Merge pull request #1851 from borglab/feature/linearize

Better HybridNonlinear!
release/4.3a0
Frank Dellaert 2024-09-28 17:24:33 -07:00 committed by GitHub
commit 8816374bdd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 431 additions and 427 deletions

View File

@ -17,6 +17,7 @@
*/
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <memory>
@ -29,7 +30,7 @@ struct HybridNonlinearFactor::ConstructorHelper {
DiscreteKeys discreteKeys; // Discrete keys provided to the constructors
FactorValuePairs factorTree;
void copyOrCheckContinuousKeys(const NonlinearFactor::shared_ptr& factor) {
void copyOrCheckContinuousKeys(const NoiseModelFactor::shared_ptr& factor) {
if (!factor) return;
if (continuousKeys.empty()) {
continuousKeys = factor->keys();
@ -40,7 +41,7 @@ struct HybridNonlinearFactor::ConstructorHelper {
}
ConstructorHelper(const DiscreteKey& discreteKey,
const std::vector<NonlinearFactor::shared_ptr>& factors)
const std::vector<NoiseModelFactor::shared_ptr>& factors)
: discreteKeys({discreteKey}) {
std::vector<NonlinearFactorValuePair> pairs;
// Extract continuous keys from the first non-null factor
@ -78,7 +79,7 @@ HybridNonlinearFactor::HybridNonlinearFactor(const ConstructorHelper& helper)
HybridNonlinearFactor::HybridNonlinearFactor(
const DiscreteKey& discreteKey,
const std::vector<NonlinearFactor::shared_ptr>& factors)
const std::vector<NoiseModelFactor::shared_ptr>& factors)
: HybridNonlinearFactor(ConstructorHelper(discreteKey, factors)) {}
HybridNonlinearFactor::HybridNonlinearFactor(
@ -158,8 +159,7 @@ bool HybridNonlinearFactor::equals(const HybridFactor& other,
// Ensure that this HybridNonlinearFactor and `f` have the same `factors_`.
auto compare = [tol](const std::pair<sharedFactor, double>& a,
const std::pair<sharedFactor, double>& b) {
return traits<NonlinearFactor>::Equals(*a.first, *b.first, tol) &&
(a.second == b.second);
return a.first->equals(*b.first, tol) && (a.second == b.second);
};
if (!factors_.equals(f.factors_, compare)) return false;
@ -185,7 +185,15 @@ std::shared_ptr<HybridGaussianFactor> HybridNonlinearFactor::linearize(
[continuousValues](
const std::pair<sharedFactor, double>& f) -> GaussianFactorValuePair {
auto [factor, val] = f;
return {factor->linearize(continuousValues), val};
if (auto gaussian = std::dynamic_pointer_cast<noiseModel::Gaussian>(
factor->noiseModel())) {
return {factor->linearize(continuousValues),
val + gaussian->negLogConstant()};
} else {
throw std::runtime_error(
"HybridNonlinearFactor: linearize() only supports NoiseModelFactors "
"with Gaussian (or derived) noise models.");
}
};
DecisionTree<Key, std::pair<GaussianFactor::shared_ptr, double>>

