commit
8816374bdd
|
@ -17,6 +17,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
#include <memory>
|
||||
|
@ -29,7 +30,7 @@ struct HybridNonlinearFactor::ConstructorHelper {
|
|||
DiscreteKeys discreteKeys; // Discrete keys provided to the constructors
|
||||
FactorValuePairs factorTree;
|
||||
|
||||
void copyOrCheckContinuousKeys(const NonlinearFactor::shared_ptr& factor) {
|
||||
void copyOrCheckContinuousKeys(const NoiseModelFactor::shared_ptr& factor) {
|
||||
if (!factor) return;
|
||||
if (continuousKeys.empty()) {
|
||||
continuousKeys = factor->keys();
|
||||
|
@ -40,7 +41,7 @@ struct HybridNonlinearFactor::ConstructorHelper {
|
|||
}
|
||||
|
||||
ConstructorHelper(const DiscreteKey& discreteKey,
|
||||
const std::vector<NonlinearFactor::shared_ptr>& factors)
|
||||
const std::vector<NoiseModelFactor::shared_ptr>& factors)
|
||||
: discreteKeys({discreteKey}) {
|
||||
std::vector<NonlinearFactorValuePair> pairs;
|
||||
// Extract continuous keys from the first non-null factor
|
||||
|
@ -78,7 +79,7 @@ HybridNonlinearFactor::HybridNonlinearFactor(const ConstructorHelper& helper)
|
|||
|
||||
HybridNonlinearFactor::HybridNonlinearFactor(
|
||||
const DiscreteKey& discreteKey,
|
||||
const std::vector<NonlinearFactor::shared_ptr>& factors)
|
||||
const std::vector<NoiseModelFactor::shared_ptr>& factors)
|
||||
: HybridNonlinearFactor(ConstructorHelper(discreteKey, factors)) {}
|
||||
|
||||
HybridNonlinearFactor::HybridNonlinearFactor(
|
||||
|
@ -158,8 +159,7 @@ bool HybridNonlinearFactor::equals(const HybridFactor& other,
|
|||
// Ensure that this HybridNonlinearFactor and `f` have the same `factors_`.
|
||||
auto compare = [tol](const std::pair<sharedFactor, double>& a,
|
||||
const std::pair<sharedFactor, double>& b) {
|
||||
return traits<NonlinearFactor>::Equals(*a.first, *b.first, tol) &&
|
||||
(a.second == b.second);
|
||||
return a.first->equals(*b.first, tol) && (a.second == b.second);
|
||||
};
|
||||
if (!factors_.equals(f.factors_, compare)) return false;
|
||||
|
||||
|
@ -185,7 +185,15 @@ std::shared_ptr<HybridGaussianFactor> HybridNonlinearFactor::linearize(
|
|||
[continuousValues](
|
||||
const std::pair<sharedFactor, double>& f) -> GaussianFactorValuePair {
|
||||
auto [factor, val] = f;
|
||||
return {factor->linearize(continuousValues), val};
|
||||
if (auto gaussian = std::dynamic_pointer_cast<noiseModel::Gaussian>(
|
||||
factor->noiseModel())) {
|
||||
return {factor->linearize(continuousValues),
|
||||
val + gaussian->negLogConstant()};
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"HybridNonlinearFactor: linearize() only supports NoiseModelFactors "
|
||||
"with Gaussian (or derived) noise models.");
|
||||
}
|
||||
};
|
||||
|
||||
DecisionTree<Key, std::pair<GaussianFactor::shared_ptr, double>>
|
||||
|
|
|
@ -26,25 +26,23 @@
|
|||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Symbol.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/// Alias for a NonlinearFactor shared pointer and double scalar pair.
|
||||
using NonlinearFactorValuePair = std::pair<NonlinearFactor::shared_ptr, double>;
|
||||
/// Alias for a NoiseModelFactor shared pointer and double scalar pair.
|
||||
using NonlinearFactorValuePair =
|
||||
std::pair<NoiseModelFactor::shared_ptr, double>;
|
||||
|
||||
/**
|
||||
* @brief Implementation of a discrete-conditioned hybrid factor.
