Consider SingleValue constraint
Domain(const DiscreteKey& dkey, size_t v) :
Constraint(dkey.first), cardinality_(dkey.second) {
values_.insert(v);
}
/// Constructor
Domain(const Domain& other) :
Constraint(other.keys_[0]), values_(other.values_) {
}
/// insert a value, non const :-(
void insert(size_t value) {
values_.insert(value);
}
/// erase a value, non const :-(
void erase(size_t value) {
values_.erase(value);
}
size_t nrValues() const {
return values_.size();
}
bool isSingleton() const {
return nrValues() == 1;
}
size_t firstValue() const {
return *values_.begin();
}
// print
void print(const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if(!dynamic_cast<const Domain*>(&other))
return false;
else {
const Domain& f(static_cast<const Domain&>(other));
return (cardinality_==f.cardinality_) && (values_==f.values_);
}
}
bool contains(size_t value) const {
return values_.count(value)>0;
}
/// Calculate value
double operator()(const Values& values) const override;
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
bool ensureArcConsistency(size_t j, std::vector<Domain>& domains) const override;
/**
* Check for a value in domain that does not occur in any other connected domain.
* If found, we make this a singleton... Called in AllDiff::ensureArcConsistency
* @param keys connected domains through alldiff
*/
bool checkAllDiff(const KeyVector keys, std::vector<Domain>& domains);
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values& values) const override;
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>& domains) const override;
};
} // namespace gtsam
} // namespace gtsam

View File

@ -5,298 +5,286 @@
* @author Frank Dellaert
*/
#include <gtsam_unstable/discrete/Scheduler.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/timing.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam_unstable/discrete/Scheduler.h>
#include <boost/tokenizer.hpp>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <cmath>
namespace gtsam {
using namespace std;
using namespace std;
Scheduler::Scheduler(size_t maxNrStudents, const string& filename):
maxNrStudents_(maxNrStudents)
{
typedef boost::tokenizer<boost::escaped_list_separator<char> > Tokenizer;
Scheduler::Scheduler(size_t maxNrStudents, const string& filename)
: maxNrStudents_(maxNrStudents) {
typedef boost::tokenizer<boost::escaped_list_separator<char> > Tokenizer;
// open file
ifstream is(filename.c_str());
if (!is) {
cerr << "Scheduler: could not open file " << filename << endl;
throw runtime_error("Scheduler: could not open file " + filename);
}
string line; // buffer
// process first line with faculty
if (getline(is, line, '\r')) {
Tokenizer tok(line);
Tokenizer::iterator it = tok.begin();
for (++it; it != tok.end(); ++it)
addFaculty(*it);
}
// for all remaining lines
size_t count = 0;
while (getline(is, line, '\r')) {
if (count++ > 100) throw runtime_error("reached 100 lines, exiting");
Tokenizer tok(line);
Tokenizer::iterator it = tok.begin();
addSlot(*it++); // add slot
// add availability
for (; it != tok.end(); ++it)
available_ += (it->empty()) ? "0 " : "1 ";
available_ += '\n';
}
} // constructor
/** addStudent has to be called after adding slots and faculty */
void Scheduler::addStudent(const string& studentName,
const string& area1, const string& area2,
const string& area3, const string& advisor) {
assert(nrStudents()<maxNrStudents_);
assert(facultyInArea_.count(area1));
assert(facultyInArea_.count(area2));
assert(facultyInArea_.count(area3));
size_t advisorIndex = facultyIndex_[advisor];
Student student(nrFaculty(), advisorIndex);
student.name_ = studentName;
// We fix the ordering by assigning a higher index to the student
// and numbering the areas lower
Key j = 3*maxNrStudents_ + nrStudents();
student.key_ = DiscreteKey(j, nrTimeSlots());
Key base = 3*nrStudents();
student.keys_[0] = DiscreteKey(base+0, nrFaculty());
student.keys_[1] = DiscreteKey(base+1, nrFaculty());
student.keys_[2] = DiscreteKey(base+2, nrFaculty());
student.areaName_[0] = area1;
student.areaName_[1] = area2;
student.areaName_[2] = area3;
students_.push_back(student);
}
/** get key for student and area, 0 is time slot itself */
const DiscreteKey& Scheduler::key(size_t s, boost::optional<size_t> area) const {
return area ? students_[s].keys_[*area] : students_[s].key_;
// open file
ifstream is(filename.c_str());
if (!is) {
cerr << "Scheduler: could not open file " << filename << endl;
throw runtime_error("Scheduler: could not open file " + filename);
}
const string& Scheduler::studentName(size_t i) const {
assert(i<nrStudents());
return students_[i].name_;
string line; // buffer
// process first line with faculty
if (getline(is, line, '\r')) {
Tokenizer tok(line);
Tokenizer::iterator it = tok.begin();
for (++it; it != tok.end(); ++it) addFaculty(*it);
}
const DiscreteKey& Scheduler::studentKey(size_t i) const {
assert(i<nrStudents());
return students_[i].key_;
// for all remaining lines
size_t count = 0;
while (getline(is, line, '\r')) {
if (count++ > 100) throw runtime_error("reached 100 lines, exiting");
Tokenizer tok(line);
Tokenizer::iterator it = tok.begin();
addSlot(*it++); // add slot
// add availability
for (; it != tok.end(); ++it) available_ += (it->empty()) ? "0 " : "1 ";
available_ += '\n';
}
} // constructor
/** addStudent has to be called after adding slots and faculty */
void Scheduler::addStudent(const string& studentName, const string& area1,
const string& area2, const string& area3,
const string& advisor) {
assert(nrStudents() < maxNrStudents_);
assert(facultyInArea_.count(area1));
assert(facultyInArea_.count(area2));
assert(facultyInArea_.count(area3));
size_t advisorIndex = facultyIndex_[advisor];
Student student(nrFaculty(), advisorIndex);
student.name_ = studentName;
// We fix the ordering by assigning a higher index to the student
// and numbering the areas lower
Key j = 3 * maxNrStudents_ + nrStudents();
student.key_ = DiscreteKey(j, nrTimeSlots());
Key base = 3 * nrStudents();
student.keys_[0] = DiscreteKey(base + 0, nrFaculty());
student.keys_[1] = DiscreteKey(base + 1, nrFaculty());
student.keys_[2] = DiscreteKey(base + 2, nrFaculty());
student.areaName_[0] = area1;
student.areaName_[1] = area2;
student.areaName_[2] = area3;
students_.push_back(student);
}
/** get key for student and area, 0 is time slot itself */
const DiscreteKey& Scheduler::key(size_t s,
boost::optional<size_t> area) const {
return area ? students_[s].keys_[*area] : students_[s].key_;
}
const string& Scheduler::studentName(size_t i) const {
assert(i < nrStudents());
return students_[i].name_;
}
const DiscreteKey& Scheduler::studentKey(size_t i) const {
assert(i < nrStudents());
return students_[i].key_;
}
const string& Scheduler::studentArea(size_t i, size_t area) const {
assert(i < nrStudents());
return students_[i].areaName_[area];
}
/** Add student-specific constraints to the graph */
void Scheduler::addStudentSpecificConstraints(size_t i,
boost::optional<size_t> slot) {
bool debug = ISDEBUG("Scheduler::buildGraph");
assert(i < nrStudents());
const Student& s = students_[i];
if (!slot && !slotsAvailable_.empty()) {
if (debug) cout << "Adding availability of slots" << endl;
assert(slotsAvailable_.size() == s.key_.second);
CSP::add(s.key_, slotsAvailable_);
}
const string& Scheduler::studentArea(size_t i, size_t area) const {
assert(i<nrStudents());
return students_[i].areaName_[area];
}
// For all areas
for (size_t area = 0; area < 3; area++) {
DiscreteKey areaKey = s.keys_[area];
const string& areaName = s.areaName_[area];
/** Add student-specific constraints to the graph */
void Scheduler::addStudentSpecificConstraints(size_t i, boost::optional<size_t> slot) {
bool debug = ISDEBUG("Scheduler::buildGraph");
if (debug) cout << "Area constraints " << areaName << endl;
assert(facultyInArea_[areaName].size() == areaKey.second);
CSP::add(areaKey, facultyInArea_[areaName]);
assert(i<nrStudents());
const Student& s = students_[i];
if (debug) cout << "Advisor constraint " << areaName << endl;
assert(s.advisor_.size() == areaKey.second);
CSP::add(areaKey, s.advisor_);
if (!slot && !slotsAvailable_.empty()) {
if (debug) cout << "Adding availability of slots" << endl;
assert(slotsAvailable_.size()==s.key_.second);
CSP::add(s.key_, slotsAvailable_);
}
// For all areas
for (size_t area = 0; area < 3; area++) {
DiscreteKey areaKey = s.keys_[area];
const string& areaName = s.areaName_[area];
if (debug) cout << "Area constraints " << areaName << endl;
assert(facultyInArea_[areaName].size()==areaKey.second);
CSP::add(areaKey, facultyInArea_[areaName]);
if (debug) cout << "Advisor constraint " << areaName << endl;
assert(s.advisor_.size()==areaKey.second);
CSP::add(areaKey, s.advisor_);
if (debug) cout << "Availability of faculty " << areaName << endl;
if (slot) {
// get all constraints then specialize to slot
size_t dummyIndex = maxNrStudents_*3+maxNrStudents_;
DiscreteKey dummy(dummyIndex, nrTimeSlots());
Potentials::ADT p(dummy & areaKey, available_); // available_ is Doodle string
Potentials::ADT q = p.choose(dummyIndex, *slot);
DiscreteFactor::shared_ptr f(new DecisionTreeFactor(areaKey, q));
CSP::push_back(f);
} else {
CSP::add(s.key_, areaKey, available_); // available_ is Doodle string
}
}
// add mutex
if (debug) cout << "Mutex for faculty" << endl;
addAllDiff(s.keys_[0] & s.keys_[1] & s.keys_[2]);
}
/** Main routine that builds factor graph */
void Scheduler::buildGraph(size_t mutexBound) {
bool debug = ISDEBUG("Scheduler::buildGraph");
if (debug) cout << "Adding student-specific constraints" << endl;
for (size_t i = 0; i < nrStudents(); i++)
addStudentSpecificConstraints(i);
// special constraint for MN
if (studentName(0) == "Michael N") CSP::add(studentKey(0),
"0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1");
if (!mutexBound) {
DiscreteKeys dkeys;
for(const Student& s: students_)
dkeys.push_back(s.key_);
addAllDiff(dkeys);
if (debug) cout << "Availability of faculty " << areaName << endl;
if (slot) {
// get all constraints then specialize to slot
size_t dummyIndex = maxNrStudents_ * 3 + maxNrStudents_;
DiscreteKey dummy(dummyIndex, nrTimeSlots());
Potentials::ADT p(dummy & areaKey,
available_); // available_ is Doodle string
Potentials::ADT q = p.choose(dummyIndex, *slot);
DiscreteFactor::shared_ptr f(new DecisionTreeFactor(areaKey, q));
CSP::push_back(f);
} else {
if (debug) cout << "Mutex for Students" << endl;
for (size_t i1 = 0; i1 < nrStudents(); i1++) {
// if mutexBound=1, we only mutex with next student
size_t bound = min((i1 + 1 + mutexBound), nrStudents());
for (size_t i2 = i1 + 1; i2 < bound; i2++) {
addAllDiff(studentKey(i1), studentKey(i2));
}
CSP::add(s.key_, areaKey, available_); // available_ is Doodle string
}
}
// add mutex
if (debug) cout << "Mutex for faculty" << endl;
addAllDiff(s.keys_[0] & s.keys_[1] & s.keys_[2]);
}
/** Main routine that builds factor graph */
void Scheduler::buildGraph(size_t mutexBound) {
bool debug = ISDEBUG("Scheduler::buildGraph");
if (debug) cout << "Adding student-specific constraints" << endl;
for (size_t i = 0; i < nrStudents(); i++) addStudentSpecificConstraints(i);
// special constraint for MN
if (studentName(0) == "Michael N")
CSP::add(studentKey(0), "0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1");
if (!mutexBound) {
DiscreteKeys dkeys;
for (const Student& s : students_) dkeys.push_back(s.key_);
addAllDiff(dkeys);
} else {
if (debug) cout << "Mutex for Students" << endl;
for (size_t i1 = 0; i1 < nrStudents(); i1++) {
// if mutexBound=1, we only mutex with next student
size_t bound = min((i1 + 1 + mutexBound), nrStudents());
for (size_t i2 = i1 + 1; i2 < bound; i2++) {
addAllDiff(studentKey(i1), studentKey(i2));
}
}
} // buildGraph
/** print */
void Scheduler::print(const string& s, const KeyFormatter& formatter) const {
cout << s << " Faculty:" << endl;
for(const string& name: facultyName_)
cout << name << '\n';
cout << endl;
cout << s << " Slots:\n";
size_t i = 0;
for(const string& name: slotName_)
cout << i++ << " " << name << endl;
cout << endl;
cout << "Availability:\n" << available_ << '\n';
cout << s << " Area constraints:\n";
for(const FacultyInArea::value_type& it: facultyInArea_)
{
cout << setw(12) << it.first << ": ";
for(double v: it.second)
cout << v << " ";
cout << '\n';
}
cout << endl;
cout << s << " Students:\n";
for (const Student& student: students_)
student.print();
cout << endl;
CSP::print(s + " Factor graph");
cout << endl;
} // print
/** Print readable form of assignment */
void Scheduler::printAssignment(sharedValues assignment) const {
// Not intended to be general! Assumes very particular ordering !
cout << endl;
for (size_t s = 0; s < nrStudents(); s++) {
Key j = 3*maxNrStudents_ + s;
size_t slot = assignment->at(j);
cout << studentName(s) << " slot: " << slotName_[slot] << endl;
Key base = 3*s;
for (size_t area = 0; area < 3; area++) {
size_t faculty = assignment->at(base+area);
cout << setw(12) << studentArea(s,area) << ": " << facultyName_[faculty]
<< endl;
}
cout << endl;
}
}
} // buildGraph
/** Special print for single-student case */
void Scheduler::printSpecial(sharedValues assignment) const {
Values::const_iterator it = assignment->begin();
for (size_t area = 0; area < 3; area++, it++) {
size_t f = it->second;
cout << setw(12) << studentArea(0,area) << ": " << facultyName_[f] << endl;
/** print */
void Scheduler::print(const string& s, const KeyFormatter& formatter) const {
cout << s << " Faculty:" << endl;
for (const string& name : facultyName_) cout << name << '\n';
cout << endl;
cout << s << " Slots:\n";
size_t i = 0;
for (const string& name : slotName_) cout << i++ << " " << name << endl;
cout << endl;
cout << "Availability:\n" << available_ << '\n';
cout << s << " Area constraints:\n";
for (const FacultyInArea::value_type& it : facultyInArea_) {
cout << setw(12) << it.first << ": ";
for (double v : it.second) cout << v << " ";
cout << '\n';
}
cout << endl;
cout << s << " Students:\n";
for (const Student& student : students_) student.print();
cout << endl;
CSP::print(s + " Factor graph");
cout << endl;
} // print
/** Print readable form of assignment */
void Scheduler::printAssignment(sharedValues assignment) const {
// Not intended to be general! Assumes very particular ordering !
cout << endl;
for (size_t s = 0; s < nrStudents(); s++) {
Key j = 3 * maxNrStudents_ + s;
size_t slot = assignment->at(j);
cout << studentName(s) << " slot: " << slotName_[slot] << endl;
Key base = 3 * s;
for (size_t area = 0; area < 3; area++) {
size_t faculty = assignment->at(base + area);
cout << setw(12) << studentArea(s, area) << ": " << facultyName_[faculty]
<< endl;
}
cout << endl;
}
}
/** Accumulate faculty stats */
void Scheduler::accumulateStats(sharedValues assignment, vector<
size_t>& stats) const {
for (size_t s = 0; s < nrStudents(); s++) {
Key base = 3*s;
for (size_t area = 0; area < 3; area++) {
size_t f = assignment->at(base+area);
assert(f<stats.size());
stats[f]++;
} // area
} // s
/** Special print for single-student case */
void Scheduler::printSpecial(sharedValues assignment) const {
Values::const_iterator it = assignment->begin();
for (size_t area = 0; area < 3; area++, it++) {
size_t f = it->second;
cout << setw(12) << studentArea(0, area) << ": " << facultyName_[f] << endl;
}
cout << endl;
}
/** Accumulate faculty stats */
void Scheduler::accumulateStats(sharedValues assignment,
vector<size_t>& stats) const {
for (size_t s = 0; s < nrStudents(); s++) {
Key base = 3 * s;
for (size_t area = 0; area < 3; area++) {
size_t f = assignment->at(base + area);
assert(f < stats.size());
stats[f]++;
} // area
} // s
}
/** Eliminate, return a Bayes net */
DiscreteBayesNet::shared_ptr Scheduler::eliminate() const {
gttic(my_eliminate);
// TODO: fix this!!
size_t maxKey = keys().size();
Ordering defaultKeyOrdering;
for (size_t i = 0; i < maxKey; ++i) defaultKeyOrdering += Key(i);
DiscreteBayesNet::shared_ptr chordal =
this->eliminateSequential(defaultKeyOrdering);
gttoc(my_eliminate);
return chordal;
}
/** Find the best total assignment - can be expensive */
Scheduler::sharedValues Scheduler::optimalAssignment() const {
DiscreteBayesNet::shared_ptr chordal = eliminate();
if (ISDEBUG("Scheduler::optimalAssignment")) {
DiscreteBayesNet::const_iterator it = chordal->end() - 1;
const Student& student = students_.front();
cout << endl;
(*it)->print(student.name_);
}
/** Eliminate, return a Bayes net */
DiscreteBayesNet::shared_ptr Scheduler::eliminate() const {
gttic(my_eliminate);
// TODO: fix this!!
size_t maxKey = keys().size();
Ordering defaultKeyOrdering;
for (size_t i = 0; i<maxKey; ++i)
defaultKeyOrdering += Key(i);
DiscreteBayesNet::shared_ptr chordal = this->eliminateSequential(defaultKeyOrdering);
gttoc(my_eliminate);
return chordal;
}
gttic(my_optimize);
sharedValues mpe = chordal->optimize();
gttoc(my_optimize);
return mpe;
}
/** Find the best total assignment - can be expensive */
Scheduler::sharedValues Scheduler::optimalAssignment() const {
DiscreteBayesNet::shared_ptr chordal = eliminate();
if (ISDEBUG("Scheduler::optimalAssignment")) {
DiscreteBayesNet::const_iterator it = chordal->end()-1;
const Student & student = students_.front();
cout << endl;
(*it)->print(student.name_);
}
gttic(my_optimize);
sharedValues mpe = chordal->optimize();
gttoc(my_optimize);
return mpe;
}
/** find the assignment of students to slots with most possible committees */
Scheduler::sharedValues Scheduler::bestSchedule() const {
sharedValues best;
throw runtime_error("bestSchedule not implemented");
return best;
}
/** find the corresponding most desirable committee assignment */
Scheduler::sharedValues Scheduler::bestAssignment(
sharedValues bestSchedule) const {
sharedValues best;
throw runtime_error("bestAssignment not implemented");
return best;
}
} // gtsam
/** find the assignment of students to slots with most possible committees */
Scheduler::sharedValues Scheduler::bestSchedule() const {
sharedValues best;
throw runtime_error("bestSchedule not implemented");
return best;
}
/** find the corresponding most desirable committee assignment */
Scheduler::sharedValues Scheduler::bestAssignment(
sharedValues bestSchedule) const {
sharedValues best;
throw runtime_error("bestAssignment not implemented");
return best;
}
} // namespace gtsam