View File

@ -26,25 +26,23 @@
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Symbol.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <vector>
namespace gtsam {
/// Alias for a NonlinearFactor shared pointer and double scalar pair.
using NonlinearFactorValuePair = std::pair<NonlinearFactor::shared_ptr, double>;
/// Alias for a NoiseModelFactor shared pointer and double scalar pair.
using NonlinearFactorValuePair =
std::pair<NoiseModelFactor::shared_ptr, double>;
/**
* @brief Implementation of a discrete-conditioned hybrid factor.
*
* Implements a joint discrete-continuous factor where the discrete variable
* serves to "select" a hybrid component corresponding to a NonlinearFactor.
* serves to "select" a hybrid component corresponding to a NoiseModelFactor.
*
* This class stores all factors as HybridFactors which can then be typecast to
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
* the correct operation.
* one of (NoiseModelFactor, GaussianFactor) which can then be checked to
* perform the correct operation.
*
* In factor graphs the error function typically returns 0.5*|h(x)-z|^2, i.e.,
* the negative log-likelihood for a Gaussian noise model.
@ -62,11 +60,11 @@ class GTSAM_EXPORT HybridNonlinearFactor : public HybridFactor {
using Base = HybridFactor;
using This = HybridNonlinearFactor;
using shared_ptr = std::shared_ptr<HybridNonlinearFactor>;
using sharedFactor = std::shared_ptr<NonlinearFactor>;
using sharedFactor = std::shared_ptr<NoiseModelFactor>;
/**
* @brief typedef for DecisionTree which has Keys as node labels and
* pairs of NonlinearFactor & an arbitrary scalar as leaf nodes.
* pairs of NoiseModelFactor & an arbitrary scalar as leaf nodes.
*/
using FactorValuePairs = DecisionTree<Key, NonlinearFactorValuePair>;
@ -95,7 +93,7 @@ class GTSAM_EXPORT HybridNonlinearFactor : public HybridFactor {
*/
HybridNonlinearFactor(
const DiscreteKey& discreteKey,
const std::vector<NonlinearFactor::shared_ptr>& factors);
const std::vector<NoiseModelFactor::shared_ptr>& factors);
/**
* @brief Construct a new HybridNonlinearFactor on a single discrete key,

View File

@ -245,16 +245,16 @@ class HybridNonlinearFactorGraph {
class HybridNonlinearFactor : gtsam::HybridFactor {
HybridNonlinearFactor(
const gtsam::DiscreteKey& discreteKey,
const std::vector<gtsam::NonlinearFactor*>& factors);
const std::vector<gtsam::NoiseModelFactor*>& factors);
HybridNonlinearFactor(
const gtsam::DiscreteKey& discreteKey,
const std::vector<std::pair<gtsam::NonlinearFactor*, double>>& factors);
const std::vector<std::pair<gtsam::NoiseModelFactor*, double>>& factors);
HybridNonlinearFactor(
const gtsam::DiscreteKeys& discreteKeys,
const gtsam::DecisionTree<
gtsam::Key, std::pair<gtsam::NonlinearFactor*, double>>& factors);
gtsam::Key, std::pair<gtsam::NoiseModelFactor*, double>>& factors);
double error(const gtsam::Values& continuousValues,
const gtsam::DiscreteValues& discreteValues) const;

View File

@ -33,6 +33,7 @@
#include "gtsam/linear/GaussianFactor.h"
#include "gtsam/linear/GaussianFactorGraph.h"
#include "gtsam/nonlinear/NonlinearFactor.h"
#pragma once
@ -185,7 +186,7 @@ struct Switching {
}
// Create motion models for a given time step
static std::vector<NonlinearFactor::shared_ptr> motionModels(
static std::vector<NoiseModelFactor::shared_ptr> motionModels(
size_t k, double sigma = 1.0) {
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
auto still =

View File

@ -24,6 +24,7 @@
#include "Switching.h"
#include "TinyHybridExample.h"
#include "gtsam/nonlinear/NonlinearFactor.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -389,7 +390,7 @@ TEST(HybridBayesNet, Sampling) {
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
nfg.emplace_shared<HybridNonlinearFactor>(
DiscreteKey(M(0), 2),
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
std::vector<NoiseModelFactor::shared_ptr>{zero_motion, one_motion});
DiscreteKey mode(M(0), 2);
nfg.emplace_shared<DiscreteDistribution>(mode, "1/1");