|
||||
*
|
||||
* Implements a joint discrete-continuous factor where the discrete variable
|
||||
* serves to "select" a hybrid component corresponding to a NonlinearFactor.
|
||||
* serves to "select" a hybrid component corresponding to a NoiseModelFactor.
|
||||
*
|
||||
* This class stores all factors as HybridFactors which can then be typecast to
|
||||
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
|
||||
* the correct operation.
|
||||
* one of (NoiseModelFactor, GaussianFactor) which can then be checked to
|
||||
* perform the correct operation.
|
||||
*
|
||||
* In factor graphs the error function typically returns 0.5*|h(x)-z|^2, i.e.,
|
||||
* the negative log-likelihood for a Gaussian noise model.
|
||||
|
@ -62,11 +60,11 @@ class GTSAM_EXPORT HybridNonlinearFactor : public HybridFactor {
|
|||
using Base = HybridFactor;
|
||||
using This = HybridNonlinearFactor;
|
||||
using shared_ptr = std::shared_ptr<HybridNonlinearFactor>;
|
||||
using sharedFactor = std::shared_ptr<NonlinearFactor>;
|
||||
using sharedFactor = std::shared_ptr<NoiseModelFactor>;
|
||||
|
||||
/**
|
||||
* @brief typedef for DecisionTree which has Keys as node labels and
|
||||
* pairs of NonlinearFactor & an arbitrary scalar as leaf nodes.
|
||||
* pairs of NoiseModelFactor & an arbitrary scalar as leaf nodes.
|
||||
*/
|
||||
using FactorValuePairs = DecisionTree<Key, NonlinearFactorValuePair>;
|
||||
|
||||
|
@ -95,7 +93,7 @@ class GTSAM_EXPORT HybridNonlinearFactor : public HybridFactor {
|
|||
*/
|
||||
HybridNonlinearFactor(
|
||||
const DiscreteKey& discreteKey,
|
||||
const std::vector<NonlinearFactor::shared_ptr>& factors);
|
||||
const std::vector<NoiseModelFactor::shared_ptr>& factors);
|
||||
|
||||
/**
|
||||
* @brief Construct a new HybridNonlinearFactor on a single discrete key,
|
||||
|
|
|
@ -245,16 +245,16 @@ class HybridNonlinearFactorGraph {
|
|||
class HybridNonlinearFactor : gtsam::HybridFactor {
|
||||
HybridNonlinearFactor(
|
||||
const gtsam::DiscreteKey& discreteKey,
|
||||
const std::vector<gtsam::NonlinearFactor*>& factors);
|
||||
const std::vector<gtsam::NoiseModelFactor*>& factors);
|
||||
|
||||
HybridNonlinearFactor(
|
||||
const gtsam::DiscreteKey& discreteKey,
|
||||
const std::vector<std::pair<gtsam::NonlinearFactor*, double>>& factors);
|
||||
const std::vector<std::pair<gtsam::NoiseModelFactor*, double>>& factors);
|
||||
|
||||
HybridNonlinearFactor(
|
||||
const gtsam::DiscreteKeys& discreteKeys,
|
||||
const gtsam::DecisionTree<
|
||||
gtsam::Key, std::pair<gtsam::NonlinearFactor*, double>>& factors);
|
||||
gtsam::Key, std::pair<gtsam::NoiseModelFactor*, double>>& factors);
|
||||
|
||||
double error(const gtsam::Values& continuousValues,
|
||||
const gtsam::DiscreteValues& discreteValues) const;
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
|
||||
#include "gtsam/linear/GaussianFactor.h"
|
||||
#include "gtsam/linear/GaussianFactorGraph.h"
|
||||
#include "gtsam/nonlinear/NonlinearFactor.h"
|
||||
|
||||
#pragma once
|
||||
|
||||
|
@ -185,7 +186,7 @@ struct Switching {
|
|||
}
|
||||
|
||||
// Create motion models for a given time step
|
||||
static std::vector<NonlinearFactor::shared_ptr> motionModels(
|
||||
static std::vector<NoiseModelFactor::shared_ptr> motionModels(
|
||||
size_t k, double sigma = 1.0) {
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
auto still =
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
|
||||
#include "Switching.h"
|
||||
#include "TinyHybridExample.h"
|
||||