View File

@ -11,165 +11,150 @@
namespace gtsam {
/**
* Scheduler class
* Creates one variable for each student, and three variables for each
* of the student's areas, for a total of 4*nrStudents variables.
* The "student" variable will determine when the student takes the qual.
* The "area" variables determine which faculty are on his/her committee.
*/
class GTSAM_UNSTABLE_EXPORT Scheduler : public CSP {
private:
/** Internal data structure for students */
struct Student {
std::string name_;
DiscreteKey key_; // key for student
std::vector<DiscreteKey> keys_; // key for areas
std::vector<std::string> areaName_;
std::vector<double> advisor_;
Student(size_t nrFaculty, size_t advisorIndex)
: keys_(3), areaName_(3), advisor_(nrFaculty, 1.0) {
advisor_[advisorIndex] = 0.0;
}
void print() const {
using std::cout;
cout << name_ << ": ";
for (size_t area = 0; area < 3; area++) cout << areaName_[area] << " ";
cout << std::endl;
}
};
/** Maximum number of students */
size_t maxNrStudents_;
/** discrete keys, indexed by student and area index */
std::vector<Student> students_;
/** faculty identifiers */
std::map<std::string, size_t> facultyIndex_;
std::vector<std::string> facultyName_, slotName_, areaName_;
/** area constraints */
typedef std::map<std::string, std::vector<double> > FacultyInArea;
FacultyInArea facultyInArea_;
/** nrTimeSlots * nrFaculty availability constraints */
std::string available_;
/** which slots are good */
std::vector<double> slotsAvailable_;
public:
/**
* Scheduler class
* Creates one variable for each student, and three variables for each
* of the student's areas, for a total of 4*nrStudents variables.
* The "student" variable will determine when the student takes the qual.
* The "area" variables determine which faculty are on his/her committee.
* Constructor
* We need to know the number of students in advance for ordering keys.
* then add faculty, slots, areas, availability, students, in that order
*/
class GTSAM_UNSTABLE_EXPORT Scheduler : public CSP {
Scheduler(size_t maxNrStudents) : maxNrStudents_(maxNrStudents) {}
private:
/// Destructor
virtual ~Scheduler() {}
/** Internal data structure for students */
struct Student {
std::string name_;
DiscreteKey key_; // key for student
std::vector<DiscreteKey> keys_; // key for areas
std::vector<std::string> areaName_;
std::vector<double> advisor_;
Student(size_t nrFaculty, size_t advisorIndex) :
keys_(3), areaName_(3), advisor_(nrFaculty, 1.0) {
advisor_[advisorIndex] = 0.0;
}
void print() const {
using std::cout;
cout << name_ << ": ";
for (size_t area = 0; area < 3; area++)
cout << areaName_[area] << " ";
cout << std::endl;
}
};
void addFaculty(const std::string& facultyName) {
facultyIndex_[facultyName] = nrFaculty();
facultyName_.push_back(facultyName);
}
/** Maximum number of students */
size_t maxNrStudents_;
size_t nrFaculty() const { return facultyName_.size(); }
/** discrete keys, indexed by student and area index */
std::vector<Student> students_;
/** boolean std::string of nrTimeSlots * nrFaculty */
void setAvailability(const std::string& available) { available_ = available; }
/** faculty identifiers */
std::map<std::string, size_t> facultyIndex_;
std::vector<std::string> facultyName_, slotName_, areaName_;
void addSlot(const std::string& slotName) { slotName_.push_back(slotName); }
/** area constraints */
typedef std::map<std::string, std::vector<double> > FacultyInArea;
FacultyInArea facultyInArea_;
size_t nrTimeSlots() const { return slotName_.size(); }
/** nrTimeSlots * nrFaculty availability constraints */
std::string available_;
const std::string& slotName(size_t s) const { return slotName_[s]; }
/** which slots are good */
std::vector<double> slotsAvailable_;
/** slots available, boolean */
void setSlotsAvailable(const std::vector<double>& slotsAvailable) {
slotsAvailable_ = slotsAvailable;
}
public:
void addArea(const std::string& facultyName, const std::string& areaName) {
areaName_.push_back(areaName);
std::vector<double>& table =
facultyInArea_[areaName]; // will create if needed
if (table.empty()) table.resize(nrFaculty(), 0);
table[facultyIndex_[facultyName]] = 1;
}
/**
* Constructor
* We need to know the number of students in advance for ordering keys.
* then add faculty, slots, areas, availability, students, in that order
*/
Scheduler(size_t maxNrStudents) : maxNrStudents_(maxNrStudents) {}
/**
* Constructor that reads in faculty, slots, availibility.
* Still need to add areas and students after this
*/
Scheduler(size_t maxNrStudents, const std::string& filename);
/// Destructor
virtual ~Scheduler() {}
/** get key for student and area, 0 is time slot itself */
const DiscreteKey& key(size_t s,
boost::optional<size_t> area = boost::none) const;
void addFaculty(const std::string& facultyName) {
facultyIndex_[facultyName] = nrFaculty();
facultyName_.push_back(facultyName);
}
/** addStudent has to be called after adding slots and faculty */
void addStudent(const std::string& studentName, const std::string& area1,
const std::string& area2, const std::string& area3,
const std::string& advisor);
size_t nrFaculty() const {
return facultyName_.size();
}
/// current number of students
size_t nrStudents() const { return students_.size(); }
/** boolean std::string of nrTimeSlots * nrFaculty */
void setAvailability(const std::string& available) {
available_ = available;
}
const std::string& studentName(size_t i) const;
const DiscreteKey& studentKey(size_t i) const;
const std::string& studentArea(size_t i, size_t area) const;
void addSlot(const std::string& slotName) {
slotName_.push_back(slotName);
}
/** Add student-specific constraints to the graph */
void addStudentSpecificConstraints(
size_t i, boost::optional<size_t> slot = boost::none);
size_t nrTimeSlots() const {
return slotName_.size();
}
/** Main routine that builds factor graph */
void buildGraph(size_t mutexBound = 7);
const std::string& slotName(size_t s) const {
return slotName_[s];
}
/** print */
void print(
const std::string& s = "Scheduler",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/** slots available, boolean */
void setSlotsAvailable(const std::vector<double>& slotsAvailable) {
slotsAvailable_ = slotsAvailable;
}
/** Print readable form of assignment */
void printAssignment(sharedValues assignment) const;
void addArea(const std::string& facultyName, const std::string& areaName) {
areaName_.push_back(areaName);
std::vector<double>& table = facultyInArea_[areaName]; // will create if needed
if (table.empty()) table.resize(nrFaculty(), 0);
table[facultyIndex_[facultyName]] = 1;
}
/** Special print for single-student case */
void printSpecial(sharedValues assignment) const;
/**
* Constructor that reads in faculty, slots, availibility.
* Still need to add areas and students after this
*/
Scheduler(size_t maxNrStudents, const std::string& filename);
/** Accumulate faculty stats */
void accumulateStats(sharedValues assignment,
std::vector<size_t>& stats) const;
/** get key for student and area, 0 is time slot itself */
const DiscreteKey& key(size_t s, boost::optional<size_t> area = boost::none) const;
/** Eliminate, return a Bayes net */
DiscreteBayesNet::shared_ptr eliminate() const;
/** addStudent has to be called after adding slots and faculty */
void addStudent(const std::string& studentName, const std::string& area1,
const std::string& area2, const std::string& area3,
const std::string& advisor);
/** Find the best total assignment - can be expensive */
sharedValues optimalAssignment() const;
/// current number of students
size_t nrStudents() const {
return students_.size();
}
/** find the assignment of students to slots with most possible committees */
sharedValues bestSchedule() const;
const std::string& studentName(size_t i) const;
const DiscreteKey& studentKey(size_t i) const;
const std::string& studentArea(size_t i, size_t area) const;
/** Add student-specific constraints to the graph */
void addStudentSpecificConstraints(size_t i, boost::optional<size_t> slot = boost::none);
/** Main routine that builds factor graph */
void buildGraph(size_t mutexBound = 7);
/** print */
void print(
const std::string& s = "Scheduler",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/** Print readable form of assignment */
void printAssignment(sharedValues assignment) const;
/** Special print for single-student case */
void printSpecial(sharedValues assignment) const;
/** Accumulate faculty stats */
void accumulateStats(sharedValues assignment,
std::vector<size_t>& stats) const;
/** Eliminate, return a Bayes net */
DiscreteBayesNet::shared_ptr eliminate() const;
/** Find the best total assignment - can be expensive */
sharedValues optimalAssignment() const;
/** find the assignment of students to slots with most possible committees */
sharedValues bestSchedule() const;
/** find the corresponding most desirable committee assignment */
sharedValues bestAssignment(sharedValues bestSchedule) const;
}; // Scheduler
} // gtsam
/** find the corresponding most desirable committee assignment */
sharedValues bestAssignment(sharedValues bestSchedule) const;
}; // Scheduler
} // namespace gtsam

View File

@ -5,75 +5,74 @@
* @author Frank Dellaert
*/
#include <gtsam_unstable/discrete/SingleValue.h>
#include <gtsam_unstable/discrete/Domain.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam_unstable/discrete/Domain.h>
#include <gtsam_unstable/discrete/SingleValue.h>
#include <boost/make_shared.hpp>
namespace gtsam {
using namespace std;
/* ************************************************************************* */
void SingleValue::print(const string& s,
const KeyFormatter& formatter) const {
cout << s << "SingleValue on " << "j=" << formatter(keys_[0])
<< " with value " << value_ << endl;
}
/* ************************************************************************* */
double SingleValue::operator()(const Values& values) const {
return (double) (values.at(keys_[0]) == value_);
}
/* ************************************************************************* */
DecisionTreeFactor SingleValue::toDecisionTreeFactor() const {
DiscreteKeys keys;
keys += DiscreteKey(keys_[0],cardinality_);
vector<double> table;
for (size_t i1 = 0; i1 < cardinality_; i1++)
table.push_back(i1 == value_);
DecisionTreeFactor converted(keys, table);
return converted;
}
/* ************************************************************************* */
DecisionTreeFactor SingleValue::operator*(const DecisionTreeFactor& f) const {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/* ************************************************************************* */
bool SingleValue::ensureArcConsistency(size_t j,
vector<Domain>& domains) const {
if (j != keys_[0]) throw invalid_argument(
"SingleValue check on wrong domain");
Domain& D = domains[j];
if (D.isSingleton()) {
if (D.firstValue() != value_) throw runtime_error("Unsatisfiable");
return false;
}
D = Domain(discreteKey(),value_);
return true;
}
/* ************************************************************************* */
Constraint::shared_ptr SingleValue::partiallyApply(const Values& values) const {
Values::const_iterator it = values.find(keys_[0]);
if (it != values.end() && it->second != value_) throw runtime_error(
"SingleValue::partiallyApply: unsatisfiable");
return boost::make_shared < SingleValue > (keys_[0], cardinality_, value_);
}
/* ************************************************************************* */
Constraint::shared_ptr SingleValue::partiallyApply(
const vector<Domain>& domains) const {
const Domain& Dk = domains[keys_[0]];
if (Dk.isSingleton() && !Dk.contains(value_)) throw runtime_error(
"SingleValue::partiallyApply: unsatisfiable");
return boost::make_shared < SingleValue > (discreteKey(), value_);
}
using namespace std;
/* ************************************************************************* */
} // namespace gtsam
void SingleValue::print(const string& s, const KeyFormatter& formatter) const {
cout << s << "SingleValue on "
<< "j=" << formatter(keys_[0]) << " with value " << value_ << endl;
}
/* ************************************************************************* */
double SingleValue::operator()(const Values& values) const {
return (double)(values.at(keys_[0]) == value_);
}
/* ************************************************************************* */
DecisionTreeFactor SingleValue::toDecisionTreeFactor() const {
DiscreteKeys keys;
keys += DiscreteKey(keys_[0], cardinality_);
vector<double> table;
for (size_t i1 = 0; i1 < cardinality_; i1++) table.push_back(i1 == value_);
DecisionTreeFactor converted(keys, table);
return converted;
}
/* ************************************************************************* */
DecisionTreeFactor SingleValue::operator*(const DecisionTreeFactor& f) const {
// TODO: can we do this more efficiently?
return toDecisionTreeFactor() * f;
}
/* ************************************************************************* */
bool SingleValue::ensureArcConsistency(size_t j,
vector<Domain>& domains) const {
if (j != keys_[0])
throw invalid_argument("SingleValue check on wrong domain");
Domain& D = domains[j];
if (D.isSingleton()) {
if (D.firstValue() != value_) throw runtime_error("Unsatisfiable");
return false;
}
D = Domain(discreteKey(), value_);
return true;
}
/* ************************************************************************* */
Constraint::shared_ptr SingleValue::partiallyApply(const Values& values) const {
Values::const_iterator it = values.find(keys_[0]);
if (it != values.end() && it->second != value_)
throw runtime_error("SingleValue::partiallyApply: unsatisfiable");
return boost::make_shared<SingleValue>(keys_[0], cardinality_, value_);
}
/* ************************************************************************* */
Constraint::shared_ptr SingleValue::partiallyApply(
const vector<Domain>& domains) const {
const Domain& Dk = domains[keys_[0]];
if (Dk.isSingleton() && !Dk.contains(value_))
throw runtime_error("SingleValue::partiallyApply: unsatisfiable");
return boost::make_shared<SingleValue>(discreteKey(), value_);
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -7,76 +7,73 @@
#pragma once
#include <gtsam_unstable/discrete/Constraint.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam_unstable/discrete/Constraint.h>
namespace gtsam {
/**
* SingleValue constraint
/**
* SingleValue constraint
*/
class GTSAM_UNSTABLE_EXPORT SingleValue : public Constraint {
/// Number of values
size_t cardinality_;
/// allowed value
size_t value_;
DiscreteKey discreteKey() const {
return DiscreteKey(keys_[0], cardinality_);
}
public:
typedef boost::shared_ptr<SingleValue> shared_ptr;
/// Constructor
SingleValue(Key key, size_t n, size_t value)
: Constraint(key), cardinality_(n), value_(value) {}
/// Constructor
SingleValue(const DiscreteKey& dkey, size_t value)
: Constraint(dkey.first), cardinality_(dkey.second), value_(value) {}
// print
void print(const std::string& s = "", const KeyFormatter& formatter =
DefaultKeyFormatter) const override;
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if (!dynamic_cast<const SingleValue*>(&other))
return false;
else {
const SingleValue& f(static_cast<const SingleValue&>(other));
return (cardinality_ == f.cardinality_) && (value_ == f.value_);
}
}
/// Calculate value
double operator()(const Values& values) const override;
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
class GTSAM_UNSTABLE_EXPORT SingleValue: public Constraint {
bool ensureArcConsistency(size_t j,
std::vector<Domain>& domains) const override;
/// Number of values
size_t cardinality_;
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values& values) const override;
/// allowed value
size_t value_;
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>& domains) const override;
};
DiscreteKey discreteKey() const {
return DiscreteKey(keys_[0],cardinality_);
}
public:
typedef boost::shared_ptr<SingleValue> shared_ptr;
/// Constructor
SingleValue(Key key, size_t n, size_t value) :
Constraint(key), cardinality_(n), value_(value) {
}
/// Constructor
SingleValue(const DiscreteKey& dkey, size_t value) :
Constraint(dkey.first), cardinality_(dkey.second), value_(value) {
}
// print
void print(const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// equals
bool equals(const DiscreteFactor& other, double tol) const override {
if(!dynamic_cast<const SingleValue*>(&other))
return false;
else {
const SingleValue& f(static_cast<const SingleValue&>(other));
return (cardinality_==f.cardinality_) && (value_==f.value_);
}
}
/// Calculate value
double operator()(const Values& values) const override;
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Multiply into a decisiontree
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
/*
* Ensure Arc-consistency
* @param j domain to be checked
* @param domains all other domains
*/
bool ensureArcConsistency(size_t j, std::vector<Domain>& domains) const override;
/// Partially apply known values
Constraint::shared_ptr partiallyApply(const Values& values) const override;
/// Partially apply known values, domain version
Constraint::shared_ptr partiallyApply(
const std::vector<Domain>& domains) const override;
};
} // namespace gtsam
} // namespace gtsam