View File

@ -39,6 +39,7 @@
#include <bitset>
#include "Switching.h"
#include "gtsam/nonlinear/NonlinearFactor.h"
using namespace std;
using namespace gtsam;
@ -435,8 +436,8 @@ static HybridNonlinearFactorGraph createHybridNonlinearFactorGraph() {
std::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
const auto one_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
std::vector<NonlinearFactor::shared_ptr> components = {zero_motion,
one_motion};
std::vector<NoiseModelFactor::shared_ptr> components = {zero_motion,
one_motion};
nfg.emplace_shared<HybridNonlinearFactor>(m, components);
return nfg;
@ -526,49 +527,6 @@ TEST(HybridEstimation, CorrectnessViaSampling) {
}
}
/****************************************************************************/
/**
* Helper function to add the constant term corresponding to
* the difference in noise models.
*/
std::shared_ptr<HybridGaussianFactor> mixedVarianceFactor(
const HybridNonlinearFactor& mf, const Values& initial, const Key& mode,
double noise_tight, double noise_loose, size_t d, size_t tight_index) {
HybridGaussianFactor::shared_ptr gmf = mf.linearize(initial);
constexpr double log2pi = 1.8378770664093454835606594728112;
// logConstant will be of the tighter model
double logNormalizationConstant = log(1.0 / noise_tight);
double logConstant = -0.5 * d * log2pi + logNormalizationConstant;
auto func = [&](const Assignment<Key>& assignment,
const GaussianFactor::shared_ptr& gf) {
if (assignment.at(mode) != tight_index) {
double factor_log_constant = -0.5 * d * log2pi + log(1.0 / noise_loose);
GaussianFactorGraph _gfg;
_gfg.push_back(gf);
Vector c(d);
for (size_t i = 0; i < d; i++) {
c(i) = std::sqrt(2.0 * (logConstant - factor_log_constant));
}
_gfg.emplace_shared<JacobianFactor>(c);
return std::make_shared<JacobianFactor>(_gfg);
} else {
return dynamic_pointer_cast<JacobianFactor>(gf);
}
};
auto updated_components = gmf->factors().apply(func);
auto updated_pairs = HybridGaussianFactor::FactorValuePairs(
updated_components,
[](const GaussianFactor::shared_ptr& gf) -> GaussianFactorValuePair {
return {gf, 0.0};
});
return std::make_shared<HybridGaussianFactor>(gmf->discreteKeys(),
updated_pairs);
}
/****************************************************************************/
TEST(HybridEstimation, ModeSelection) {
HybridNonlinearFactorGraph graph;
@ -588,15 +546,14 @@ TEST(HybridEstimation, ModeSelection) {
X(0), X(1), 0.0, noiseModel::Isotropic::Sigma(d, noise_loose)),
model1 = std::make_shared<MotionModel>(
X(0), X(1), 0.0, noiseModel::Isotropic::Sigma(d, noise_tight));
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
std::vector<NoiseModelFactor::shared_ptr> components = {model0, model1};
HybridNonlinearFactor mf({M(0), 2}, components);
initial.insert(X(0), 0.0);
initial.insert(X(1), 0.0);
auto gmf =
mixedVarianceFactor(mf, initial, M(0), noise_tight, noise_loose, d, 1);
auto gmf = mf.linearize(initial);
graph.add(gmf);
auto gfg = graph.linearize(initial);
@ -676,15 +633,14 @@ TEST(HybridEstimation, ModeSelection2) {
X(0), X(1), Z_3x1, noiseModel::Isotropic::Sigma(d, noise_loose)),
model1 = std::make_shared<BetweenFactor<Vector3>>(
X(0), X(1), Z_3x1, noiseModel::Isotropic::Sigma(d, noise_tight));
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
std::vector<NoiseModelFactor::shared_ptr> components = {model0, model1};
HybridNonlinearFactor mf({M(0), 2}, components);
initial.insert<Vector3>(X(0), Z_3x1);
initial.insert<Vector3>(X(1), Z_3x1);
auto gmf =
mixedVarianceFactor(mf, initial, M(0), noise_tight, noise_loose, d, 1);
auto gmf = mf.linearize(initial);
graph.add(gmf);
auto gfg = graph.linearize(initial);