#include "gtsam/nonlinear/NonlinearFactor.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -389,7 +390,7 @@ TEST(HybridBayesNet, Sampling) {
|
|||
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
|
||||
nfg.emplace_shared<HybridNonlinearFactor>(
|
||||
DiscreteKey(M(0), 2),
|
||||
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
|
||||
std::vector<NoiseModelFactor::shared_ptr>{zero_motion, one_motion});
|
||||
|
||||
DiscreteKey mode(M(0), 2);
|
||||
nfg.emplace_shared<DiscreteDistribution>(mode, "1/1");
|
||||
|
|
|
@ -39,6 +39,7 @@
|
|||
#include <bitset>
|
||||
|
||||
#include "Switching.h"
|
||||
#include "gtsam/nonlinear/NonlinearFactor.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
@ -435,7 +436,7 @@ static HybridNonlinearFactorGraph createHybridNonlinearFactorGraph() {
|
|||
std::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
|
||||
const auto one_motion =
|
||||
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
|
||||
std::vector<NonlinearFactor::shared_ptr> components = {zero_motion,
|
||||
std::vector<NoiseModelFactor::shared_ptr> components = {zero_motion,
|
||||
one_motion};
|
||||
nfg.emplace_shared<HybridNonlinearFactor>(m, components);
|
||||
|
||||
|
@ -526,49 +527,6 @@ TEST(HybridEstimation, CorrectnessViaSampling) {
|
|||
}
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/**
|
||||
* Helper function to add the constant term corresponding to
|
||||
* the difference in noise models.
|
||||
*/
|
||||
std::shared_ptr<HybridGaussianFactor> mixedVarianceFactor(
|
||||
const HybridNonlinearFactor& mf, const Values& initial, const Key& mode,
|
||||
double noise_tight, double noise_loose, size_t d, size_t tight_index) {
|
||||
HybridGaussianFactor::shared_ptr gmf = mf.linearize(initial);
|
||||
|
||||
constexpr double log2pi = 1.8378770664093454835606594728112;
|
||||
// logConstant will be of the tighter model
|
||||
double logNormalizationConstant = log(1.0 / noise_tight);
|
||||
double logConstant = -0.5 * d * log2pi + logNormalizationConstant;
|
||||
|
||||
auto func = [&](const Assignment<Key>& assignment,
|
||||
const GaussianFactor::shared_ptr& gf) {
|
||||
if (assignment.at(mode) != tight_index) {
|
||||
double factor_log_constant = -0.5 * d * log2pi + log(1.0 / noise_loose);
|
||||
|
||||
GaussianFactorGraph _gfg;
|
||||
_gfg.push_back(gf);
|
||||
Vector c(d);
|
||||
for (size_t i = 0; i < d; i++) {
|
||||
c(i) = std::sqrt(2.0 * (logConstant - factor_log_constant));
|
||||
}
|
||||
|
||||
_gfg.emplace_shared<JacobianFactor>(c);
|
||||
return std::make_shared<JacobianFactor>(_gfg);
|
||||
} else {
|
||||
return dynamic_pointer_cast<JacobianFactor>(gf);
|
||||
}
|
||||
};
|
||||
auto updated_components = gmf->factors().apply(func);
|
||||
auto updated_pairs = HybridGaussianFactor::FactorValuePairs(
|
||||
updated_components,
|
||||
[](const GaussianFactor::shared_ptr& gf) -> GaussianFactorValuePair {
|
||||
return {gf, 0.0};
|
||||
});
|
||||
return std::make_shared<HybridGaussianFactor>(gmf->discreteKeys(),
|
||||
updated_pairs);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
TEST(HybridEstimation, ModeSelection) {
|
||||
HybridNonlinearFactorGraph graph;
|
||||
|
@ -588,15 +546,14 @@ TEST(HybridEstimation, ModeSelection) {
|
|||
X(0), X(1), 0.0, noiseModel::Isotropic::Sigma(d, noise_loose)),
|
||||
model1 = std::make_shared<MotionModel>(
|
||||
X(0), X(1), 0.0, noiseModel::Isotropic::Sigma(d, noise_tight));
|
||||
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
|
||||
std::vector<NoiseModelFactor::shared_ptr> components = {model0, model1};