View File

@ -7,49 +7,50 @@
#include <gtsam_unstable/discrete/CSP.h>
#include <gtsam_unstable/discrete/Domain.h>
#include <boost/assign/std/map.hpp>
using boost::assign::insert;
#include <CppUnitLite/TestHarness.h>
#include <iostream>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST_UNSAFE( BinaryAllDif, allInOne)
{
TEST_UNSAFE(BinaryAllDif, allInOne) {
// Create keys and ordering
size_t nrColors = 2;
// DiscreteKey ID("Idaho", nrColors), UT("Utah", nrColors), AZ("Arizona", nrColors);
// DiscreteKey ID("Idaho", nrColors), UT("Utah", nrColors), AZ("Arizona",
// nrColors);
DiscreteKey ID(0, nrColors), UT(2, nrColors), AZ(1, nrColors);
// Check construction and conversion
BinaryAllDiff c1(ID, UT);
DecisionTreeFactor f1(ID & UT, "0 1 1 0");
EXPECT(assert_equal(f1,c1.toDecisionTreeFactor()));
EXPECT(assert_equal(f1, c1.toDecisionTreeFactor()));
// Check construction and conversion
BinaryAllDiff c2(UT, AZ);
DecisionTreeFactor f2(UT & AZ, "0 1 1 0");
EXPECT(assert_equal(f2,c2.toDecisionTreeFactor()));
EXPECT(assert_equal(f2, c2.toDecisionTreeFactor()));
DecisionTreeFactor f3 = f1*f2;
EXPECT(assert_equal(f3,c1*f2));
EXPECT(assert_equal(f3,c2*f1));
DecisionTreeFactor f3 = f1 * f2;
EXPECT(assert_equal(f3, c1 * f2));
EXPECT(assert_equal(f3, c2 * f1));
}
/* ************************************************************************* */
TEST_UNSAFE( CSP, allInOne)
{
TEST_UNSAFE(CSP, allInOne) {
// Create keys and ordering
size_t nrColors = 2;
DiscreteKey ID(0, nrColors), UT(2, nrColors), AZ(1, nrColors);
// Create the CSP
CSP csp;
csp.addAllDiff(ID,UT);
csp.addAllDiff(UT,AZ);
csp.addAllDiff(ID, UT);
csp.addAllDiff(UT, AZ);
// Check an invalid combination, with ID==UT==AZ all same color
DiscreteFactor::Values invalid;
@ -69,67 +70,67 @@ TEST_UNSAFE( CSP, allInOne)
DecisionTreeFactor product = csp.product();
// product.dot("product");
DecisionTreeFactor expectedProduct(ID & AZ & UT, "0 1 0 0 0 0 1 0");
EXPECT(assert_equal(expectedProduct,product));
EXPECT(assert_equal(expectedProduct, product));
// Solve
CSP::sharedValues mpe = csp.optimalAssignment();
CSP::Values expected;
insert(expected)(ID.first, 1)(UT.first, 0)(AZ.first, 1);
EXPECT(assert_equal(expected,*mpe));
EXPECT(assert_equal(expected, *mpe));
EXPECT_DOUBLES_EQUAL(1, csp(*mpe), 1e-9);
}
/* ************************************************************************* */
TEST_UNSAFE( CSP, WesternUS)
{
TEST_UNSAFE(CSP, WesternUS) {
// Create keys
size_t nrColors = 4;
DiscreteKey
// Create ordering according to example in ND-CSP.lyx
WA(0, nrColors), OR(3, nrColors), CA(1, nrColors),NV(2, nrColors),
ID(8, nrColors), UT(9, nrColors), AZ(10, nrColors),
MT(4, nrColors), WY(5, nrColors), CO(7, nrColors), NM(6, nrColors);
// Create ordering according to example in ND-CSP.lyx
WA(0, nrColors),
OR(3, nrColors), CA(1, nrColors), NV(2, nrColors), ID(8, nrColors),
UT(9, nrColors), AZ(10, nrColors), MT(4, nrColors), WY(5, nrColors),
CO(7, nrColors), NM(6, nrColors);
// Create the CSP
CSP csp;
csp.addAllDiff(WA,ID);
csp.addAllDiff(WA,OR);
csp.addAllDiff(OR,ID);
csp.addAllDiff(OR,CA);
csp.addAllDiff(OR,NV);
csp.addAllDiff(CA,NV);
csp.addAllDiff(CA,AZ);
csp.addAllDiff(ID,MT);
csp.addAllDiff(ID,WY);
csp.addAllDiff(ID,UT);
csp.addAllDiff(ID,NV);
csp.addAllDiff(NV,UT);
csp.addAllDiff(NV,AZ);
csp.addAllDiff(UT,WY);
csp.addAllDiff(UT,CO);
csp.addAllDiff(UT,NM);
csp.addAllDiff(UT,AZ);
csp.addAllDiff(AZ,CO);
csp.addAllDiff(AZ,NM);
csp.addAllDiff(MT,WY);
csp.addAllDiff(WY,CO);
csp.addAllDiff(CO,NM);
csp.addAllDiff(WA, ID);
csp.addAllDiff(WA, OR);
csp.addAllDiff(OR, ID);
csp.addAllDiff(OR, CA);
csp.addAllDiff(OR, NV);
csp.addAllDiff(CA, NV);
csp.addAllDiff(CA, AZ);
csp.addAllDiff(ID, MT);
csp.addAllDiff(ID, WY);
csp.addAllDiff(ID, UT);
csp.addAllDiff(ID, NV);
csp.addAllDiff(NV, UT);
csp.addAllDiff(NV, AZ);
csp.addAllDiff(UT, WY);
csp.addAllDiff(UT, CO);
csp.addAllDiff(UT, NM);
csp.addAllDiff(UT, AZ);
csp.addAllDiff(AZ, CO);
csp.addAllDiff(AZ, NM);
csp.addAllDiff(MT, WY);
csp.addAllDiff(WY, CO);
csp.addAllDiff(CO, NM);
// Solve
Ordering ordering;
ordering += Key(0),Key(1),Key(2),Key(3),Key(4),Key(5),Key(6),Key(7),Key(8),Key(9),Key(10);
ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7),
Key(8), Key(9), Key(10);
CSP::sharedValues mpe = csp.optimalAssignment(ordering);
// GTSAM_PRINT(*mpe);
CSP::Values expected;
insert(expected)
(WA.first,1)(CA.first,1)(NV.first,3)(OR.first,0)
(MT.first,1)(WY.first,0)(NM.first,3)(CO.first,2)
(ID.first,2)(UT.first,1)(AZ.first,0);
insert(expected)(WA.first, 1)(CA.first, 1)(NV.first, 3)(OR.first, 0)(
MT.first, 1)(WY.first, 0)(NM.first, 3)(CO.first, 2)(ID.first, 2)(
UT.first, 1)(AZ.first, 0);
// TODO: Fix me! mpe result seems to be right. (See the printing)
// It has the same prob as the expected solution.
// Is mpe another solution, or the expected solution is unique???
EXPECT(assert_equal(expected,*mpe));
EXPECT(assert_equal(expected, *mpe));
EXPECT_DOUBLES_EQUAL(1, csp(*mpe), 1e-9);
// Write out the dual graph for hmetis
@ -142,8 +143,7 @@ TEST_UNSAFE( CSP, WesternUS)
}
/* ************************************************************************* */
TEST_UNSAFE( CSP, AllDiff)
{
TEST_UNSAFE(CSP, AllDiff) {
// Create keys and ordering
size_t nrColors = 3;
DiscreteKey ID(0, nrColors), UT(2, nrColors), AZ(1, nrColors);
@ -151,24 +151,25 @@ TEST_UNSAFE( CSP, AllDiff)
// Create the CSP
CSP csp;
vector<DiscreteKey> dkeys;
dkeys += ID,UT,AZ;
dkeys += ID, UT, AZ;
csp.addAllDiff(dkeys);
csp.addSingleValue(AZ,2);
// GTSAM_PRINT(csp);
csp.addSingleValue(AZ, 2);
// GTSAM_PRINT(csp);
// Check construction and conversion
SingleValue s(AZ,2);
DecisionTreeFactor f1(AZ,"0 0 1");
EXPECT(assert_equal(f1,s.toDecisionTreeFactor()));
SingleValue s(AZ, 2);
DecisionTreeFactor f1(AZ, "0 0 1");
EXPECT(assert_equal(f1, s.toDecisionTreeFactor()));
// Check construction and conversion
AllDiff alldiff(dkeys);
DecisionTreeFactor actual = alldiff.toDecisionTreeFactor();
// GTSAM_PRINT(actual);
// actual.dot("actual");
DecisionTreeFactor f2(ID & AZ & UT,
// GTSAM_PRINT(actual);
// actual.dot("actual");
DecisionTreeFactor f2(
ID & AZ & UT,
"0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0");
EXPECT(assert_equal(f2,actual));
EXPECT(assert_equal(f2, actual));
// Check an invalid combination, with ID==UT==AZ all same color
DiscreteFactor::Values invalid;
@ -188,36 +189,36 @@ TEST_UNSAFE( CSP, AllDiff)
CSP::sharedValues mpe = csp.optimalAssignment();
CSP::Values expected;
insert(expected)(ID.first, 1)(UT.first, 0)(AZ.first, 2);
EXPECT(assert_equal(expected,*mpe));
EXPECT(assert_equal(expected, *mpe));
EXPECT_DOUBLES_EQUAL(1, csp(*mpe), 1e-9);
// Arc-consistency
vector<Domain> domains;
domains += Domain(ID), Domain(AZ), Domain(UT);
SingleValue singleValue(AZ,2);
EXPECT(singleValue.ensureArcConsistency(1,domains));
EXPECT(alldiff.ensureArcConsistency(0,domains));
EXPECT(!alldiff.ensureArcConsistency(1,domains));
EXPECT(alldiff.ensureArcConsistency(2,domains));
LONGS_EQUAL(2,domains[0].nrValues());
LONGS_EQUAL(1,domains[1].nrValues());
LONGS_EQUAL(2,domains[2].nrValues());
SingleValue singleValue(AZ, 2);
EXPECT(singleValue.ensureArcConsistency(1, domains));
EXPECT(alldiff.ensureArcConsistency(0, domains));
EXPECT(!alldiff.ensureArcConsistency(1, domains));
EXPECT(alldiff.ensureArcConsistency(2, domains));
LONGS_EQUAL(2, domains[0].nrValues());
LONGS_EQUAL(1, domains[1].nrValues());
LONGS_EQUAL(2, domains[2].nrValues());
// Parial application, version 1
DiscreteFactor::Values known;
known[AZ.first] = 2;
DiscreteFactor::shared_ptr reduced1 = alldiff.partiallyApply(known);
DecisionTreeFactor f3(ID & UT, "0 1 1 1 0 1 1 1 0");
EXPECT(assert_equal(f3,reduced1->toDecisionTreeFactor()));
EXPECT(assert_equal(f3, reduced1->toDecisionTreeFactor()));
DiscreteFactor::shared_ptr reduced2 = singleValue.partiallyApply(known);
DecisionTreeFactor f4(AZ, "0 0 1");
EXPECT(assert_equal(f4,reduced2->toDecisionTreeFactor()));
EXPECT(assert_equal(f4, reduced2->toDecisionTreeFactor()));
// Parial application, version 2
DiscreteFactor::shared_ptr reduced3 = alldiff.partiallyApply(domains);
EXPECT(assert_equal(f3,reduced3->toDecisionTreeFactor()));
EXPECT(assert_equal(f3, reduced3->toDecisionTreeFactor()));
DiscreteFactor::shared_ptr reduced4 = singleValue.partiallyApply(domains);
EXPECT(assert_equal(f4,reduced4->toDecisionTreeFactor()));
EXPECT(assert_equal(f4, reduced4->toDecisionTreeFactor()));
// full arc-consistency test
csp.runArcConsistency(nrColors);
@ -229,4 +230,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -5,14 +5,15 @@
* @date Oct 11, 2013
*/
#include <gtsam/inference/VariableIndex.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/range/adaptor/map.hpp>
#include <gtsam/inference/VariableIndex.h>
#include <boost/assign/list_of.hpp>
#include <iostream>
#include <boost/range/adaptor/map.hpp>
#include <fstream>
#include <iostream>
using namespace std;
using namespace boost;
@ -23,11 +24,12 @@ using namespace gtsam;
* Loopy belief solver for graphs with only binary and unary factors
*/
class LoopyBelief {
/** Star graph struct for each node, containing
* - the star graph itself
* - the product of original unary factors so we don't have to recompute it later, and
* - the factor indices of the corrected belief factors of the neighboring nodes
* - the product of original unary factors so we don't have to recompute it
* later, and
* - the factor indices of the corrected belief factors of the neighboring
* nodes
*/
typedef std::map<Key, size_t> CorrectedBeliefIndices;
struct StarGraph {
@ -36,41 +38,41 @@ class LoopyBelief {
DecisionTreeFactor::shared_ptr unary;
VariableIndex varIndex_;
StarGraph(const DiscreteFactorGraph::shared_ptr& _star,
const CorrectedBeliefIndices& _beliefIndices,
const DecisionTreeFactor::shared_ptr& _unary) :
star(_star), correctedBeliefIndices(_beliefIndices), unary(_unary), varIndex_(
*_star) {
}
const CorrectedBeliefIndices& _beliefIndices,
const DecisionTreeFactor::shared_ptr& _unary)
: star(_star),
correctedBeliefIndices(_beliefIndices),
unary(_unary),
varIndex_(*_star) {}
void print(const std::string& s = "") const {
cout << s << ":" << endl;
star->print("Star graph: ");
for(Key key: correctedBeliefIndices | boost::adaptors::map_keys) {
for (Key key : correctedBeliefIndices | boost::adaptors::map_keys) {
cout << "Belief factor index for " << key << ": "
<< correctedBeliefIndices.at(key) << endl;
<< correctedBeliefIndices.at(key) << endl;
}
if (unary)
unary->print("Unary: ");
if (unary) unary->print("Unary: ");
}
};
typedef std::map<Key, StarGraph> StarGraphs;
StarGraphs starGraphs_; ///< star graph at each variable
StarGraphs starGraphs_; ///< star graph at each variable
public:
public:
/** Constructor
* Need all discrete keys to access node's cardinality for creating belief factors
* Need all discrete keys to access node's cardinality for creating belief
* factors
* TODO: so troublesome!!
*/
LoopyBelief(const DiscreteFactorGraph& graph,
const std::map<Key, DiscreteKey>& allDiscreteKeys) :
starGraphs_(buildStarGraphs(graph, allDiscreteKeys)) {
}
const std::map<Key, DiscreteKey>& allDiscreteKeys)
: starGraphs_(buildStarGraphs(graph, allDiscreteKeys)) {}
/// print
void print(const std::string& s = "") const {
cout << s << ":" << endl;
for(Key key: starGraphs_ | boost::adaptors::map_keys) {
for (Key key : starGraphs_ | boost::adaptors::map_keys) {
starGraphs_.at(key).print((boost::format("Node %d:") % key).str());
}
}
@ -79,12 +81,13 @@ public:
DiscreteFactorGraph::shared_ptr iterate(
const std::map<Key, DiscreteKey>& allDiscreteKeys) {
static const bool debug = false;
static DiscreteConditional::shared_ptr dummyCond; // unused by-product of elimination
static DiscreteConditional::shared_ptr
dummyCond; // unused by-product of elimination
DiscreteFactorGraph::shared_ptr beliefs(new DiscreteFactorGraph());
std::map<Key, std::map<Key, DiscreteFactor::shared_ptr> > allMessages;
// Eliminate each star graph
for(Key key: starGraphs_ | boost::adaptors::map_keys) {
// cout << "***** Node " << key << "*****" << endl;
for (Key key : starGraphs_ | boost::adaptors::map_keys) {
// cout << "***** Node " << key << "*****" << endl;
// initialize belief to the unary factor from the original graph
DecisionTreeFactor::shared_ptr beliefAtKey;
@ -92,15 +95,16 @@ public:
std::map<Key, DiscreteFactor::shared_ptr> messages;
// eliminate each neighbor in this star graph one by one
for(Key neighbor: starGraphs_.at(key).correctedBeliefIndices | boost::adaptors::map_keys) {
for (Key neighbor : starGraphs_.at(key).correctedBeliefIndices |
boost::adaptors::map_keys) {
DiscreteFactorGraph subGraph;
for(size_t factor: starGraphs_.at(key).varIndex_[neighbor]) {
for (size_t factor : starGraphs_.at(key).varIndex_[neighbor]) {
subGraph.push_back(starGraphs_.at(key).star->at(factor));
}
if (debug) subGraph.print("------- Subgraph:");
DiscreteFactor::shared_ptr message;
boost::tie(dummyCond, message) = EliminateDiscrete(subGraph,
Ordering(list_of(neighbor)));
boost::tie(dummyCond, message) =
EliminateDiscrete(subGraph, Ordering(list_of(neighbor)));
// store the new factor into messages
messages.insert(make_pair(neighbor, message));
if (debug) message->print("------- Message: ");
@ -108,14 +112,12 @@ public:
// Belief is the product of all messages and the unary factor
// Incorporate new the factor to belief
if (!beliefAtKey)
beliefAtKey = boost::dynamic_pointer_cast<DecisionTreeFactor>(
message);
else
beliefAtKey =
boost::make_shared<DecisionTreeFactor>(
(*beliefAtKey)
* (*boost::dynamic_pointer_cast<DecisionTreeFactor>(
message)));
boost::dynamic_pointer_cast<DecisionTreeFactor>(message);
else
beliefAtKey = boost::make_shared<DecisionTreeFactor>(
(*beliefAtKey) *
(*boost::dynamic_pointer_cast<DecisionTreeFactor>(message)));
}
if (starGraphs_.at(key).unary)
beliefAtKey = boost::make_shared<DecisionTreeFactor>(
@ -133,7 +135,8 @@ public:
sumFactorTable = (boost::format("%s %f") % sumFactorTable % sum).str();
DecisionTreeFactor sumFactor(allDiscreteKeys.at(key), sumFactorTable);
if (debug) sumFactor.print("denomFactor: ");
beliefAtKey = boost::make_shared<DecisionTreeFactor>((*beliefAtKey) / sumFactor);
beliefAtKey =
boost::make_shared<DecisionTreeFactor>((*beliefAtKey) / sumFactor);
if (debug) beliefAtKey->print("New belief at key normalized: ");
beliefs->push_back(beliefAtKey);
allMessages[key] = messages;
@ -141,17 +144,20 @@ public:
// Update corrected beliefs
VariableIndex beliefFactors(*beliefs);
for(Key key: starGraphs_ | boost::adaptors::map_keys) {
for (Key key : starGraphs_ | boost::adaptors::map_keys) {
std::map<Key, DiscreteFactor::shared_ptr> messages = allMessages[key];
for(Key neighbor: starGraphs_.at(key).correctedBeliefIndices | boost::adaptors::map_keys) {
DecisionTreeFactor correctedBelief = (*boost::dynamic_pointer_cast<
DecisionTreeFactor>(beliefs->at(beliefFactors[key].front())))
/ (*boost::dynamic_pointer_cast<DecisionTreeFactor>(
for (Key neighbor : starGraphs_.at(key).correctedBeliefIndices |
boost::adaptors::map_keys) {
DecisionTreeFactor correctedBelief =
(*boost::dynamic_pointer_cast<DecisionTreeFactor>(
beliefs->at(beliefFactors[key].front()))) /
(*boost::dynamic_pointer_cast<DecisionTreeFactor>(
messages.at(neighbor)));
if (debug) correctedBelief.print("correctedBelief: ");
size_t beliefIndex = starGraphs_.at(neighbor).correctedBeliefIndices.at(
key);
starGraphs_.at(neighbor).star->replace(beliefIndex,
size_t beliefIndex =
starGraphs_.at(neighbor).correctedBeliefIndices.at(key);
starGraphs_.at(neighbor).star->replace(
beliefIndex,
boost::make_shared<DecisionTreeFactor>(correctedBelief));
}
}
@ -161,21 +167,22 @@ public:
return beliefs;
}
private:
private:
/**
* Build star graphs for each node.
*/
StarGraphs buildStarGraphs(const DiscreteFactorGraph& graph,
StarGraphs buildStarGraphs(
const DiscreteFactorGraph& graph,
const std::map<Key, DiscreteKey>& allDiscreteKeys) const {
StarGraphs starGraphs;
VariableIndex varIndex(graph); ///< access to all factors of each node
for(Key key: varIndex | boost::adaptors::map_keys) {
VariableIndex varIndex(graph); ///< access to all factors of each node
for (Key key : varIndex | boost::adaptors::map_keys) {
// initialize to multiply with other unary factors later
DecisionTreeFactor::shared_ptr prodOfUnaries;
// collect all factors involving this key in the original graph
DiscreteFactorGraph::shared_ptr star(new DiscreteFactorGraph());
for(size_t factorIndex: varIndex[key]) {
for (size_t factorIndex : varIndex[key]) {
star->push_back(graph.at(factorIndex));
// accumulate unary factors
@ -185,9 +192,9 @@ private:
graph.at(factorIndex));
else
prodOfUnaries = boost::make_shared<DecisionTreeFactor>(
*prodOfUnaries
* (*boost::dynamic_pointer_cast<DecisionTreeFactor>(
graph.at(factorIndex))));
*prodOfUnaries *
(*boost::dynamic_pointer_cast<DecisionTreeFactor>(
graph.at(factorIndex))));
}
}
@ -196,7 +203,7 @@ private:
KeySet neighbors = star->keys();
neighbors.erase(key);
CorrectedBeliefIndices correctedBeliefIndices;
for(Key neighbor: neighbors) {
for (Key neighbor : neighbors) {
// TODO: default table for keys with more than 2 values?
string initialBelief;
for (size_t v = 0; v < allDiscreteKeys.at(neighbor).second - 1; ++v) {
@ -207,9 +214,8 @@ private:
DecisionTreeFactor(allDiscreteKeys.at(neighbor), initialBelief));
correctedBeliefIndices.insert(make_pair(neighbor, star->size() - 1));
}
starGraphs.insert(
make_pair(key,
StarGraph(star, correctedBeliefIndices, prodOfUnaries)));
starGraphs.insert(make_pair(
key, StarGraph(star, correctedBeliefIndices, prodOfUnaries)));
}
return starGraphs;
}
@ -249,7 +255,6 @@ TEST_UNSAFE(LoopyBelief, construction) {
DiscreteFactorGraph::shared_ptr beliefs = solver.iterate(allKeys);
beliefs->print();
}
}
/* ************************************************************************* */