View File

@ -208,354 +208,7 @@ TEST(HybridGaussianFactor, Error) {
4.0, hybridFactor.error({continuousValues, discreteValues}), 1e-9);
}
namespace test_two_state_estimation {
DiscreteKey m1(M(1), 2);
void addMeasurement(HybridBayesNet &hbn, Key z_key, Key x_key, double sigma) {
auto measurement_model = noiseModel::Isotropic::Sigma(1, sigma);
hbn.emplace_shared<GaussianConditional>(z_key, Vector1(0.0), I_1x1, x_key,
-I_1x1, measurement_model);
}
/// Create hybrid motion model p(x1 | x0, m1)
static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
double mu0, double mu1, double sigma0, double sigma1) {
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
auto c0 = make_shared<GaussianConditional>(X(1), Vector1(mu0), I_1x1, X(0),
-I_1x1, model0),
c1 = make_shared<GaussianConditional>(X(1), Vector1(mu1), I_1x1, X(0),
-I_1x1, model1);
DiscreteKeys discreteParents{m1};
return std::make_shared<HybridGaussianConditional>(
discreteParents, HybridGaussianConditional::Conditionals(
discreteParents, std::vector{c0, c1}));
}
/// Create two state Bayes network with 1 or two measurement models
HybridBayesNet CreateBayesNet(
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
bool add_second_measurement = false) {
HybridBayesNet hbn;
// Add measurement model p(z0 | x0)
addMeasurement(hbn, Z(0), X(0), 3.0);
// Optionally add second measurement model p(z1 | x1)
if (add_second_measurement) {
addMeasurement(hbn, Z(1), X(1), 3.0);
}
// Add hybrid motion model
hbn.push_back(hybridMotionModel);
// Discrete uniform prior.
hbn.emplace_shared<DiscreteConditional>(m1, "50/50");
return hbn;
}
/// Approximate the discrete marginal P(m1) using importance sampling
std::pair<double, double> approximateDiscreteMarginal(
const HybridBayesNet &hbn,
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
const VectorValues &given, size_t N = 100000) {
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
/// using q(x0) = N(z0, sigmaQ) to sample x0.
HybridBayesNet q;
q.push_back(hybridMotionModel); // Add hybrid motion model
q.emplace_shared<GaussianConditional>(GaussianConditional::FromMeanAndStddev(
X(0), given.at(Z(0)), /* sigmaQ = */ 3.0)); // Add proposal q(x0) for x0
q.emplace_shared<DiscreteConditional>(m1, "50/50"); // Discrete prior.
// Do importance sampling
double w0 = 0.0, w1 = 0.0;
std::mt19937_64 rng(42);
for (int i = 0; i < N; i++) {
HybridValues sample = q.sample(&rng);
sample.insert(given);
double weight = hbn.evaluate(sample) / q.evaluate(sample);
(sample.atDiscrete(M(1)) == 0) ? w0 += weight : w1 += weight;
}
double pm1 = w1 / (w0 + w1);
std::cout << "p(m0) = " << 100 * (1.0 - pm1) << std::endl;
std::cout << "p(m1) = " << 100 * pm1 << std::endl;
return {1.0 - pm1, pm1};
}
} // namespace test_two_state_estimation
/* ************************************************************************* */
/**
* Test a model p(z0|x0)p(z1|x1)p(x1|x0,m1)P(m1).
*
* p(x1|x0,m1) has mode-dependent mean but same covariance.
*
* Converting to a factor graph gives us ϕ(x0;z0)ϕ(x1;z1)ϕ(x1,x0,m1)P(m1)
*
* If we only have a measurement on x0, then
* the posterior probability of m1 should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel) {
using namespace test_two_state_estimation;
double mu0 = 1.0, mu1 = 3.0;
double sigma = 0.5;
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma, sigma);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Since no measurement on x1, we hedge our bets
// Importance sampling run with 100k samples gives 50.051/49.949
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "50/50");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
}
{
// If we set z1=4.5 (>> 2.5 which is the halfway point),