|
||||
|
||||
HybridNonlinearFactor mf({M(0), 2}, components);
|
||||
|
||||
initial.insert(X(0), 0.0);
|
||||
initial.insert(X(1), 0.0);
|
||||
|
||||
auto gmf =
|
||||
mixedVarianceFactor(mf, initial, M(0), noise_tight, noise_loose, d, 1);
|
||||
auto gmf = mf.linearize(initial);
|
||||
graph.add(gmf);
|
||||
|
||||
auto gfg = graph.linearize(initial);
|
||||
|
@ -676,15 +633,14 @@ TEST(HybridEstimation, ModeSelection2) {
|
|||
X(0), X(1), Z_3x1, noiseModel::Isotropic::Sigma(d, noise_loose)),
|
||||
model1 = std::make_shared<BetweenFactor<Vector3>>(
|
||||
X(0), X(1), Z_3x1, noiseModel::Isotropic::Sigma(d, noise_tight));
|
||||
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
|
||||
std::vector<NoiseModelFactor::shared_ptr> components = {model0, model1};
|
||||
|
||||
HybridNonlinearFactor mf({M(0), 2}, components);
|
||||
|
||||
initial.insert<Vector3>(X(0), Z_3x1);
|
||||
initial.insert<Vector3>(X(1), Z_3x1);
|
||||
|
||||
auto gmf =
|
||||
mixedVarianceFactor(mf, initial, M(0), noise_tight, noise_loose, d, 1);
|
||||
auto gmf = mf.linearize(initial);
|
||||
graph.add(gmf);
|
||||
|
||||
auto gfg = graph.linearize(initial);
|
||||
|
|
|
@ -208,354 +208,7 @@ TEST(HybridGaussianFactor, Error) {
|
|||
4.0, hybridFactor.error({continuousValues, discreteValues}), 1e-9);
|
||||
}
|
||||
|
||||
namespace test_two_state_estimation {
|
||||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
void addMeasurement(HybridBayesNet &hbn, Key z_key, Key x_key, double sigma) {
|
||||
auto measurement_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
hbn.emplace_shared<GaussianConditional>(z_key, Vector1(0.0), I_1x1, x_key,
|
||||
-I_1x1, measurement_model);
|
||||
}
|
||||
|
||||
/// Create hybrid motion model p(x1 | x0, m1)
|
||||
static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
|
||||
double mu0, double mu1, double sigma0, double sigma1) {
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
|
||||
auto c0 = make_shared<GaussianConditional>(X(1), Vector1(mu0), I_1x1, X(0),
|
||||
-I_1x1, model0),
|
||||
c1 = make_shared<GaussianConditional>(X(1), Vector1(mu1), I_1x1, X(0),
|
||||
-I_1x1, model1);
|
||||
DiscreteKeys discreteParents{m1};
|
||||
return std::make_shared<HybridGaussianConditional>(
|
||||
discreteParents, HybridGaussianConditional::Conditionals(
|
||||
discreteParents, std::vector{c0, c1}));
|
||||
}
|
||||
|
||||
/// Create two state Bayes network with 1 or two measurement models
|
||||
HybridBayesNet CreateBayesNet(
|
||||
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
|
||||
bool add_second_measurement = false) {
|
||||
HybridBayesNet hbn;
|
||||
|
||||
// Add measurement model p(z0 | x0)
|
||||
addMeasurement(hbn, Z(0), X(0), 3.0);
|
||||
|
||||
// Optionally add second measurement model p(z1 | x1)
|
||||
if (add_second_measurement) {
|
||||
addMeasurement(hbn, Z(1), X(1), 3.0);
|
||||
}
|
||||
|
||||
// Add hybrid motion model
|
||||
hbn.push_back(hybridMotionModel);
|
||||
|
||||
// Discrete uniform prior.
|
||||
hbn.emplace_shared<DiscreteConditional>(m1, "50/50");
|
||||
|
||||
return hbn;
|
||||
}
|
||||
|
||||
/// Approximate the discrete marginal P(m1) using importance sampling
|
||||
std::pair<double, double> approximateDiscreteMarginal(
|
||||
const HybridBayesNet &hbn,
|
||||
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
|
||||
const VectorValues &given, size_t N = 100000) {
|
||||
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
|
||||
/// using q(x0) = N(z0, sigmaQ) to sample x0.