View File

@ -5,14 +5,13 @@
*/
//#define ENABLE_TIMING
#include <gtsam_unstable/discrete/Scheduler.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/timing.h>
#include <gtsam_unstable/discrete/Scheduler.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/vector.hpp>
#include <boost/assign/std/map.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/optional.hpp>
using namespace boost::assign;
@ -22,7 +21,6 @@ using namespace gtsam;
/* ************************************************************************* */
// Create the expected graph of constraints
DiscreteFactorGraph createExpected() {
// Start building
size_t nrFaculty = 4, nrTimeSlots = 3;
@ -47,27 +45,27 @@ DiscreteFactorGraph createExpected() {
string available = "1 1 1 0 1 1 1 1 0 1 1 1";
// Akansel
expected.add(A1, faculty_in_A); // Area 1
expected.add(A1, "1 1 1 0"); // Advisor
expected.add(A1, faculty_in_A); // Area 1
expected.add(A1, "1 1 1 0"); // Advisor
expected.add(A & A1, available);
expected.add(A2, faculty_in_M); // Area 2
expected.add(A2, "1 1 1 0"); // Advisor
expected.add(A2, faculty_in_M); // Area 2
expected.add(A2, "1 1 1 0"); // Advisor
expected.add(A & A2, available);
expected.add(A3, faculty_in_P); // Area 3
expected.add(A3, "1 1 1 0"); // Advisor
expected.add(A3, faculty_in_P); // Area 3
expected.add(A3, "1 1 1 0"); // Advisor
expected.add(A & A3, available);
// Mutual exclusion for faculty
expected.addAllDiff(A1 & A2 & A3);
// Jake
expected.add(J1, faculty_in_H); // Area 1
expected.add(J1, "1 0 1 1"); // Advisor
expected.add(J1, faculty_in_H); // Area 1
expected.add(J1, "1 0 1 1"); // Advisor
expected.add(J & J1, available);
expected.add(J2, faculty_in_C); // Area 2
expected.add(J2, "1 0 1 1"); // Advisor
expected.add(J2, faculty_in_C); // Area 2
expected.add(J2, "1 0 1 1"); // Advisor
expected.add(J & J2, available);
expected.add(J3, faculty_in_A); // Area 3
expected.add(J3, "1 0 1 1"); // Advisor
expected.add(J3, faculty_in_A); // Area 3
expected.add(J3, "1 0 1 1"); // Advisor
expected.add(J & J3, available);
// Mutual exclusion for faculty
expected.addAllDiff(J1 & J2 & J3);
@ -79,8 +77,7 @@ DiscreteFactorGraph createExpected() {
}
/* ************************************************************************* */
TEST( schedulingExample, test)
{
TEST(schedulingExample, test) {
Scheduler s(2);
// add faculty
@ -121,7 +118,7 @@ TEST( schedulingExample, test)
// Do brute force product and output that to file
DecisionTreeFactor product = s.product();
//product.dot("scheduling", false);
// product.dot("scheduling", false);
// Do exact inference
gttic(small);
@ -129,25 +126,24 @@ TEST( schedulingExample, test)
gttoc(small);
// print MPE, commented out as unit tests don't print
// s.printAssignment(MPE);
// s.printAssignment(MPE);
// Commented out as does not work yet
// s.runArcConsistency(8,10,true);
// find the assignment of students to slots with most possible committees
// Commented out as not implemented yet
// sharedValues bestSchedule = s.bestSchedule();
// GTSAM_PRINT(*bestSchedule);
// sharedValues bestSchedule = s.bestSchedule();
// GTSAM_PRINT(*bestSchedule);
// find the corresponding most desirable committee assignment
// Commented out as not implemented yet
// sharedValues bestAssignment = s.bestAssignment(bestSchedule);
// GTSAM_PRINT(*bestAssignment);
// sharedValues bestAssignment = s.bestAssignment(bestSchedule);
// GTSAM_PRINT(*bestAssignment);
}
/* ************************************************************************* */
TEST( schedulingExample, smallFromFile)
{
TEST(schedulingExample, smallFromFile) {
string path(TOPSRCDIR "/gtsam_unstable/discrete/examples/");
Scheduler s(2, path + "small.csv");
@ -179,4 +175,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -5,21 +5,22 @@
* @author Frank Dellaert
*/
#include <gtsam_unstable/discrete/CSP.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam_unstable/discrete/CSP.h>
#include <boost/assign/std/map.hpp>
using boost::assign::insert;
#include <stdarg.h>
#include <iostream>
#include <sstream>
#include <stdarg.h>
using namespace std;
using namespace gtsam;
#define PRINT false
class Sudoku: public CSP {
class Sudoku : public CSP {
/// sudoku size
size_t n_;
@ -27,25 +28,21 @@ class Sudoku: public CSP {
typedef std::pair<size_t, size_t> IJ;
std::map<IJ, DiscreteKey> dkeys_;
public:
public:
/// return DiscreteKey for cell(i,j)
const DiscreteKey& dkey(size_t i, size_t j) const {
return dkeys_.at(IJ(i, j));
}
/// return Key for cell(i,j)
Key key(size_t i, size_t j) const {
return dkey(i, j).first;
}
Key key(size_t i, size_t j) const { return dkey(i, j).first; }
/// Constructor
Sudoku(size_t n, ...) :
n_(n) {
Sudoku(size_t n, ...) : n_(n) {
// Create variables, ordering, and unary constraints
va_list ap;
va_start(ap, n);
Key k=0;
Key k = 0;
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j, ++k) {
// create the key
@ -56,23 +53,21 @@ public:
// cout << value << " ";
if (value != 0) addSingleValue(dkeys_[ij], value - 1);
}
//cout << endl;
// cout << endl;
}
va_end(ap);
// add row constraints
for (size_t i = 0; i < n; i++) {
DiscreteKeys dkeys;
for (size_t j = 0; j < n; j++)
dkeys += dkey(i, j);
for (size_t j = 0; j < n; j++) dkeys += dkey(i, j);
addAllDiff(dkeys);
}
// add col constraints
for (size_t j = 0; j < n; j++) {
DiscreteKeys dkeys;
for (size_t i = 0; i < n; i++)
dkeys += dkey(i, j);
for (size_t i = 0; i < n; i++) dkeys += dkey(i, j);
addAllDiff(dkeys);
}
@ -84,8 +79,7 @@ public:
// Box I,J
DiscreteKeys dkeys;
for (size_t i = i0; i < i0 + N; i++)
for (size_t j = j0; j < j0 + N; j++)
dkeys += dkey(i, j);
for (size_t j = j0; j < j0 + N; j++) dkeys += dkey(i, j);
addAllDiff(dkeys);
j0 += N;
}
@ -109,74 +103,66 @@ public:
DiscreteFactor::sharedValues MPE = optimalAssignment();
printAssignment(MPE);
}
};
/* ************************************************************************* */
TEST_UNSAFE( Sudoku, small)
{
Sudoku csp(4,
1,0, 0,4,
0,0, 0,0,
4,0, 2,0,
0,1, 0,0);
TEST_UNSAFE(Sudoku, small) {
Sudoku csp(4, //
1, 0, 0, 4, //
0, 0, 0, 0, //
4, 0, 2, 0, //
0, 1, 0, 0);
// Do BP
csp.runArcConsistency(4,10,PRINT);
csp.runArcConsistency(4, 10, PRINT);
// optimize and check
CSP::sharedValues solution = csp.optimalAssignment();
CSP::Values expected;
insert(expected)
(csp.key(0,0), 0)(csp.key(0,1), 1)(csp.key(0,2), 2)(csp.key(0,3), 3)
(csp.key(1,0), 2)(csp.key(1,1), 3)(csp.key(1,2), 0)(csp.key(1,3), 1)
(csp.key(2,0), 3)(csp.key(2,1), 2)(csp.key(2,2), 1)(csp.key(2,3), 0)
(csp.key(3,0), 1)(csp.key(3,1), 0)(csp.key(3,2), 3)(csp.key(3,3), 2);
EXPECT(assert_equal(expected,*solution));
//csp.printAssignment(solution);
insert(expected)(csp.key(0, 0), 0)(csp.key(0, 1), 1)(csp.key(0, 2), 2)(
csp.key(0, 3), 3)(csp.key(1, 0), 2)(csp.key(1, 1), 3)(csp.key(1, 2), 0)(
csp.key(1, 3), 1)(csp.key(2, 0), 3)(csp.key(2, 1), 2)(csp.key(2, 2), 1)(
csp.key(2, 3), 0)(csp.key(3, 0), 1)(csp.key(3, 1), 0)(csp.key(3, 2), 3)(
csp.key(3, 3), 2);
EXPECT(assert_equal(expected, *solution));
// csp.printAssignment(solution);
}
/* ************************************************************************* */
TEST_UNSAFE( Sudoku, easy)
{
Sudoku sudoku(9,
0,0,5, 0,9,0, 0,0,1,
0,0,0, 0,0,2, 0,7,3,
7,6,0, 0,0,8, 2,0,0,
TEST_UNSAFE(Sudoku, easy) {
Sudoku sudoku(9, //
0, 0, 5, 0, 9, 0, 0, 0, 1, //
0, 0, 0, 0, 0, 2, 0, 7, 3, //
7, 6, 0, 0, 0, 8, 2, 0, 0, //
0,1,2, 0,0,9, 0,0,4,
0,0,0, 2,0,3, 0,0,0,
3,0,0, 1,0,0, 9,6,0,
0, 1, 2, 0, 0, 9, 0, 0, 4, //
0, 0, 0, 2, 0, 3, 0, 0, 0, //
3, 0, 0, 1, 0, 0, 9, 6, 0, //
0,0,1, 9,0,0, 0,5,8,
9,7,0, 5,0,0, 0,0,0,
5,0,0, 0,3,0, 7,0,0);
0, 0, 1, 9, 0, 0, 0, 5, 8, //
9, 7, 0, 5, 0, 0, 0, 0, 0, //
5, 0, 0, 0, 3, 0, 7, 0, 0);
// Do BP
sudoku.runArcConsistency(4,10,PRINT);
sudoku.runArcConsistency(4, 10, PRINT);
// sudoku.printSolution(); // don't do it
}
/* ************************************************************************* */
TEST_UNSAFE( Sudoku, extreme)
{
Sudoku sudoku(9,
0,0,9, 7,4,8, 0,0,0,
7,0,0, 0,0,0, 0,0,0,
0,2,0, 1,0,9, 0,0,0,
0,0,7, 0,0,0, 2,4,0,
0,6,4, 0,1,0, 5,9,0,
0,9,8, 0,0,0, 3,0,0,
0,0,0, 8,0,3, 0,2,0,
0,0,0, 0,0,0, 0,0,6,
0,0,0, 2,7,5, 9,0,0);
TEST_UNSAFE(Sudoku, extreme) {
Sudoku sudoku(9, //
0, 0, 9, 7, 4, 8, 0, 0, 0, 7, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, //
0, 1, 0, 9, 0, 0, 0, 0, 0, 7, //
0, 0, 0, 2, 4, 0, 0, 6, 4, 0, //
1, 0, 5, 9, 0, 0, 9, 8, 0, 0, //
0, 3, 0, 0, 0, 0, 0, 8, 0, 3, //
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 6, 0, 0, 0, 2, 7, 5, 9, 0, 0);
// Do BP
sudoku.runArcConsistency(9,10,PRINT);
sudoku.runArcConsistency(9, 10, PRINT);
#ifdef METIS
VariableIndexOrdered index(sudoku);
@ -185,29 +171,28 @@ TEST_UNSAFE( Sudoku, extreme)
index.outputMetisFormat(os);
#endif
//sudoku.printSolution(); // don't do it
// sudoku.printSolution(); // don't do it
}
/* ************************************************************************* */
TEST_UNSAFE( Sudoku, AJC_3star_Feb8_2012)
{
Sudoku sudoku(9,
9,5,0, 0,0,6, 0,0,0,
0,8,4, 0,7,0, 0,0,0,
6,2,0, 5,0,0, 4,0,0,
TEST_UNSAFE(Sudoku, AJC_3star_Feb8_2012) {
Sudoku sudoku(9, //
9, 5, 0, 0, 0, 6, 0, 0, 0, //
0, 8, 4, 0, 7, 0, 0, 0, 0, //
6, 2, 0, 5, 0, 0, 4, 0, 0, //
0,0,0, 2,9,0, 6,0,0,
0,9,0, 0,0,0, 0,2,0,
0,0,2, 0,6,3, 0,0,0,
0, 0, 0, 2, 9, 0, 6, 0, 0, //
0, 9, 0, 0, 0, 0, 0, 2, 0, //
0, 0, 2, 0, 6, 3, 0, 0, 0, //
0,0,9, 0,0,7, 0,6,8,
0,0,0, 0,3,0, 2,9,0,
0,0,0, 1,0,0, 0,3,7);
0, 0, 9, 0, 0, 7, 0, 6, 8, //
0, 0, 0, 0, 3, 0, 2, 9, 0, //
0, 0, 0, 1, 0, 0, 0, 3, 7);
// Do BP
sudoku.runArcConsistency(9,10,PRINT);
sudoku.runArcConsistency(9, 10, PRINT);
//sudoku.printSolution(); // don't do it
// sudoku.printSolution(); // don't do it
}
/* ************************************************************************* */
@ -216,4 +201,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -226,7 +226,7 @@ pair<QP, QP> testParser(QPSParser parser) {
expected.inequalities.add(X1, -I_1x1, 0, 2); // x >= 0
expected.inequalities.add(X2, -I_1x1, 0, 3); // y > = 0
return {expected, exampleqp};
};
}
TEST(QPSolver, ParserSyntaticTest) {
auto result = testParser(QPSParser("QPExample.QPS"));

View File

@ -56,7 +56,8 @@ private:
bool flag_bump_up_near_zero_probs_;
/** concept check by type */
GTSAM_CONCEPT_LIE_TYPE(T)GTSAM_CONCEPT_TESTABLE_TYPE(T)
GTSAM_CONCEPT_LIE_TYPE(T)
GTSAM_CONCEPT_TESTABLE_TYPE(T)
public:

View File

@ -0,0 +1,40 @@
# SLAM Factors
## SmartFactors
These are "structure-less" factors, i.e., rather than introducing a new variable for an observed 3D point or landmark, a single factor is created that provides a multi-view constraint on several poses and/or cameras.
### SmartRangeFactor
An experiment in creating a structure-less 2D range-SLAM factor with range-only measurements.
It uses a sophisticated `triangulate` logic based on circle intersections.
### SmartStereoProjectionFactor
Version of `SmartProjectionFactor` for stereo observations, specializes SmartFactorBase for `CAMERA == StereoCamera`.
TODO: a lot of commented out code and could move a lot to .cpp file.
### SmartStereoProjectionPoseFactor
Derives from `SmartStereoProjectionFactor` but adds an array of `Cal3_S2Stereo` calibration objects .
TODO: Again, as no template arguments, we could move a lot to .cpp file.
### SmartStereoProjectionFactorPP
Similar `SmartStereoProjectionPoseFactor` but *additionally* adds an array of body_P_cam poses. The dimensions seem to be hardcoded and the types defined in the SmartFactorBase have been re-defined.
The body_P_cam poses are optimized here!
TODO: See above, same issues as `SmartStereoProjectionPoseFactor`.
### SmartProjectionPoseFactorRollingShutter
Is templated on a `CAMERA` type and derives from `SmartProjectionFactor`.
This factor optimizes two consecutive poses of a body assuming a rolling
shutter model of the camera with given readout time. The factor requires that
values contain (for each 2D observation) two consecutive camera poses from
which the 2D observation pose can be interpolated.
TODO: the dimensions seem to be hardcoded and the types defined in the SmartFactorBase have been re-defined. Also, possibly a lot of copy/paste computation of things that (should) happen in base class.