// probability of discrete mode should be leaning to m1==1.
const Vector1 z1(4.5);
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Since we have a measurement on x1, we get a definite result
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "44.3854/55.6146");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
}
/* ************************************************************************* */
/**
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
*
* P(x1|x0,m1) has different means and different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
*
* If we only have a measurement on z0, then
* the P(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel2) {
using namespace test_two_state_estimation;
double mu0 = 1.0, mu1 = 3.0;
double sigma0 = 0.5, sigma1 = 2.0;
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Importance sampling run with 100k samples gives 50.095/49.905
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
// Since no measurement on x1, we a 50/50 probability
auto p_m = bn->at(2)->asDiscrete();
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
}
{
// Now we add a measurement z1 on x1
const Vector1 z1(4.0); // favors m==1
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "48.3158/51.6842");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
{
// Add a different measurement z1 on x1 that favors m==0
const Vector1 z1(1.1);
given.insert_or_assign(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "55.396/44.604");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
}
/* ************************************************************************* */
/**
* Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).
*
* p(x1|x0,m1) has the same means but different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)
*
* If we only have a measurement on z0, then
* the p(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel3) {
using namespace test_two_state_estimation;
double mu = 1.0;
double sigma0 = 0.5, sigma1 = 2.0;
auto hybridMotionModel = CreateHybridMotionModel(mu, mu, sigma0, sigma1);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Importance sampling run with 100k samples gives 50.095/49.905
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
// Since no measurement on x1, we a 50/50 probability
auto p_m = bn->at(2)->asDiscrete();
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
}
{
// Now we add a measurement z1 on x1
const Vector1 z1(4.0); // favors m==1
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "51.7762/48.2238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
{
// Add a different measurement z1 on x1 that favors m==1
const Vector1 z1(7.0);
given.insert_or_assign(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "49.0762/50.9238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.005));
}
}
/* ************************************************************************* */
/**
* Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative
* measurements and vastly different motion model: either stand still or move
* far. This yields a very informative posterior.
*/
TEST(HybridGaussianFactor, TwoStateModel4) {
using namespace test_two_state_estimation;
double mu0 = 0.0, mu1 = 10.0;
double sigma0 = 0.2, sigma1 = 5.0;
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
// We only check the 2-measurement case
const Vector1 z0(0.0), z1(10.0);
VectorValues given{{Z(0), z0}, {Z(1), z1}};
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "8.91527/91.0847");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
namespace test_direct_factor_graph {
/**
* @brief Create a Factor Graph by directly specifying all