|
||||
HybridBayesNet q;
|
||||
q.push_back(hybridMotionModel); // Add hybrid motion model
|
||||
q.emplace_shared<GaussianConditional>(GaussianConditional::FromMeanAndStddev(
|
||||
X(0), given.at(Z(0)), /* sigmaQ = */ 3.0)); // Add proposal q(x0) for x0
|
||||
q.emplace_shared<DiscreteConditional>(m1, "50/50"); // Discrete prior.
|
||||
|
||||
// Do importance sampling
|
||||
double w0 = 0.0, w1 = 0.0;
|
||||
std::mt19937_64 rng(42);
|
||||
for (int i = 0; i < N; i++) {
|
||||
HybridValues sample = q.sample(&rng);
|
||||
sample.insert(given);
|
||||
double weight = hbn.evaluate(sample) / q.evaluate(sample);
|
||||
(sample.atDiscrete(M(1)) == 0) ? w0 += weight : w1 += weight;
|
||||
}
|
||||
double pm1 = w1 / (w0 + w1);
|
||||
std::cout << "p(m0) = " << 100 * (1.0 - pm1) << std::endl;
|
||||
std::cout << "p(m1) = " << 100 * pm1 << std::endl;
|
||||
return {1.0 - pm1, pm1};
|
||||
}
|
||||
|
||||
} // namespace test_two_state_estimation
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model p(z0|x0)p(z1|x1)p(x1|x0,m1)P(m1).
|
||||
*
|
||||
* p(x1|x0,m1) has mode-dependent mean but same covariance.
|
||||
*
|
||||
* Converting to a factor graph gives us ϕ(x0;z0)ϕ(x1;z1)ϕ(x1,x0,m1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on x0, then
|
||||
* the posterior probability of m1 should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel) {
|
||||
using namespace test_two_state_estimation;
|
||||
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma = 0.5;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma, sigma);
|
||||
|
||||
// Start with no measurement on x1, only on x0
|
||||
const Vector1 z0(0.5);
|
||||
|
||||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since no measurement on x1, we hedge our bets
|
||||
// Importance sampling run with 100k samples gives 50.051/49.949
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "50/50");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
|
||||
}
|
||||
|
||||
{
|
||||
// If we set z1=4.5 (>> 2.5 which is the halfway point),
|
||||
// probability of discrete mode should be leaning to m1==1.
|
||||
const Vector1 z1(4.5);
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement on x1, we get a definite result
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "44.3854/55.6146");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
|
||||
*
|
||||
* P(x1|x0,m1) has different means and different covariances.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the P(m1) should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel2) {
|
||||
using namespace test_two_state_estimation;
|
||||
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma0 = 0.5, sigma1 = 2.0;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
|
||||
|
||||
// Start with no measurement on x1, only on x0
|
||||
const Vector1 z0(0.5);
|
||||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Importance sampling run with 100k samples gives 50.095/49.905
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
|
||||
// Since no measurement on x1, we a 50/50 probability
|
||||
auto p_m = bn->at(2)->asDiscrete();
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
const Vector1 z1(4.0); // favors m==1
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "48.3158/51.6842");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
{
|
||||
// Add a different measurement z1 on x1 that favors m==0
|
||||
const Vector1 z1(1.1);
|
||||
given.insert_or_assign(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "55.396/44.604");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).