View File

@ -43,13 +43,12 @@ namespace gtsam {
template <class CAMERA>
class SmartProjectionPoseFactorRollingShutter
: public SmartProjectionFactor<CAMERA> {
public:
private:
typedef SmartProjectionFactor<CAMERA> Base;
typedef SmartProjectionPoseFactorRollingShutter<CAMERA> This;
typedef typename CAMERA::CalibrationType CALIBRATION;
protected:
/// shared pointer to calibration object (one for each observation)
std::vector<boost::shared_ptr<CALIBRATION>> K_all_;
/// The keys of the pose of the body (with respect to an external world
/// frame): two consecutive poses for each observation
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
@ -58,17 +57,19 @@ class SmartProjectionPoseFactorRollingShutter
/// pair of consecutive poses
std::vector<double> alphas_;
/// Pose of the camera in the body frame
std::vector<Pose3> body_P_sensors_;
/// one or more cameras taking observations (fixed poses wrt body + fixed
/// intrinsics)
boost::shared_ptr<typename Base::Cameras> cameraRig_;
/// vector of camera Ids (one for each observation, in the same order),
/// identifying which camera took the measurement
FastVector<size_t> cameraIds_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// shorthand for base class type
typedef SmartProjectionFactor<PinholePose<CALIBRATION>> Base;
/// shorthand for this class
typedef SmartProjectionPoseFactorRollingShutter This;
typedef CAMERA Camera;
typedef CameraSet<CAMERA> Cameras;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
@ -83,22 +84,37 @@ class SmartProjectionPoseFactorRollingShutter
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
FBlocks; // vector of F blocks
/// Default constructor, only for serialization
SmartProjectionPoseFactorRollingShutter() {}
/**
* Constructor
* @param Isotropic measurement noise
* @param cameraRig set of cameras (fixed poses wrt body and intrinsics)
* taking the measurements
* @param params internal parameters of the smart factors
*/
SmartProjectionPoseFactorRollingShutter(
const SharedNoiseModel& sharedNoiseModel,
const boost::shared_ptr<Cameras>& cameraRig,
const SmartProjectionParams& params = SmartProjectionParams())
: Base(sharedNoiseModel, params) {}
: Base(sharedNoiseModel, params), cameraRig_(cameraRig) {
// throw exception if configuration is not supported by this factor
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
throw std::runtime_error(
"SmartProjectionRigFactor: "
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
if (Base::params_.linearizationMode != gtsam::HESSIAN)
throw std::runtime_error(
"SmartProjectionRigFactor: "
"linearizationMode must be set to HESSIAN");
}
/** Virtual destructor */
~SmartProjectionPoseFactorRollingShutter() override = default;
/**
* add a new measurement, with 2 pose keys, interpolation factor, camera
* (intrinsic and extrinsic) calibration, and observed pixel.
* add a new measurement, with 2 pose keys, interpolation factor, and cameraId
* @param measured 2-dimensional location of the projection of a single
* landmark in a single view (the measurement), interpolated from the 2 poses
* @param world_P_body_key1 key corresponding to the first body poses (time <=
@ -107,13 +123,11 @@ class SmartProjectionPoseFactorRollingShutter
* >= time pixel is acquired)
* @param alpha interpolation factor in [0,1], such that if alpha = 0 the
* interpolated pose is the same as world_P_body_key1
* @param K (fixed) camera intrinsic calibration
* @param body_P_sensor (fixed) camera extrinsic calibration
* @param cameraId ID of the camera taking the measurement (default 0)
*/
void add(const Point2& measured, const Key& world_P_body_key1,
const Key& world_P_body_key2, const double& alpha,
const boost::shared_ptr<CALIBRATION>& K,
const Pose3& body_P_sensor = Pose3::identity()) {
const size_t& cameraId = 0) {
// store measurements in base class
this->measured_.push_back(measured);
@ -133,11 +147,8 @@ class SmartProjectionPoseFactorRollingShutter
// store interpolation factor
alphas_.push_back(alpha);
// store fixed intrinsic calibration
K_all_.push_back(K);
// store fixed extrinsics of the camera
body_P_sensors_.push_back(body_P_sensor);
// store id of the camera taking the measurement
cameraIds_.push_back(cameraId);
}
/**
@ -150,56 +161,36 @@ class SmartProjectionPoseFactorRollingShutter
* for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each
* measurement (in the same order)
* @param Ks vector of (fixed) intrinsic calibration objects
* @param body_P_sensors vector of (fixed) extrinsic calibration objects
* @param cameraIds IDs of the cameras taking each measurement (same order as
* the measurements)
*/
void add(const Point2Vector& measurements,
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& alphas,
const std::vector<boost::shared_ptr<CALIBRATION>>& Ks,
const std::vector<Pose3>& body_P_sensors) {
assert(world_P_body_key_pairs.size() == measurements.size());
assert(world_P_body_key_pairs.size() == alphas.size());
assert(world_P_body_key_pairs.size() == Ks.size());
const FastVector<size_t>& cameraIds = FastVector<size_t>()) {
if (world_P_body_key_pairs.size() != measurements.size() ||
world_P_body_key_pairs.size() != alphas.size() ||
(world_P_body_key_pairs.size() != cameraIds.size() &&
cameraIds.size() != 0)) { // cameraIds.size()=0 is default
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"trying to add inconsistent inputs");
}
if (cameraIds.size() == 0 && cameraRig_->size() > 1) {
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"camera rig includes multiple camera "
"but add did not input cameraIds");
}
for (size_t i = 0; i < measurements.size(); i++) {
add(measurements[i], world_P_body_key_pairs[i].first,
world_P_body_key_pairs[i].second, alphas[i], Ks[i],
body_P_sensors[i]);
world_P_body_key_pairs[i].second, alphas[i],
cameraIds.size() == 0 ? 0
: cameraIds[i]); // use 0 as default if
// cameraIds was not specified
}
}
/**
* Variant of the previous "add" function in which we include multiple
* measurements with the same (intrinsic and extrinsic) calibration
* @param measurements vector of the 2m dimensional location of the projection
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector where the i-th element contains a pair
* of keys corresponding to the pair of poses from which the observation pose
* for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each
* measurement (in the same order)
* @param K (fixed) camera intrinsic calibration (same for all measurements)
* @param body_P_sensor (fixed) camera extrinsic calibration (same for all
* measurements)
*/
void add(const Point2Vector& measurements,
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& alphas,
const boost::shared_ptr<CALIBRATION>& K,
const Pose3& body_P_sensor = Pose3::identity()) {
assert(world_P_body_key_pairs.size() == measurements.size());
assert(world_P_body_key_pairs.size() == alphas.size());
for (size_t i = 0; i < measurements.size(); i++) {
add(measurements[i], world_P_body_key_pairs[i].first,
world_P_body_key_pairs[i].second, alphas[i], K, body_P_sensor);
}
}
/// return the calibration object
const std::vector<boost::shared_ptr<CALIBRATION>>& calibration() const {
return K_all_;
}
/// return (for each observation) the keys of the pair of poses from which we
/// interpolate
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs() const {
@ -209,8 +200,11 @@ class SmartProjectionPoseFactorRollingShutter
/// return the interpolation factors alphas
const std::vector<double>& alphas() const { return alphas_; }
/// return the extrinsic camera calibration body_P_sensors
const std::vector<Pose3>& body_P_sensors() const { return body_P_sensors_; }
/// return the calibration object
const boost::shared_ptr<Cameras>& cameraRig() const { return cameraRig_; }
/// return the calibration object
const FastVector<size_t>& cameraIds() const { return cameraIds_; }
/**
* print
@ -221,15 +215,15 @@ class SmartProjectionPoseFactorRollingShutter
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
for (size_t i = 0; i < K_all_.size(); i++) {
for (size_t i = 0; i < cameraIds_.size(); i++) {
std::cout << "-- Measurement nr " << i << std::endl;
std::cout << " pose1 key: "
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
std::cout << " pose2 key: "
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
std::cout << " alpha: " << alphas_[i] << std::endl;
body_P_sensors_[i].print("extrinsic calibration:\n");
K_all_[i]->print("intrinsic calibration = ");
std::cout << "cameraId: " << cameraIds_[i] << std::endl;
(*cameraRig_)[cameraIds_[i]].print("camera in rig:\n");
}
Base::print("", keyFormatter);
}
@ -257,20 +251,48 @@ class SmartProjectionPoseFactorRollingShutter
keyPairsEqual = false;
}
double extrinsicCalibrationEqual = true;
if (this->body_P_sensors_.size() == e->body_P_sensors().size()) {
for (size_t i = 0; i < this->body_P_sensors_.size(); i++) {
if (!body_P_sensors_[i].equals(e->body_P_sensors()[i])) {
extrinsicCalibrationEqual = false;
break;
}
}
} else {
extrinsicCalibrationEqual = false;
}
return e && Base::equals(p, tol) && alphas_ == e->alphas() &&
keyPairsEqual && cameraRig_->equals(*(e->cameraRig())) &&
std::equal(cameraIds_.begin(), cameraIds_.end(),
e->cameraIds().begin());
}
return e && Base::equals(p, tol) && K_all_ == e->calibration() &&
alphas_ == e->alphas() && keyPairsEqual && extrinsicCalibrationEqual;
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Cameras
*/
typename Base::Cameras cameras(const Values& values) const override {
typename Base::Cameras cameras;
for (size_t i = 0; i < this->measured_.size();
i++) { // for each measurement
const Pose3& w_P_body1 =
values.at<Pose3>(world_P_body_key_pairs_[i].first);
const Pose3& w_P_body2 =
values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = alphas_[i];
const Pose3& w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
const Pose3& body_P_cam = camera_i.pose();
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
cameras.emplace_back(w_P_cam,
make_shared<typename CAMERA::CalibrationType>(
camera_i.calibration()));
}
return cameras;
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override {
if (this->active(values)) {
return this->totalReprojectionError(this->cameras(values));
} else { // else of active flag
return 0.0;
}
}
/**
@ -305,9 +327,10 @@ class SmartProjectionPoseFactorRollingShutter
auto w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor,
dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
auto body_P_cam = body_P_sensors_[i];
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
auto body_P_cam = camera_i.pose();
auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
PinholeCamera<CALIBRATION> camera(w_P_cam, *K_all_[i]);
PinholeCamera<CALIBRATION> camera(w_P_cam, camera_i.calibration());
// get jacobians and error vector for current measurement
Point2 reprojectionError_i =
@ -332,7 +355,7 @@ class SmartProjectionPoseFactorRollingShutter
/// linearize and return a Hessianfactor that is an approximation of error(p)
boost::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
const Values& values, const double lambda = 0.0,
const Values& values, const double& lambda = 0.0,
bool diagonalDamping = false) const {
// we may have multiple observation sharing the same keys (due to the
// rolling shutter interpolation), hence the number of unique keys may be
@ -341,19 +364,21 @@ class SmartProjectionPoseFactorRollingShutter
this->keys_
.size(); // note: by construction, keys_ only contains unique keys
typename Base::Cameras cameras = this->cameras(values);
// Create structures for Hessian Factors
KeyVector js;
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector<Vector> gs(nrUniqueKeys);
if (this->measured_.size() !=
this->cameras(values).size()) // 1 observation per interpolated camera
cameras.size()) // 1 observation per interpolated camera
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
this->triangulateSafe(this->cameras(values));
this->triangulateSafe(cameras);
if (!this->result_) { // failed: return "empty/zero" Hessian
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
@ -399,46 +424,6 @@ class SmartProjectionPoseFactorRollingShutter
this->keys_, augmentedHessianUniqueKeys);
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override {
if (this->active(values)) {
return this->totalReprojectionError(this->cameras(values));
} else { // else of active flag
return 0.0;
}
}
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Cameras
*/
typename Base::Cameras cameras(const Values& values) const override {
size_t numViews = this->measured_.size();
assert(numViews == K_all_.size());
assert(numViews == alphas_.size());
assert(numViews == body_P_sensors_.size());
assert(numViews == world_P_body_key_pairs_.size());
typename Base::Cameras cameras;
for (size_t i = 0; i < numViews; i++) { // for each measurement
const Pose3& w_P_body1 =
values.at<Pose3>(world_P_body_key_pairs_[i].first);
const Pose3& w_P_body2 =
values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = alphas_[i];
const Pose3& w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
const Pose3& body_P_cam = body_P_sensors_[i];
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
cameras.emplace_back(w_P_cam, K_all_[i]);
}
return cameras;
}
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
* LM)
@ -447,7 +432,7 @@ class SmartProjectionPoseFactorRollingShutter
* @return a Gaussian factor
*/
boost::shared_ptr<GaussianFactor> linearizeDamped(
const Values& values, const double lambda = 0.0) const {
const Values& values, const double& lambda = 0.0) const {
// depending on flag set on construction we may linearize to different
// linear factors
switch (this->params_.linearizationMode) {
@ -455,8 +440,8 @@ class SmartProjectionPoseFactorRollingShutter
return this->createHessianFactor(values, lambda);
default:
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: unknown linearization "
"mode");
"SmartProjectionPoseFactorRollingShutter: "
"unknown linearization mode");
}
}
@ -472,7 +457,6 @@ class SmartProjectionPoseFactorRollingShutter
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar& BOOST_SERIALIZATION_NVP(K_all_);
}
};
// end of class declaration

View File

@ -11,7 +11,7 @@
/**
* @file SmartStereoProjectionFactor.h
* @brief Smart stereo factor on StereoCameras (pose + calibration)
* @brief Smart stereo factor on StereoCameras (pose)
* @author Luca Carlone
* @author Zsolt Kira
* @author Frank Dellaert
@ -447,23 +447,23 @@ public:
}
/**
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
* This corrects the Jacobians and error vector for the case in which the
* right 2D measurement in the monocular camera is missing (nan).
*/
void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const override
{
void correctForMissingMeasurements(
const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const override {
// when using stereo cameras, some of the measurements might be missing:
for(size_t i=0; i < cameras.size(); i++){
for (size_t i = 0; i < cameras.size(); i++) {
const StereoPoint2& z = measured_.at(i);
if(std::isnan(z.uR())) // if the right pixel is invalid
if (std::isnan(z.uR())) // if the right 2D measurement is invalid
{
if(Fs){ // delete influence of right point on jacobian Fs
if (Fs) { // delete influence of right point on jacobian Fs
MatrixZD& Fi = Fs->at(i);
for(size_t ii=0; ii<Dim; ii++)
Fi(1,ii) = 0.0;
for (size_t ii = 0; ii < Dim; ii++) Fi(1, ii) = 0.0;
}
if(E) // delete influence of right point on jacobian E
if (E) // delete influence of right point on jacobian E
E->row(ZDim * i + 1) = Matrix::Zero(1, E->cols());
// set the corresponding entry of vector ue to zero

View File

@ -33,9 +33,11 @@ namespace gtsam {
*/
/**
* This factor optimizes the pose of the body as well as the extrinsic camera calibration (pose of camera wrt body).
* Each camera may have its own extrinsic calibration or the same calibration can be shared by multiple cameras.
* This factor requires that values contain the involved poses and extrinsics (both are Pose3 variables).
* This factor optimizes the pose of the body as well as the extrinsic camera
* calibration (pose of camera wrt body). Each camera may have its own extrinsic
* calibration or the same calibration can be shared by multiple cameras. This
* factor requires that values contain the involved poses and extrinsics (both
* are Pose3 variables).
* @addtogroup SLAM
*/
class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {

View File

@ -61,10 +61,13 @@ static double interp_factor1 = 0.3;
static double interp_factor2 = 0.4;
static double interp_factor3 = 0.5;
static size_t cameraId1 = 0;
/* ************************************************************************* */
// default Cal3_S2 poses with rolling shutter effect
namespace vanillaPoseRS {
typedef PinholePose<Cal3_S2> Camera;
typedef CameraSet<Camera> Cameras;
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
Pose3 interp_pose1 = interpolate<Pose3>(level_pose, pose_right, interp_factor1);
Pose3 interp_pose2 = interpolate<Pose3>(pose_right, pose_above, interp_factor2);
@ -72,6 +75,9 @@ Pose3 interp_pose3 = interpolate<Pose3>(pose_above, level_pose, interp_factor3);
Camera cam1(interp_pose1, sharedK);
Camera cam2(interp_pose2, sharedK);
Camera cam3(interp_pose3, sharedK);
SmartProjectionParams params(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
} // namespace vanillaPoseRS
LevenbergMarquardtParams lmParams;
@ -80,26 +86,35 @@ typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
}
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
SmartProjectionParams params;
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
params.setRankTolerance(rankTol);
SmartFactorRS factor1(model, params);
SmartFactorRS factor1(model, cameraRig, params);
}
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, add) {
using namespace vanillaPose;
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor, sharedK, body_P_sensor);
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor);
}
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
using namespace vanillaPose;
using namespace vanillaPoseRS;
// create fake measurements
Point2Vector measurements;
@ -112,68 +127,88 @@ TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x4));
std::vector<boost::shared_ptr<Cal3_S2>> intrinsicCalibrations;
intrinsicCalibrations.push_back(sharedK);
intrinsicCalibrations.push_back(sharedK);
intrinsicCalibrations.push_back(sharedK);
std::vector<Pose3> extrinsicCalibrations;
extrinsicCalibrations.push_back(body_P_sensor);
extrinsicCalibrations.push_back(body_P_sensor);
extrinsicCalibrations.push_back(body_P_sensor);
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
FastVector<size_t> cameraIds{0, 0, 0};
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensor, sharedK));
// create by adding a batch of measurements with a bunch of calibrations
SmartFactorRS::shared_ptr factor2(new SmartFactorRS(model));
factor2->add(measurements, key_pairs, interp_factors, intrinsicCalibrations,
extrinsicCalibrations);
SmartFactorRS::shared_ptr factor2(
new SmartFactorRS(model, cameraRig, params));
factor2->add(measurements, key_pairs, interp_factors, cameraIds);
// create by adding a batch of measurements with a single calibrations
SmartFactorRS::shared_ptr factor3(new SmartFactorRS(model));
factor3->add(measurements, key_pairs, interp_factors, sharedK, body_P_sensor);
SmartFactorRS::shared_ptr factor3(
new SmartFactorRS(model, cameraRig, params));
factor3->add(measurements, key_pairs, interp_factors, cameraIds);
{ // create equal factors and show equal returns true
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x3, interp_factor2, sharedK, body_P_sensor);
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x3, interp_factor2, cameraId1);
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create equal factors and show equal returns true (use default cameraId)
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1);
factor1->add(measurement2, x2, x3, interp_factor2);
factor1->add(measurement3, x3, x4, interp_factor3);
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create equal factors and show equal returns true (use default cameraId)
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurements, key_pairs, interp_factors);
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create slightly different factors (different keys) and show equal
// returns false
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x2, interp_factor2, sharedK,
body_P_sensor); // different!
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
// returns false (use default cameraIds)
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x2, interp_factor2,
cameraId1); // different!
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
{ // create slightly different factors (different extrinsics) and show equal
// returns false
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x3, interp_factor2, sharedK,
body_P_sensor * body_P_sensor); // different!
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
boost::shared_ptr<Cameras> cameraRig2(new Cameras());
cameraRig2->push_back(Camera(body_P_sensor * body_P_sensor, sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig2, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x3, interp_factor2,
cameraId1); // different!
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
{ // create slightly different factors (different interp factors) and show
// equal returns false
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
factor1->add(measurement2, x2, x3, interp_factor1, sharedK,
body_P_sensor); // different!
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x3, interp_factor1,
cameraId1); // different!
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
@ -197,9 +232,12 @@ TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
Point2 level_uv_right = cam2.project(landmark1);
Pose3 body_P_sensorId = Pose3::identity();
SmartFactorRS factor(model);
factor.add(level_uv, x1, x2, interp_factor1, sharedK, body_P_sensorId);
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK, body_P_sensorId);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedK));
SmartFactorRS factor(model, cameraRig, params);
factor.add(level_uv, x1, x2, interp_factor1);
factor.add(level_uv_right, x2, x3, interp_factor2);
Values values; // it's a pose factor, hence these are poses
values.insert(x1, level_pose);
@ -272,10 +310,12 @@ TEST(SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians) {
Point2 level_uv_right = cam2.project(landmark1);
Pose3 body_P_sensorNonId = body_P_sensor;
SmartFactorRS factor(model);
factor.add(level_uv, x1, x2, interp_factor1, sharedK, body_P_sensorNonId);
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK,
body_P_sensorNonId);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorNonId, sharedK));
SmartFactorRS factor(model, cameraRig, params);
factor.add(level_uv, x1, x2, interp_factor1);
factor.add(level_uv_right, x2, x3, interp_factor2);
Values values; // it's a pose factor, hence these are poses
values.insert(x1, level_pose);
@ -364,14 +404,20 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -411,6 +457,170 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensor, sharedK));
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {1, 1, 1});
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {1, 1, 1});
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {1, 1, 1});
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above); // pose above is the pose of the camera
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam2) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor1 = Pose3(Rot3::Ypr(-0.03, 0., 0.01), Point3(1, 1, 1));
Pose3 body_T_sensor2 = Pose3(Rot3::Ypr(-0.1, 0., 0.05), Point3(0, 0, 1));
Pose3 body_T_sensor3 = Pose3(Rot3::Ypr(-0.3, 0., -0.05), Point3(0, 1, 1));
Camera camera1(interp_pose1 * body_T_sensor1, sharedK);
Camera camera2(interp_pose2 * body_T_sensor2, sharedK);
Camera camera3(interp_pose3 * body_T_sensor3, sharedK);
// Project three landmarks into three cameras
projectToMultipleCameras(camera1, camera2, camera3, landmark1,
measurements_lmk1);
projectToMultipleCameras(camera1, camera2, camera3, landmark2,
measurements_lmk2);
projectToMultipleCameras(camera1, camera2, camera3, landmark3,
measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_T_sensor1, sharedK));
cameraRig->push_back(Camera(body_T_sensor2, sharedK));
cameraRig->push_back(Camera(body_T_sensor3, sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {0, 1, 2});
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {0, 1, 2});
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {0, 1, 2});
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above); // pose above is the pose of the camera
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-4));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
// here we replicate a test in SmartProjectionPoseFactor by setting
@ -418,7 +628,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
// falls back to standard pixel measurements) Note: this is a quite extreme
// test since in typical camera you would not have more than 1 measurement per
// landmark at each interpolated pose
using namespace vanillaPose;
using namespace vanillaPoseRS;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
@ -438,15 +648,17 @@ TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactor1->add(measurements_lmk1[0], x1, x2, interp_factor, sharedKSimple,
body_P_sensorId);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactor1->add(measurements_lmk1[1], x1, x2, interp_factor, sharedKSimple,
body_P_sensorId);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
SmartFactor::Cameras cameras;
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactor1->add(measurements_lmk1[0], x1, x2, interp_factor);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactor1->add(measurements_lmk1[1], x1, x2, interp_factor);
SmartFactorRS::Cameras cameras;
cameras.push_back(cam1);
cameras.push_back(cam2);
@ -534,14 +746,17 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(true);
SmartFactorRS smartFactor1(model, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors, sharedK);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS smartFactor2(model, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS smartFactor3(model, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor2(model, cameraRig, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS smartFactor3(model, cameraRig, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -594,18 +809,23 @@ TEST(SmartProjectionPoseFactorRollingShutter,
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setLinearizationMode(gtsam::HESSIAN);
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
// params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY); // this would give an
// exception as expected
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(false);
SmartFactorRS smartFactor1(model, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors, sharedK);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS smartFactor2(model, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS smartFactor3(model, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors, sharedK);
SmartFactorRS smartFactor2(model, cameraRig, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS smartFactor3(model, cameraRig, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -673,17 +893,24 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
params.setEnableEPI(false);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor4(new SmartFactorRS(model, params));
smartFactor4->add(measurements_lmk4, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor4(
new SmartFactorRS(model, cameraRig, params));
smartFactor4->add(measurements_lmk4, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -733,8 +960,12 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
@ -870,9 +1101,12 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.push_back(interp_factor3);
interp_factors.push_back(interp_factor1);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors,
sharedK);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
@ -1026,15 +1260,21 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors_redundant.push_back(
interp_factors.at(0)); // we readd the first interp factor
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
interp_factors_redundant, sharedK);
interp_factors_redundant);
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -1076,16 +1316,20 @@ TEST(SmartProjectionPoseFactorRollingShutter,
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
//| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min:
// 0 max: 0) | -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02
// children, min: 0 max: 0)
//-Total: 0 CPU (0 times, 0 wall, 0.21 children, min: 0 max: 0)
//| -SF RS LINEARIZE: 0.09 CPU
// (10000 times, 0.124106 wall, 0.09 children, min: 0 max: 0)
//| -RS LINEARIZE: 0.09 CPU
// (10000 times, 0.068719 wall, 0.09 children, min: 0 max: 0)
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, timing) {
using namespace vanillaPose;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
SmartProjectionParams params(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
Rot3 R = Rot3::identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
@ -1102,16 +1346,18 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
size_t nrTests = 1000;
size_t nrTests = 10000;
for (size_t i = 0; i < nrTests; i++) {
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(
model, cameraRig, params));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor,
sharedKSimple, body_P_sensorId);
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor,
sharedKSimple, body_P_sensorId);
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor);
Values values;
values.insert(x1, pose1);
@ -1122,7 +1368,8 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
}
for (size_t i = 0; i < nrTests; i++) {
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
SmartFactor::shared_ptr smartFactor(
new SmartFactor(model, sharedKSimple, params));
smartFactor->add(measurements_lmk1[0], x1);
smartFactor->add(measurements_lmk1[1], x2);

View File

@ -89,12 +89,19 @@ set_target_properties(${GTSAM_PYTHON_TARGET} PROPERTIES
RELWITHDEBINFO_POSTFIX "" # Otherwise you will have a wrong name
)
# Set the path for the GTSAM python module
set(GTSAM_MODULE_PATH ${GTSAM_PYTHON_BUILD_DIRECTORY}/gtsam)
# Symlink all tests .py files to build folder.
# Copy all python files to build folder.
copy_directory("${CMAKE_CURRENT_SOURCE_DIR}/gtsam"
"${GTSAM_MODULE_PATH}")
# Hack to get python test files copied every time they are modified
file(GLOB GTSAM_PYTHON_TEST_FILES "${CMAKE_CURRENT_SOURCE_DIR}/gtsam/tests/*.py")
foreach(test_file ${GTSAM_PYTHON_TEST_FILES})
configure_file(${test_file} "${GTSAM_MODULE_PATH}/tests/${test_file}" COPYONLY)
endforeach()
# Common directory for data/datasets stored with the package.
# This will store the data in the Python site package directly.
file(COPY "${GTSAM_SOURCE_DIR}/examples/Data" DESTINATION "${GTSAM_MODULE_PATH}")
@ -147,10 +154,16 @@ if(GTSAM_UNSTABLE_BUILD_PYTHON)
set(GTSAM_UNSTABLE_MODULE_PATH ${GTSAM_PYTHON_BUILD_DIRECTORY}/gtsam_unstable)
# Symlink all tests .py files to build folder.
# Copy all python files to build folder.
copy_directory("${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable"
"${GTSAM_UNSTABLE_MODULE_PATH}")
# Hack to get python test files copied every time they are modified
file(GLOB GTSAM_UNSTABLE_PYTHON_TEST_FILES "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/tests/*.py")
foreach(test_file ${GTSAM_PYTHON_TEST_FILES})
configure_file(${test_file} "${GTSAM_UNSTABLE_MODULE_PATH}/tests/${test_file}" COPYONLY)
endforeach()
# Add gtsam_unstable to the install target
list(APPEND GTSAM_PYTHON_DEPENDENCIES ${GTSAM_PYTHON_UNSTABLE_TARGET})

View File

@ -10,31 +10,51 @@ A script validating and demonstrating the ImuFactor inference.
Author: Frank Dellaert, Varun Agrawal
"""
# pylint: disable=no-name-in-module,unused-import,arguments-differ
# pylint: disable=no-name-in-module,unused-import,arguments-differ,import-error,wrong-import-order
from __future__ import print_function
import argparse
import math
import gtsam
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.symbol_shorthand import B, V, X
from gtsam.utils.plot import plot_pose3
from mpl_toolkits.mplot3d import Axes3D
from PreintegrationExample import POSES_FIG, PreintegrationExample
BIAS_KEY = B(0)
GRAVITY = 9.81
np.set_printoptions(precision=3, suppress=True)
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser("ImuFactorExample.py")
parser.add_argument("--twist_scenario",
default="sick_twist",
choices=("zero_twist", "forward_twist", "loop_twist",
"sick_twist"))
parser.add_argument("--time",
"-T",
default=12,
type=int,
help="Total navigation time in seconds")
parser.add_argument("--compute_covariances",
default=False,
action='store_true')
parser.add_argument("--verbose", default=False, action='store_true')
args = parser.parse_args()
return args
class ImuFactorExample(PreintegrationExample):
"""Class to run example of the Imu Factor."""
def __init__(self, twist_scenario="sick_twist"):
def __init__(self, twist_scenario: str = "sick_twist"):
self.velocity = np.array([2, 0, 0])
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
@ -51,19 +71,30 @@ class ImuFactorExample(PreintegrationExample):
gyroBias = np.array([0.1, 0.3, -0.1])
bias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
params = gtsam.PreintegrationParams.MakeSharedU(GRAVITY)
# Some arbitrary noise sigmas
gyro_sigma = 1e-3
accel_sigma = 1e-3
I_3x3 = np.eye(3)
params.setGyroscopeCovariance(gyro_sigma**2 * I_3x3)
params.setAccelerometerCovariance(accel_sigma**2 * I_3x3)
params.setIntegrationCovariance(1e-7**2 * I_3x3)
dt = 1e-2
super(ImuFactorExample, self).__init__(twist_scenarios[twist_scenario],
bias, dt)
bias, params, dt)
def addPrior(self, i, graph):
"""Add priors at time step `i`."""
def addPrior(self, i: int, graph: gtsam.NonlinearFactorGraph):
"""Add a prior on the navigation state at time `i`."""
state = self.scenario.navState(i)
graph.push_back(
gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
graph.push_back(
gtsam.PriorFactorVector(V(i), state.velocity(), self.velNoise))
def optimize(self, graph, initial):
def optimize(self, graph: gtsam.NonlinearFactorGraph,
initial: gtsam.Values):
"""Optimize using Levenberg-Marquardt optimization."""
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
@ -71,24 +102,49 @@ class ImuFactorExample(PreintegrationExample):
result = optimizer.optimize()
return result
def plot(self, result):
"""Plot resulting poses."""
def plot(self,
values: gtsam.Values,
title: str = "Estimated Trajectory",
fignum: int = POSES_FIG + 1,
show: bool = False):
"""
Plot poses in values.
Args:
values: The values object with the poses to plot.
title: The title of the plot.
fignum: The matplotlib figure number.
POSES_FIG is a value from the PreintegrationExample which we simply increment to generate a new figure.
show: Flag indicating whether to display the figure.
"""
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plot_pose3(POSES_FIG + 1, pose_i, 1)
while values.exists(X(i)):
pose_i = values.atPose3(X(i))
plot_pose3(fignum, pose_i, 1)
i += 1
plt.title("Estimated Trajectory")
plt.title(title)
gtsam.utils.plot.set_axes_equal(POSES_FIG + 1)
gtsam.utils.plot.set_axes_equal(fignum)
print("Bias Values", result.atConstantBias(BIAS_KEY))
print("Bias Values", values.atConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
def run(self, T=12, compute_covariances=False, verbose=True):
"""Main runner."""
if show:
plt.show()
def run(self,
T: int = 12,
compute_covariances: bool = False,
verbose: bool = True):
"""
Main runner.
Args:
T: Total trajectory time.
compute_covariances: Flag indicating whether to compute marginal covariances.
verbose: Flag indicating if printing should be verbose.
"""
graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements
@ -173,25 +229,11 @@ class ImuFactorExample(PreintegrationExample):
print("Covariance on vel {}:\n{}\n".format(
i, marginals.marginalCovariance(V(i))))
self.plot(result)
self.plot(result, show=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser("ImuFactorExample.py")
parser.add_argument("--twist_scenario",
default="sick_twist",
choices=("zero_twist", "forward_twist", "loop_twist",
"sick_twist"))
parser.add_argument("--time",
"-T",
default=12,
type=int,
help="Total time in seconds")
parser.add_argument("--compute_covariances",
default=False,
action='store_true')
parser.add_argument("--verbose", default=False, action='store_true')
args = parser.parse_args()
args = parse_args()
ImuFactorExample(args.twist_scenario).run(args.time,
args.compute_covariances,