View File

@ -30,6 +30,7 @@
#include <numeric>
#include "Switching.h"
#include "gtsam/nonlinear/NonlinearFactor.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -415,7 +416,7 @@ TEST(HybridGaussianISAM, NonTrivial) {
// Add odometry factor with discrete modes.
Pose2 odometry(1.0, 0.0, 0.0);
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
std::vector<NonlinearFactor::shared_ptr> components;
std::vector<NoiseModelFactor::shared_ptr> components;
components.emplace_back(
new PlanarMotionModel(W(0), W(1), odometry, noise_model)); // moving
components.emplace_back(

View File

@ -0,0 +1,385 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridMotionModel.cpp
* @brief Tests hybrid inference with a simple switching motion model
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
#include <memory>
using namespace std;
using namespace gtsam;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
DiscreteKey m1(M(1), 2);
void addMeasurement(HybridBayesNet &hbn, Key z_key, Key x_key, double sigma) {
auto measurement_model = noiseModel::Isotropic::Sigma(1, sigma);
hbn.emplace_shared<GaussianConditional>(z_key, Vector1(0.0), I_1x1, x_key,
-I_1x1, measurement_model);
}
/// Create hybrid motion model p(x1 | x0, m1)
static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
double mu0, double mu1, double sigma0, double sigma1) {
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
auto c0 = make_shared<GaussianConditional>(X(1), Vector1(mu0), I_1x1, X(0),
-I_1x1, model0),
c1 = make_shared<GaussianConditional>(X(1), Vector1(mu1), I_1x1, X(0),
-I_1x1, model1);
return std::make_shared<HybridGaussianConditional>(m1, std::vector{c0, c1});
}
/// Create two state Bayes network with 1 or two measurement models
HybridBayesNet CreateBayesNet(
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
bool add_second_measurement = false) {
HybridBayesNet hbn;
// Add measurement model p(z0 | x0)
addMeasurement(hbn, Z(0), X(0), 3.0);
// Optionally add second measurement model p(z1 | x1)
if (add_second_measurement) {
addMeasurement(hbn, Z(1), X(1), 3.0);
}
// Add hybrid motion model
hbn.push_back(hybridMotionModel);
// Discrete uniform prior.
hbn.emplace_shared<DiscreteConditional>(m1, "50/50");
return hbn;
}
/// Approximate the discrete marginal P(m1) using importance sampling
std::pair<double, double> approximateDiscreteMarginal(
const HybridBayesNet &hbn,
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
const VectorValues &given, size_t N = 100000) {
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
/// using q(x0) = N(z0, sigmaQ) to sample x0.
HybridBayesNet q;
q.push_back(hybridMotionModel); // Add hybrid motion model
q.emplace_shared<GaussianConditional>(GaussianConditional::FromMeanAndStddev(
X(0), given.at(Z(0)), /* sigmaQ = */ 3.0)); // Add proposal q(x0) for x0
q.emplace_shared<DiscreteConditional>(m1, "50/50"); // Discrete prior.
// Do importance sampling
double w0 = 0.0, w1 = 0.0;
std::mt19937_64 rng(42);
for (int i = 0; i < N; i++) {
HybridValues sample = q.sample(&rng);
sample.insert(given);
double weight = hbn.evaluate(sample) / q.evaluate(sample);
(sample.atDiscrete(M(1)) == 0) ? w0 += weight : w1 += weight;
}
double pm1 = w1 / (w0 + w1);
std::cout << "p(m0) = " << 100 * (1.0 - pm1) << std::endl;
std::cout << "p(m1) = " << 100 * pm1 << std::endl;
return {1.0 - pm1, pm1};
}
/* ************************************************************************* */
/**
* Test a model p(z0|x0)p(z1|x1)p(x1|x0,m1)P(m1).
*
* p(x1|x0,m1) has mode-dependent mean but same covariance.
*
* Converting to a factor graph gives us ϕ(x0;z0)ϕ(x1;z1)ϕ(x1,x0,m1)P(m1)
*
* If we only have a measurement on x0, then
* the posterior probability of m1 should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel) {
double mu0 = 1.0, mu1 = 3.0;
double sigma = 0.5;
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma, sigma);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Since no measurement on x1, we hedge our bets
// Importance sampling run with 100k samples gives 50.051/49.949
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "50/50");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
}
{
// If we set z1=4.5 (>> 2.5 which is the halfway point),
// probability of discrete mode should be leaning to m1==1.
const Vector1 z1(4.5);
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Since we have a measurement on x1, we get a definite result
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "44.3854/55.6146");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
}
/* ************************************************************************* */
/**
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
*
* P(x1|x0,m1) has different means and different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
*
* If we only have a measurement on z0, then
* the P(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel2) {
double mu0 = 1.0, mu1 = 3.0;
double sigma0 = 0.5, sigma1 = 2.0;
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Importance sampling run with 100k samples gives 50.095/49.905