|
||||
*
|
||||
* p(x1|x0,m1) has the same means but different covariances.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the p(m1) should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel3) {
|
||||
using namespace test_two_state_estimation;
|
||||
|
||||
double mu = 1.0;
|
||||
double sigma0 = 0.5, sigma1 = 2.0;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu, mu, sigma0, sigma1);
|
||||
|
||||
// Start with no measurement on x1, only on x0
|
||||
const Vector1 z0(0.5);
|
||||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Importance sampling run with 100k samples gives 50.095/49.905
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
|
||||
// Since no measurement on x1, we a 50/50 probability
|
||||
auto p_m = bn->at(2)->asDiscrete();
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
const Vector1 z1(4.0); // favors m==1
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "51.7762/48.2238");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
{
|
||||
// Add a different measurement z1 on x1 that favors m==1
|
||||
const Vector1 z1(7.0);
|
||||
given.insert_or_assign(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "49.0762/50.9238");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.005));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative
|
||||
* measurements and vastly different motion model: either stand still or move
|
||||
* far. This yields a very informative posterior.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel4) {
|
||||
using namespace test_two_state_estimation;
|
||||
|
||||
double mu0 = 0.0, mu1 = 10.0;
|
||||
double sigma0 = 0.2, sigma1 = 5.0;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
|
||||
|
||||
// We only check the 2-measurement case
|
||||
const Vector1 z0(0.0), z1(10.0);
|
||||
VectorValues given{{Z(0), z0}, {Z(1), z1}};
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "8.91527/91.0847");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
namespace test_direct_factor_graph {
|
||||
/**
|
||||
* @brief Create a Factor Graph by directly specifying all
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include <numeric>
|
||||
|
||||
#include "Switching.h"
|
||||
#include "gtsam/nonlinear/NonlinearFactor.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -415,7 +416,7 @@ TEST(HybridGaussianISAM, NonTrivial) {
|
|||
// Add odometry factor with discrete modes.
|
||||
Pose2 odometry(1.0, 0.0, 0.0);
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
std::vector<NonlinearFactor::shared_ptr> components;
|
||||
std::vector<NoiseModelFactor::shared_ptr> components;
|
||||
components.emplace_back(
|
||||
new PlanarMotionModel(W(0), W(1), odometry, noise_model)); // moving
|
||||
components.emplace_back(
|
||||
|
|
|
@ -0,0 +1,385 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridMotionModel.cpp
|
||||
* @brief Tests hybrid inference with a simple switching motion model
|
||||
* @author Varun Agrawal
|
||||
* @author Fan Jiang
|
||||
* @author Frank Dellaert
|
||||
* @date December 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/DiscreteConditional.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridGaussianConditional.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <memory>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::Z;
|
||||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
void addMeasurement(HybridBayesNet &hbn, Key z_key, Key x_key, double sigma) {
|
||||
auto measurement_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
hbn.emplace_shared<GaussianConditional>(z_key, Vector1(0.0), I_1x1, x_key,
|
||||
-I_1x1, measurement_model);
|
||||
}
|
||||
|
||||
/// Create hybrid motion model p(x1 | x0, m1)
|
||||
static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
|
||||
double mu0, double mu1, double sigma0, double sigma1) {
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
|
||||
auto c0 = make_shared<GaussianConditional>(X(1), Vector1(mu0), I_1x1, X(0),
|
||||
-I_1x1, model0),
|
||||
c1 = make_shared<GaussianConditional>(X(1), Vector1(mu1), I_1x1, X(0),
|
||||
-I_1x1, model1);
|
||||
return std::make_shared<HybridGaussianConditional>(m1, std::vector{c0, c1});
|
||||
}
|
||||
|
||||
/// Create two state Bayes network with 1 or two measurement models
|
||||
HybridBayesNet CreateBayesNet(
|
||||
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
|
||||
bool add_second_measurement = false) {
|
||||
HybridBayesNet hbn;
|
||||
|
||||
// Add measurement model p(z0 | x0)
|
||||
addMeasurement(hbn, Z(0), X(0), 3.0);
|
||||
|
||||
// Optionally add second measurement model p(z1 | x1)
|
||||
if (add_second_measurement) {
|
||||
addMeasurement(hbn, Z(1), X(1), 3.0);
|
||||
}
|
||||
|
||||
// Add hybrid motion model
|
||||
hbn.push_back(hybridMotionModel);
|
||||
|
||||
// Discrete uniform prior.
|
||||
hbn.emplace_shared<DiscreteConditional>(m1, "50/50");
|
||||
|
||||
return hbn;
|
||||
}
|
||||
|
||||
/// Approximate the discrete marginal P(m1) using importance sampling
|
||||
std::pair<double, double> approximateDiscreteMarginal(
|
||||
const HybridBayesNet &hbn,
|
||||
const HybridGaussianConditional::shared_ptr &hybridMotionModel,
|
||||
const VectorValues &given, size_t N = 100000) {
|
||||
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
|
||||
/// using q(x0) = N(z0, sigmaQ) to sample x0.