View File

@ -0,0 +1,178 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Pose SLAM example using iSAM2 in the 2D plane.
Author: Jerred Chen, Yusuf Ali
Modeled after:
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
- Pose2SLAMExample by: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
import gtsam
import gtsam.utils.plot as gtsam_plot
def report_on_progress(graph: gtsam.NonlinearFactorGraph, current_estimate: gtsam.Values,
key: int):
"""Print and plot incremental progress of the robot for 2D Pose SLAM using iSAM2."""
# Print the current estimates computed using iSAM2.
print("*"*50 + f"\nInference after State {key+1}:\n")
print(current_estimate)
# Compute the marginals for all states in the graph.
marginals = gtsam.Marginals(graph, current_estimate)
# Plot the newly updated iSAM2 inference.
fig = plt.figure(0)
axes = fig.gca()
plt.cla()
i = 1
while current_estimate.exists(i):
gtsam_plot.plot_pose2(0, current_estimate.atPose2(i), 0.5, marginals.marginalCovariance(i))
i += 1
plt.axis('equal')
axes.set_xlim(-1, 5)
axes.set_ylim(-1, 3)
plt.pause(1)
def determine_loop_closure(odom: np.ndarray, current_estimate: gtsam.Values,
key: int, xy_tol=0.6, theta_tol=17) -> int:
"""Simple brute force approach which iterates through previous states
and checks for loop closure.
Args:
odom: Vector representing noisy odometry (x, y, theta) measurement in the body frame.
current_estimate: The current estimates computed by iSAM2.
key: Key corresponding to the current state estimate of the robot.
xy_tol: Optional argument for the x-y measurement tolerance, in meters.
theta_tol: Optional argument for the theta measurement tolerance, in degrees.
Returns:
k: The key of the state which is helping add the loop closure constraint.
If loop closure is not found, then None is returned.
"""
if current_estimate:
prev_est = current_estimate.atPose2(key+1)
rotated_odom = prev_est.rotation().matrix() @ odom[:2]
curr_xy = np.array([prev_est.x() + rotated_odom[0],
prev_est.y() + rotated_odom[1]])
curr_theta = prev_est.theta() + odom[2]
for k in range(1, key+1):
pose_xy = np.array([current_estimate.atPose2(k).x(),
current_estimate.atPose2(k).y()])
pose_theta = current_estimate.atPose2(k).theta()
if (abs(pose_xy - curr_xy) <= xy_tol).all() and \
(abs(pose_theta - curr_theta) <= theta_tol*np.pi/180):
return k
def Pose2SLAM_ISAM2_example():
"""Perform 2D SLAM given the ground truth changes in pose as well as
simple loop closure detection."""
plt.ion()
# Declare the 2D translational standard deviations of the prior factor's Gaussian model, in meters.
prior_xy_sigma = 0.3
# Declare the 2D rotational standard deviation of the prior factor's Gaussian model, in degrees.
prior_theta_sigma = 5
# Declare the 2D translational standard deviations of the odometry factor's Gaussian model, in meters.
odometry_xy_sigma = 0.2
# Declare the 2D rotational standard deviation of the odometry factor's Gaussian model, in degrees.
odometry_theta_sigma = 5
# Although this example only uses linear measurements and Gaussian noise models, it is important
# to note that iSAM2 can be utilized to its full potential during nonlinear optimization. This example
# simply showcases how iSAM2 may be applied to a Pose2 SLAM problem.
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([prior_xy_sigma,
prior_xy_sigma,
prior_theta_sigma*np.pi/180]))
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([odometry_xy_sigma,
odometry_xy_sigma,
odometry_theta_sigma*np.pi/180]))
# Create a Nonlinear factor graph as well as the data structure to hold state estimates.
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Create iSAM2 parameters which can adjust the threshold necessary to force relinearization and how many
# update calls are required to perform the relinearization.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.1)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# Create the ground truth odometry measurements of the robot during the trajectory.
true_odometry = [(2, 0, 0),
(2, 0, math.pi/2),
(2, 0, math.pi/2),
(2, 0, math.pi/2),
(2, 0, math.pi/2)]
# Corrupt the odometry measurements with gaussian noise to create noisy odometry measurements.
odometry_measurements = [np.random.multivariate_normal(true_odom, ODOMETRY_NOISE.covariance())
for true_odom in true_odometry]
# Add the prior factor to the factor graph, and poorly initialize the prior pose to demonstrate
# iSAM2 incremental optimization.
graph.push_back(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), PRIOR_NOISE))
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
# Initialize the current estimate which is used during the incremental inference loop.
current_estimate = initial_estimate
for i in range(len(true_odometry)):
# Obtain the noisy odometry that is received by the robot and corrupted by gaussian noise.
noisy_odom_x, noisy_odom_y, noisy_odom_theta = odometry_measurements[i]
# Determine if there is loop closure based on the odometry measurement and the previous estimate of the state.
loop = determine_loop_closure(odometry_measurements[i], current_estimate, i, xy_tol=0.8, theta_tol=25)
# Add a binary factor in between two existing states if loop closure is detected.
# Otherwise, add a binary factor between a newly observed state and the previous state.
if loop:
graph.push_back(gtsam.BetweenFactorPose2(i + 1, loop,
gtsam.Pose2(noisy_odom_x, noisy_odom_y, noisy_odom_theta), ODOMETRY_NOISE))
else:
graph.push_back(gtsam.BetweenFactorPose2(i + 1, i + 2,
gtsam.Pose2(noisy_odom_x, noisy_odom_y, noisy_odom_theta), ODOMETRY_NOISE))
# Compute and insert the initialization estimate for the current pose using the noisy odometry measurement.
computed_estimate = current_estimate.atPose2(i + 1).compose(gtsam.Pose2(noisy_odom_x,
noisy_odom_y,
noisy_odom_theta))
initial_estimate.insert(i + 2, computed_estimate)
# Perform incremental update to iSAM2's internal Bayes tree, optimizing only the affected variables.
isam.update(graph, initial_estimate)
current_estimate = isam.calculateEstimate()
# Report all current state estimates from the iSAM2 optimzation.
report_on_progress(graph, current_estimate, i)
initial_estimate.clear()
# Print the final covariance matrix for each pose after completing inference on the trajectory.
marginals = gtsam.Marginals(graph, current_estimate)
i = 1
for i in range(1, len(true_odometry)+1):
print(f"X{i} covariance:\n{marginals.marginalCovariance(i)}\n")
plt.ioff()
plt.show()
if __name__ == "__main__":
Pose2SLAM_ISAM2_example()

View File

@ -0,0 +1,208 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Pose SLAM example using iSAM2 in 3D space.
Author: Jerred Chen
Modeled after:
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
- Pose2SLAMExample by: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import gtsam
import gtsam.utils.plot as gtsam_plot
def report_on_progress(graph: gtsam.NonlinearFactorGraph, current_estimate: gtsam.Values,
key: int):
"""Print and plot incremental progress of the robot for 2D Pose SLAM using iSAM2."""
# Print the current estimates computed using iSAM2.
print("*"*50 + f"\nInference after State {key+1}:\n")
print(current_estimate)
# Compute the marginals for all states in the graph.
marginals = gtsam.Marginals(graph, current_estimate)
# Plot the newly updated iSAM2 inference.
fig = plt.figure(0)
axes = fig.gca(projection='3d')
plt.cla()
i = 1
while current_estimate.exists(i):
gtsam_plot.plot_pose3(0, current_estimate.atPose3(i), 10,
marginals.marginalCovariance(i))
i += 1
axes.set_xlim3d(-30, 45)
axes.set_ylim3d(-30, 45)
axes.set_zlim3d(-30, 45)
plt.pause(1)
def create_poses() -> List[gtsam.Pose3]:
"""Creates ground truth poses of the robot."""
P0 = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
P1 = np.array([[0, -1, 0, 15],
[1, 0, 0, 15],
[0, 0, 1, 20],
[0, 0, 0, 1]])
P2 = np.array([[np.cos(np.pi/4), 0, np.sin(np.pi/4), 30],
[0, 1, 0, 30],
[-np.sin(np.pi/4), 0, np.cos(np.pi/4), 30],
[0, 0, 0, 1]])
P3 = np.array([[0, 1, 0, 30],
[0, 0, -1, 0],
[-1, 0, 0, -15],
[0, 0, 0, 1]])
P4 = np.array([[-1, 0, 0, 0],
[0, -1, 0, -10],
[0, 0, 1, -10],
[0, 0, 0, 1]])
P5 = P0[:]
return [gtsam.Pose3(P0), gtsam.Pose3(P1), gtsam.Pose3(P2),
gtsam.Pose3(P3), gtsam.Pose3(P4), gtsam.Pose3(P5)]
def determine_loop_closure(odom_tf: gtsam.Pose3, current_estimate: gtsam.Values,
key: int, xyz_tol=0.6, rot_tol=17) -> int:
"""Simple brute force approach which iterates through previous states
and checks for loop closure.
Args:
odom_tf: The noisy odometry transformation measurement in the body frame.
current_estimate: The current estimates computed by iSAM2.
key: Key corresponding to the current state estimate of the robot.
xyz_tol: Optional argument for the translational tolerance, in meters.
rot_tol: Optional argument for the rotational tolerance, in degrees.
Returns:
k: The key of the state which is helping add the loop closure constraint.
If loop closure is not found, then None is returned.
"""
if current_estimate:
prev_est = current_estimate.atPose3(key+1)
curr_est = prev_est.compose(odom_tf)
for k in range(1, key+1):
pose = current_estimate.atPose3(k)
if (abs(pose.matrix()[:3,:3] - curr_est.matrix()[:3,:3]) <= rot_tol*np.pi/180).all() and \
(abs(pose.matrix()[:3,3] - curr_est.matrix()[:3,3]) <= xyz_tol).all():
return k
def Pose3_ISAM2_example():
"""Perform 3D SLAM given ground truth poses as well as simple
loop closure detection."""
plt.ion()
# Declare the 3D translational standard deviations of the prior factor's Gaussian model, in meters.
prior_xyz_sigma = 0.3
# Declare the 3D rotational standard deviations of the prior factor's Gaussian model, in degrees.
prior_rpy_sigma = 5
# Declare the 3D translational standard deviations of the odometry factor's Gaussian model, in meters.
odometry_xyz_sigma = 0.2
# Declare the 3D rotational standard deviations of the odometry factor's Gaussian model, in degrees.
odometry_rpy_sigma = 5
# Although this example only uses linear measurements and Gaussian noise models, it is important
# to note that iSAM2 can be utilized to its full potential during nonlinear optimization. This example
# simply showcases how iSAM2 may be applied to a Pose2 SLAM problem.
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([prior_rpy_sigma*np.pi/180,
prior_rpy_sigma*np.pi/180,
prior_rpy_sigma*np.pi/180,
prior_xyz_sigma,
prior_xyz_sigma,
prior_xyz_sigma]))
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([odometry_rpy_sigma*np.pi/180,
odometry_rpy_sigma*np.pi/180,
odometry_rpy_sigma*np.pi/180,
odometry_xyz_sigma,
odometry_xyz_sigma,
odometry_xyz_sigma]))
# Create a Nonlinear factor graph as well as the data structure to hold state estimates.
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Create iSAM2 parameters which can adjust the threshold necessary to force relinearization and how many
# update calls are required to perform the relinearization.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.1)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# Create the ground truth poses of the robot trajectory.
true_poses = create_poses()
# Create the ground truth odometry transformations, xyz translations, and roll-pitch-yaw rotations
# between each robot pose in the trajectory.
odometry_tf = [true_poses[i-1].transformPoseTo(true_poses[i]) for i in range(1, len(true_poses))]
odometry_xyz = [(odometry_tf[i].x(), odometry_tf[i].y(), odometry_tf[i].z()) for i in range(len(odometry_tf))]
odometry_rpy = [odometry_tf[i].rotation().rpy() for i in range(len(odometry_tf))]
# Corrupt xyz translations and roll-pitch-yaw rotations with gaussian noise to create noisy odometry measurements.
noisy_measurements = [np.random.multivariate_normal(np.hstack((odometry_rpy[i],odometry_xyz[i])), \
ODOMETRY_NOISE.covariance()) for i in range(len(odometry_tf))]
# Add the prior factor to the factor graph, and poorly initialize the prior pose to demonstrate
# iSAM2 incremental optimization.
graph.push_back(gtsam.PriorFactorPose3(1, true_poses[0], PRIOR_NOISE))
initial_estimate.insert(1, true_poses[0].compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# Initialize the current estimate which is used during the incremental inference loop.
current_estimate = initial_estimate
for i in range(len(odometry_tf)):
# Obtain the noisy translation and rotation that is received by the robot and corrupted by gaussian noise.
noisy_odometry = noisy_measurements[i]
# Compute the noisy odometry transformation according to the xyz translation and roll-pitch-yaw rotation.
noisy_tf = gtsam.Pose3(gtsam.Rot3.RzRyRx(noisy_odometry[:3]), noisy_odometry[3:6].reshape(-1,1))
# Determine if there is loop closure based on the odometry measurement and the previous estimate of the state.
loop = determine_loop_closure(noisy_tf, current_estimate, i, xyz_tol=18, rot_tol=30)
# Add a binary factor in between two existing states if loop closure is detected.
# Otherwise, add a binary factor between a newly observed state and the previous state.
if loop:
graph.push_back(gtsam.BetweenFactorPose3(i + 1, loop, noisy_tf, ODOMETRY_NOISE))
else:
graph.push_back(gtsam.BetweenFactorPose3(i + 1, i + 2, noisy_tf, ODOMETRY_NOISE))
# Compute and insert the initialization estimate for the current pose using a noisy odometry measurement.
noisy_estimate = current_estimate.atPose3(i + 1).compose(noisy_tf)
initial_estimate.insert(i + 2, noisy_estimate)
# Perform incremental update to iSAM2's internal Bayes tree, optimizing only the affected variables.
isam.update(graph, initial_estimate)
current_estimate = isam.calculateEstimate()
# Report all current state estimates from the iSAM2 optimization.
report_on_progress(graph, current_estimate, i)
initial_estimate.clear()
# Print the final covariance matrix for each pose after completing inference.
marginals = gtsam.Marginals(graph, current_estimate)
i = 1
while current_estimate.exists(i):
print(f"X{i} covariance:\n{marginals.marginalCovariance(i)}\n")
i += 1
plt.ioff()
plt.show()
if __name__ == '__main__':
Pose3_ISAM2_example()

View File

@ -5,10 +5,14 @@ All Rights Reserved
See LICENSE for the license information
A script validating the Preintegration of IMU measurements
A script validating the Preintegration of IMU measurements.
Authors: Frank Dellaert, Varun Agrawal.
"""
import math
# pylint: disable=invalid-name,unused-import,wrong-import-order
from typing import Optional, Sequence
import gtsam
import matplotlib.pyplot as plt
@ -18,25 +22,28 @@ from mpl_toolkits.mplot3d import Axes3D
IMU_FIG = 1
POSES_FIG = 2
GRAVITY = 10
class PreintegrationExample(object):
class PreintegrationExample:
"""Base class for all preintegration examples."""
@staticmethod
def defaultParams(g):
def defaultParams(g: float):
"""Create default parameters with Z *up* and realistic noise parameters"""
params = gtsam.PreintegrationParams.MakeSharedU(g)
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
kGyroSigma = np.radians(0.5) / 60 # 0.5 degree ARW
kAccelSigma = 0.1 / 60 # 10 cm VRW
params.setGyroscopeCovariance(
kGyroSigma ** 2 * np.identity(3, float))
params.setAccelerometerCovariance(
kAccelSigma ** 2 * np.identity(3, float))
params.setIntegrationCovariance(
0.0000001 ** 2 * np.identity(3, float))
params.setGyroscopeCovariance(kGyroSigma**2 * np.identity(3, float))
params.setAccelerometerCovariance(kAccelSigma**2 *
np.identity(3, float))
params.setIntegrationCovariance(0.0000001**2 * np.identity(3, float))
return params
def __init__(self, twist=None, bias=None, dt=1e-2):
def __init__(self,
twist: Optional[np.ndarray] = None,
bias: Optional[gtsam.imuBias.ConstantBias] = None,
params: Optional[gtsam.PreintegrationParams] = None,
dt: float = 1e-2):
"""Initialize with given twist, a pair(angularVelocityVector, velocityVector)."""
# setup interactive plotting
@ -48,7 +55,7 @@ class PreintegrationExample(object):
else:
# default = loop with forward velocity 2m/s, while pitching up
# with angular velocity 30 degree/sec (negative in FLU)
W = np.array([0, -math.radians(30), 0])
W = np.array([0, -np.radians(30), 0])
V = np.array([2, 0, 0])
self.scenario = gtsam.ConstantTwistScenario(W, V)
@ -58,9 +65,11 @@ class PreintegrationExample(object):
self.labels = list('xyz')
self.colors = list('rgb')
# Create runner
self.g = 10 # simple gravity constant
self.params = self.defaultParams(self.g)
if params:
self.params = params
else:
# Default params with simple gravity constant
self.params = self.defaultParams(g=GRAVITY)
if bias is not None:
self.actualBias = bias
@ -69,13 +78,22 @@ class PreintegrationExample(object):
gyroBias = np.array([0, 0, 0])
self.actualBias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
self.runner = gtsam.ScenarioRunner(
self.scenario, self.params, self.dt, self.actualBias)
# Create runner
self.runner = gtsam.ScenarioRunner(self.scenario, self.params, self.dt,
self.actualBias)
fig, self.axes = plt.subplots(4, 3)
fig.set_tight_layout(True)
def plotImu(self, t, measuredOmega, measuredAcc):
def plotImu(self, t: float, measuredOmega: Sequence,
measuredAcc: Sequence):
"""
Plot IMU measurements.
Args:
t: The time at which the measurement was recoreded.
measuredOmega: Measured angular velocity.
measuredAcc: Measured linear acceleration.
"""
plt.figure(IMU_FIG)
# plot angular velocity
@ -108,12 +126,21 @@ class PreintegrationExample(object):
ax.scatter(t, measuredAcc[i], color=color, marker='.')
ax.set_xlabel('specific force ' + label)
def plotGroundTruthPose(self, t, scale=0.3, time_interval=0.01):
# plot ground truth pose, as well as prediction from integrated IMU measurements
def plotGroundTruthPose(self,
t: float,
scale: float = 0.3,
time_interval: float = 0.01):
"""
Plot ground truth pose, as well as prediction from integrated IMU measurements.
Args:
t: Time at which the pose was obtained.
scale: The scaling factor for the pose axes.
time_interval: The time to wait before showing the plot.
"""
actualPose = self.scenario.pose(t)
plot_pose3(POSES_FIG, actualPose, scale)
t = actualPose.translation()
self.maxDim = max([max(np.abs(t)), self.maxDim])
translation = actualPose.translation()
self.maxDim = max([max(np.abs(translation)), self.maxDim])
ax = plt.gca()
ax.set_xlim3d(-self.maxDim, self.maxDim)
ax.set_ylim3d(-self.maxDim, self.maxDim)
@ -121,8 +148,8 @@ class PreintegrationExample(object):
plt.pause(time_interval)
def run(self, T=12):
# simulate the loop
def run(self, T: int = 12):
"""Simulate the loop."""
for i, t in enumerate(np.arange(0, T, self.dt)):
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)