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
// Since no measurement on x1, we a 50/50 probability
auto p_m = bn->at(2)->asDiscrete();
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
}
{
// Now we add a measurement z1 on x1
const Vector1 z1(4.0); // favors m==1
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "48.3158/51.6842");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
{
// Add a different measurement z1 on x1 that favors m==0
const Vector1 z1(1.1);
given.insert_or_assign(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "55.396/44.604");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
}
/* ************************************************************************* */
/**
* Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).
*
* p(x1|x0,m1) has the same means but different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)
*
* If we only have a measurement on z0, then
* the p(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel3) {
double mu = 1.0;
double sigma0 = 0.5, sigma1 = 2.0;
auto hybridMotionModel = CreateHybridMotionModel(mu, mu, sigma0, sigma1);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Importance sampling run with 100k samples gives 50.095/49.905
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
// Since no measurement on x1, we a 50/50 probability
auto p_m = bn->at(2)->asDiscrete();
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
}
{
// Now we add a measurement z1 on x1
const Vector1 z1(4.0); // favors m==1
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "51.7762/48.2238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
{
// Add a different measurement z1 on x1 that favors m==1
const Vector1 z1(7.0);
given.insert_or_assign(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "49.0762/50.9238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.005));
}
}
/* ************************************************************************* */
/**
* Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative
* measurements and vastly different motion model: either stand still or move
* far. This yields a very informative posterior.
*/
TEST(HybridGaussianFactor, TwoStateModel4) {
double mu0 = 0.0, mu1 = 10.0;
double sigma0 = 0.2, sigma1 = 5.0;
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
// We only check the 2-measurement case
const Vector1 z0(0.0), z1(10.0);
VectorValues given{{Z(0), z0}, {Z(1), z1}};
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "8.91527/91.0847");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -36,6 +36,7 @@
#include <numeric>
#include "Switching.h"
#include "gtsam/nonlinear/NonlinearFactor.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -119,7 +120,7 @@ TEST(HybridNonlinearFactorGraph, Resize) {
namespace test_motion {
gtsam::DiscreteKey m1(M(1), 2);
auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
std::vector<NonlinearFactor::shared_ptr> components = {
std::vector<NoiseModelFactor::shared_ptr> components = {
std::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
std::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model)};
} // namespace test_motion
@ -207,7 +208,7 @@ TEST(HybridNonlinearFactorGraph, PushBack) {
factors.emplace_shared<PriorFactor<Pose2>>(1, Pose2(1, 0, 0), noise);
factors.emplace_shared<PriorFactor<Pose2>>(2, Pose2(2, 0, 0), noise);
// TODO(Varun) This does not currently work. It should work once HybridFactor
// becomes a base class of NonlinearFactor.
// becomes a base class of NoiseModelFactor.
// hnfg.push_back(factors.begin(), factors.end());
// EXPECT_LONGS_EQUAL(3, hnfg.size());
@ -807,7 +808,7 @@ TEST(HybridNonlinearFactorGraph, DefaultDecisionTree) {
// Add odometry factor
Pose2 odometry(2.0, 0.0, 0.0);
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
std::vector<NonlinearFactor::shared_ptr> motion_models = {
std::vector<NoiseModelFactor::shared_ptr> motion_models = {
std::make_shared<PlanarMotionModel>(X(0), X(1), Pose2(0, 0, 0),
noise_model),
std::make_shared<PlanarMotionModel>(X(0), X(1), odometry, noise_model)};
@ -874,8 +875,7 @@ static HybridNonlinearFactorGraph CreateFactorGraph(
// Create HybridNonlinearFactor
// We take negative since we want
// the underlying scalar to be log(\sqrt(|2πΣ|))
std::vector<NonlinearFactorValuePair> factors{{f0, model0->negLogConstant()},
{f1, model1->negLogConstant()}};
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(m1, factors);

View File

@ -30,6 +30,7 @@
#include <numeric>
#include "Switching.h"
#include "gtsam/nonlinear/NonlinearFactor.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -438,7 +439,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
noise_model),
moving = std::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
std::vector<NonlinearFactor::shared_ptr> components{moving, still};
std::vector<NoiseModelFactor::shared_ptr> components{moving, still};
fg.emplace_shared<HybridNonlinearFactor>(DiscreteKey(M(1), 2), components);
// Add equivalent of ImuFactor