View File

@ -7,69 +7,75 @@
See LICENSE for the license information
Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert)
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert, Varun Agrawal)
"""
import argparse
import logging
import sys
import matplotlib.pyplot as plt
import numpy as np
import gtsam
from gtsam import (
GeneralSFMFactorCal3Bundler,
PinholeCameraCal3Bundler,
PriorFactorPinholeCameraCal3Bundler,
readBal,
symbol_shorthand
)
from gtsam import (GeneralSFMFactorCal3Bundler,
PriorFactorPinholeCameraCal3Bundler, PriorFactorPoint3)
from gtsam.symbol_shorthand import C, P # type: ignore
from gtsam.utils import plot # type: ignore
from matplotlib import pyplot as plt
C = symbol_shorthand.C
P = symbol_shorthand.P
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
DEFAULT_BAL_DATASET = "dubrovnik-3-7-pre"
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
def plot_scene(scene_data: gtsam.SfmData, result: gtsam.Values) -> None:
"""Plot the SFM results."""
plot_vals = gtsam.Values()
for cam_idx in range(scene_data.number_cameras()):
plot_vals.insert(C(cam_idx),
result.atPinholeCameraCal3Bundler(C(cam_idx)).pose())
for j in range(scene_data.number_tracks()):
plot_vals.insert(P(j), result.atPoint3(P(j)))
def run(args):
plot.plot_3d_points(0, plot_vals, linespec="g.")
plot.plot_trajectory(0, plot_vals, title="SFM results")
plt.show()
def run(args: argparse.Namespace) -> None:
""" Run LM optimization with BAL input data and report resulting error """
input_file = gtsam.findExampleDataFile(args.input_file)
input_file = args.input_file
# Load the SfM data from file
scene_data = readBal(input_file)
logging.info(f"read {scene_data.number_tracks()} tracks on {scene_data.number_cameras()} cameras\n")
scene_data = gtsam.readBal(input_file)
logging.info("read %d tracks on %d cameras\n", scene_data.number_tracks(),
scene_data.number_cameras())
# Create a factor graph
graph = gtsam.NonlinearFactorGraph()
# We share *one* noiseModel between all projection factors
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Add measurements to the factor graph
j = 0
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx) # SfmTrack
for j in range(scene_data.number_tracks()):
track = scene_data.track(j) # SfmTrack
# retrieve the SfmMeasurement objects
for m_idx in range(track.number_measurements()):
# i represents the camera index, and uv is the 2d measurement
i, uv = track.measurement(m_idx)
# note use of shorthand symbols C and P
graph.add(GeneralSFMFactorCal3Bundler(uv, noise, C(i), P(j)))
j += 1
# Add a prior on pose x1. This indirectly specifies where the origin is.
graph.push_back(
gtsam.PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)
)
)
PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0),
gtsam.noiseModel.Isotropic.Sigma(9, 0.1)))
# Also add a prior on the position of the first landmark to fix the scale
graph.push_back(
gtsam.PriorFactorPoint3(
P(0), scene_data.track(0).point3(), gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
)
)
PriorFactorPoint3(P(0),
scene_data.track(0).point3(),
gtsam.noiseModel.Isotropic.Sigma(3, 0.1)))
# Create initial estimate
initial = gtsam.Values()
@ -81,12 +87,10 @@ def run(args):
initial.insert(C(i), camera)
i += 1
j = 0
# add each SfmTrack
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx)
for j in range(scene_data.number_tracks()):
track = scene_data.track(j)
initial.insert(P(j), track.point3())
j += 1
# Optimize the graph and print results
try:
@ -94,25 +98,31 @@ def run(args):
params.setVerbosityLM("ERROR")
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = lm.optimize()
except Exception as e:
except RuntimeError:
logging.exception("LM Optimization failed")
return
# Error drops from ~2764.22 to ~0.046
logging.info(f"final error: {graph.error(result)}")
logging.info("initial error: %f", graph.error(initial))
logging.info("final error: %f", graph.error(result))
plot_scene(scene_data, result)
def main() -> None:
"""Main runner."""
parser = argparse.ArgumentParser()
parser.add_argument('-i',
'--input_file',
type=str,
default=gtsam.findExampleDataFile(DEFAULT_BAL_DATASET),
help="""Read SFM data from the specified BAL file.
The data format is described here: https://grail.cs.washington.edu/projects/bal/.
BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples,
then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector
and (x,y,z) 3d point initializations.""")
run(parser.parse_args())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input_file',
type=str,
default="dubrovnik-3-7-pre",
help='Read SFM data from the specified BAL file'
'The data format is described here: https://grail.cs.washington.edu/projects/bal/.'
'BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples, '
'then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector'
'and (x,y,z) 3d point initializations.'
)
run(parser.parse_args())
main()

View File

@ -59,8 +59,16 @@ class TestPose3(GtsamTestCase):
self.assertEqual(math.sqrt(2.0), x1.range(pose=xl2))
def test_adjoint(self):
"""Test adjoint method."""
"""Test adjoint methods."""
T = Pose3()
xi = np.array([1, 2, 3, 4, 5, 6])
# test calling functions
T.AdjointMap()
T.Adjoint(xi)
T.AdjointTranspose(xi)
Pose3.adjointMap(xi)
Pose3.adjoint(xi, xi)
# test correctness of adjoint(x, y)
expected = np.dot(Pose3.adjointMap_(xi), xi)
actual = Pose3.adjoint_(xi, xi)
np.testing.assert_array_equal(actual, expected)

View File

@ -606,7 +606,7 @@ Vector3 f(const Point2& a, const Vector3& b, OptionalJacobian<3, 2> H1,
if (H1) *H1 << b.y(), b.z(), b.x(), 0, 0, 0;
if (H2) *H2 = A;
return A * b;
};
}
}
TEST(ExpressionFactor, MultiplyWithInverseFunction) {

View File

@ -114,94 +114,94 @@ using symbol_shorthand::L;
/* Create GUIDs for Noisemodels */
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Robust, "gtsam_noiseModel_Robust");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Robust, "gtsam_noiseModel_Robust")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Base , "gtsam_noiseModel_mEstimator_Base");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Null , "gtsam_noiseModel_mEstimator_Null");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Fair , "gtsam_noiseModel_mEstimator_Fair");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Huber, "gtsam_noiseModel_mEstimator_Huber");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Tukey, "gtsam_noiseModel_mEstimator_Tukey");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Base , "gtsam_noiseModel_mEstimator_Base")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Null , "gtsam_noiseModel_mEstimator_Null")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Fair , "gtsam_noiseModel_mEstimator_Fair")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Huber, "gtsam_noiseModel_mEstimator_Huber")
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::mEstimator::Tukey, "gtsam_noiseModel_mEstimator_Tukey")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel")
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal")
/* Create GUIDs for geometry */
/* ************************************************************************* */
GTSAM_VALUE_EXPORT(gtsam::Point2);
GTSAM_VALUE_EXPORT(gtsam::StereoPoint2);
GTSAM_VALUE_EXPORT(gtsam::Point3);
GTSAM_VALUE_EXPORT(gtsam::Rot2);
GTSAM_VALUE_EXPORT(gtsam::Rot3);
GTSAM_VALUE_EXPORT(gtsam::Pose2);
GTSAM_VALUE_EXPORT(gtsam::Pose3);
GTSAM_VALUE_EXPORT(gtsam::Cal3_S2);
GTSAM_VALUE_EXPORT(gtsam::Cal3DS2);
GTSAM_VALUE_EXPORT(gtsam::Cal3_S2Stereo);
GTSAM_VALUE_EXPORT(gtsam::CalibratedCamera);
GTSAM_VALUE_EXPORT(gtsam::PinholeCameraCal3_S2);
GTSAM_VALUE_EXPORT(gtsam::StereoCamera);
GTSAM_VALUE_EXPORT(gtsam::Point2)
GTSAM_VALUE_EXPORT(gtsam::StereoPoint2)
GTSAM_VALUE_EXPORT(gtsam::Point3)
GTSAM_VALUE_EXPORT(gtsam::Rot2)
GTSAM_VALUE_EXPORT(gtsam::Rot3)
GTSAM_VALUE_EXPORT(gtsam::Pose2)
GTSAM_VALUE_EXPORT(gtsam::Pose3)
GTSAM_VALUE_EXPORT(gtsam::Cal3_S2)
GTSAM_VALUE_EXPORT(gtsam::Cal3DS2)
GTSAM_VALUE_EXPORT(gtsam::Cal3_S2Stereo)
GTSAM_VALUE_EXPORT(gtsam::CalibratedCamera)
GTSAM_VALUE_EXPORT(gtsam::PinholeCameraCal3_S2)
GTSAM_VALUE_EXPORT(gtsam::StereoCamera)
/* Create GUIDs for factors */
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "gtsam::JacobianFactor")
BOOST_CLASS_EXPORT_GUID(gtsam::HessianFactor , "gtsam::HessianFactor")
BOOST_CLASS_EXPORT_GUID(PriorFactorPoint2, "gtsam::PriorFactorPoint2");
BOOST_CLASS_EXPORT_GUID(PriorFactorStereoPoint2, "gtsam::PriorFactorStereoPoint2");
BOOST_CLASS_EXPORT_GUID(PriorFactorPoint3, "gtsam::PriorFactorPoint3");
BOOST_CLASS_EXPORT_GUID(PriorFactorRot2, "gtsam::PriorFactorRot2");
BOOST_CLASS_EXPORT_GUID(PriorFactorRot3, "gtsam::PriorFactorRot3");
BOOST_CLASS_EXPORT_GUID(PriorFactorPose2, "gtsam::PriorFactorPose2");
BOOST_CLASS_EXPORT_GUID(PriorFactorPose3, "gtsam::PriorFactorPose3");
BOOST_CLASS_EXPORT_GUID(PriorFactorCal3_S2, "gtsam::PriorFactorCal3_S2");
BOOST_CLASS_EXPORT_GUID(PriorFactorCal3DS2, "gtsam::PriorFactorCal3DS2");
BOOST_CLASS_EXPORT_GUID(PriorFactorCalibratedCamera, "gtsam::PriorFactorCalibratedCamera");
BOOST_CLASS_EXPORT_GUID(PriorFactorStereoCamera, "gtsam::PriorFactorStereoCamera");
BOOST_CLASS_EXPORT_GUID(PriorFactorPoint2, "gtsam::PriorFactorPoint2")
BOOST_CLASS_EXPORT_GUID(PriorFactorStereoPoint2, "gtsam::PriorFactorStereoPoint2")
BOOST_CLASS_EXPORT_GUID(PriorFactorPoint3, "gtsam::PriorFactorPoint3")
BOOST_CLASS_EXPORT_GUID(PriorFactorRot2, "gtsam::PriorFactorRot2")
BOOST_CLASS_EXPORT_GUID(PriorFactorRot3, "gtsam::PriorFactorRot3")
BOOST_CLASS_EXPORT_GUID(PriorFactorPose2, "gtsam::PriorFactorPose2")
BOOST_CLASS_EXPORT_GUID(PriorFactorPose3, "gtsam::PriorFactorPose3")
BOOST_CLASS_EXPORT_GUID(PriorFactorCal3_S2, "gtsam::PriorFactorCal3_S2")
BOOST_CLASS_EXPORT_GUID(PriorFactorCal3DS2, "gtsam::PriorFactorCal3DS2")
BOOST_CLASS_EXPORT_GUID(PriorFactorCalibratedCamera, "gtsam::PriorFactorCalibratedCamera")
BOOST_CLASS_EXPORT_GUID(PriorFactorStereoCamera, "gtsam::PriorFactorStereoCamera")
BOOST_CLASS_EXPORT_GUID(BetweenFactorPoint2, "gtsam::BetweenFactorPoint2");
BOOST_CLASS_EXPORT_GUID(BetweenFactorPoint3, "gtsam::BetweenFactorPoint3");
BOOST_CLASS_EXPORT_GUID(BetweenFactorRot2, "gtsam::BetweenFactorRot2");
BOOST_CLASS_EXPORT_GUID(BetweenFactorRot3, "gtsam::BetweenFactorRot3");
BOOST_CLASS_EXPORT_GUID(BetweenFactorPose2, "gtsam::BetweenFactorPose2");
BOOST_CLASS_EXPORT_GUID(BetweenFactorPose3, "gtsam::BetweenFactorPose3");
BOOST_CLASS_EXPORT_GUID(BetweenFactorPoint2, "gtsam::BetweenFactorPoint2")
BOOST_CLASS_EXPORT_GUID(BetweenFactorPoint3, "gtsam::BetweenFactorPoint3")
BOOST_CLASS_EXPORT_GUID(BetweenFactorRot2, "gtsam::BetweenFactorRot2")
BOOST_CLASS_EXPORT_GUID(BetweenFactorRot3, "gtsam::BetweenFactorRot3")
BOOST_CLASS_EXPORT_GUID(BetweenFactorPose2, "gtsam::BetweenFactorPose2")
BOOST_CLASS_EXPORT_GUID(BetweenFactorPose3, "gtsam::BetweenFactorPose3")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPoint2, "gtsam::NonlinearEqualityPoint2");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityStereoPoint2, "gtsam::NonlinearEqualityStereoPoint2");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPoint3, "gtsam::NonlinearEqualityPoint3");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityRot2, "gtsam::NonlinearEqualityRot2");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityRot3, "gtsam::NonlinearEqualityRot3");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPose2, "gtsam::NonlinearEqualityPose2");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPose3, "gtsam::NonlinearEqualityPose3");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityCal3_S2, "gtsam::NonlinearEqualityCal3_S2");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityCal3DS2, "gtsam::NonlinearEqualityCal3DS2");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityCalibratedCamera, "gtsam::NonlinearEqualityCalibratedCamera");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityStereoCamera, "gtsam::NonlinearEqualityStereoCamera");
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPoint2, "gtsam::NonlinearEqualityPoint2")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityStereoPoint2, "gtsam::NonlinearEqualityStereoPoint2")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPoint3, "gtsam::NonlinearEqualityPoint3")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityRot2, "gtsam::NonlinearEqualityRot2")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityRot3, "gtsam::NonlinearEqualityRot3")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPose2, "gtsam::NonlinearEqualityPose2")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityPose3, "gtsam::NonlinearEqualityPose3")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityCal3_S2, "gtsam::NonlinearEqualityCal3_S2")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityCal3DS2, "gtsam::NonlinearEqualityCal3DS2")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityCalibratedCamera, "gtsam::NonlinearEqualityCalibratedCamera")
BOOST_CLASS_EXPORT_GUID(NonlinearEqualityStereoCamera, "gtsam::NonlinearEqualityStereoCamera")
BOOST_CLASS_EXPORT_GUID(RangeFactor2D, "gtsam::RangeFactor2D");
BOOST_CLASS_EXPORT_GUID(RangeFactor3D, "gtsam::RangeFactor3D");
BOOST_CLASS_EXPORT_GUID(RangeFactorPose2, "gtsam::RangeFactorPose2");
BOOST_CLASS_EXPORT_GUID(RangeFactorPose3, "gtsam::RangeFactorPose3");
BOOST_CLASS_EXPORT_GUID(RangeFactorCalibratedCameraPoint, "gtsam::RangeFactorCalibratedCameraPoint");
BOOST_CLASS_EXPORT_GUID(RangeFactorPinholeCameraCal3_S2Point, "gtsam::RangeFactorPinholeCameraCal3_S2Point");
BOOST_CLASS_EXPORT_GUID(RangeFactorCalibratedCamera, "gtsam::RangeFactorCalibratedCamera");
BOOST_CLASS_EXPORT_GUID(RangeFactorPinholeCameraCal3_S2, "gtsam::RangeFactorPinholeCameraCal3_S2");
BOOST_CLASS_EXPORT_GUID(RangeFactor2D, "gtsam::RangeFactor2D")
BOOST_CLASS_EXPORT_GUID(RangeFactor3D, "gtsam::RangeFactor3D")
BOOST_CLASS_EXPORT_GUID(RangeFactorPose2, "gtsam::RangeFactorPose2")
BOOST_CLASS_EXPORT_GUID(RangeFactorPose3, "gtsam::RangeFactorPose3")
BOOST_CLASS_EXPORT_GUID(RangeFactorCalibratedCameraPoint, "gtsam::RangeFactorCalibratedCameraPoint")
BOOST_CLASS_EXPORT_GUID(RangeFactorPinholeCameraCal3_S2Point, "gtsam::RangeFactorPinholeCameraCal3_S2Point")
BOOST_CLASS_EXPORT_GUID(RangeFactorCalibratedCamera, "gtsam::RangeFactorCalibratedCamera")
BOOST_CLASS_EXPORT_GUID(RangeFactorPinholeCameraCal3_S2, "gtsam::RangeFactorPinholeCameraCal3_S2")
BOOST_CLASS_EXPORT_GUID(BearingRangeFactor2D, "gtsam::BearingRangeFactor2D");
BOOST_CLASS_EXPORT_GUID(BearingRangeFactor2D, "gtsam::BearingRangeFactor2D")
BOOST_CLASS_EXPORT_GUID(GenericProjectionFactorCal3_S2, "gtsam::GenericProjectionFactorCal3_S2");
BOOST_CLASS_EXPORT_GUID(GenericProjectionFactorCal3DS2, "gtsam::GenericProjectionFactorCal3DS2");
BOOST_CLASS_EXPORT_GUID(GenericProjectionFactorCal3_S2, "gtsam::GenericProjectionFactorCal3_S2")
BOOST_CLASS_EXPORT_GUID(GenericProjectionFactorCal3DS2, "gtsam::GenericProjectionFactorCal3DS2")
BOOST_CLASS_EXPORT_GUID(GeneralSFMFactorCal3_S2, "gtsam::GeneralSFMFactorCal3_S2");
BOOST_CLASS_EXPORT_GUID(GeneralSFMFactorCal3DS2, "gtsam::GeneralSFMFactorCal3DS2");
BOOST_CLASS_EXPORT_GUID(GeneralSFMFactorCal3_S2, "gtsam::GeneralSFMFactorCal3_S2")
BOOST_CLASS_EXPORT_GUID(GeneralSFMFactorCal3DS2, "gtsam::GeneralSFMFactorCal3DS2")
BOOST_CLASS_EXPORT_GUID(GeneralSFMFactor2Cal3_S2, "gtsam::GeneralSFMFactor2Cal3_S2");
BOOST_CLASS_EXPORT_GUID(GeneralSFMFactor2Cal3_S2, "gtsam::GeneralSFMFactor2Cal3_S2")
BOOST_CLASS_EXPORT_GUID(GenericStereoFactor3D, "gtsam::GenericStereoFactor3D");
BOOST_CLASS_EXPORT_GUID(GenericStereoFactor3D, "gtsam::GenericStereoFactor3D")
/* ************************************************************************* */

View File

@ -200,7 +200,7 @@ TEST(SubgraphPreconditioner, system) {
}
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "JacobianFactor");
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "JacobianFactor")
// Read from XML file
static GaussianFactorGraph read(const string& name) {