|
||||
HybridBayesNet q;
|
||||
q.push_back(hybridMotionModel); // Add hybrid motion model
|
||||
q.emplace_shared<GaussianConditional>(GaussianConditional::FromMeanAndStddev(
|
||||
X(0), given.at(Z(0)), /* sigmaQ = */ 3.0)); // Add proposal q(x0) for x0
|
||||
q.emplace_shared<DiscreteConditional>(m1, "50/50"); // Discrete prior.
|
||||
|
||||
// Do importance sampling
|
||||
double w0 = 0.0, w1 = 0.0;
|
||||
std::mt19937_64 rng(42);
|
||||
for (int i = 0; i < N; i++) {
|
||||
HybridValues sample = q.sample(&rng);
|
||||
sample.insert(given);
|
||||
double weight = hbn.evaluate(sample) / q.evaluate(sample);
|
||||
(sample.atDiscrete(M(1)) == 0) ? w0 += weight : w1 += weight;
|
||||
}
|
||||
double pm1 = w1 / (w0 + w1);
|
||||
std::cout << "p(m0) = " << 100 * (1.0 - pm1) << std::endl;
|
||||
std::cout << "p(m1) = " << 100 * pm1 << std::endl;
|
||||
return {1.0 - pm1, pm1};
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model p(z0|x0)p(z1|x1)p(x1|x0,m1)P(m1).
|
||||
*
|
||||
* p(x1|x0,m1) has mode-dependent mean but same covariance.
|
||||
*
|
||||
* Converting to a factor graph gives us ϕ(x0;z0)ϕ(x1;z1)ϕ(x1,x0,m1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on x0, then
|
||||
* the posterior probability of m1 should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel) {
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma = 0.5;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma, sigma);
|
||||
|
||||
// Start with no measurement on x1, only on x0
|
||||
const Vector1 z0(0.5);
|
||||
|
||||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since no measurement on x1, we hedge our bets
|
||||
// Importance sampling run with 100k samples gives 50.051/49.949
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "50/50");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
|
||||
}
|
||||
|
||||
{
|
||||
// If we set z1=4.5 (>> 2.5 which is the halfway point),
|
||||
// probability of discrete mode should be leaning to m1==1.
|
||||
const Vector1 z1(4.5);
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement on x1, we get a definite result
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "44.3854/55.6146");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
|
||||
*
|
||||
* P(x1|x0,m1) has different means and different covariances.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the P(m1) should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel2) {
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma0 = 0.5, sigma1 = 2.0;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
|
||||
|
||||
// Start with no measurement on x1, only on x0
|
||||
const Vector1 z0(0.5);
|
||||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Importance sampling run with 100k samples gives 50.095/49.905
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
|
||||
// Since no measurement on x1, we a 50/50 probability
|
||||
auto p_m = bn->at(2)->asDiscrete();
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
const Vector1 z1(4.0); // favors m==1
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "48.3158/51.6842");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
{
|
||||
// Add a different measurement z1 on x1 that favors m==0
|
||||
const Vector1 z1(1.1);
|
||||
given.insert_or_assign(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "55.396/44.604");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).
|
||||
*
|
||||
* p(x1|x0,m1) has the same means but different covariances.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the p(m1) should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel3) {
|
||||
double mu = 1.0;
|
||||
double sigma0 = 0.5, sigma1 = 2.0;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu, mu, sigma0, sigma1);
|
||||
|
||||
// Start with no measurement on x1, only on x0
|
||||
const Vector1 z0(0.5);
|
||||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Importance sampling run with 100k samples gives 50.095/49.905
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
|
||||
// Since no measurement on x1, we a 50/50 probability
|
||||
auto p_m = bn->at(2)->asDiscrete();
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
const Vector1 z1(4.0); // favors m==1
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
// equal for several values of {x0,x1}.
|
||||
for (VectorValues vv :
|
||||
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
|
||||
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
|
||||
vv.insert(given); // add measurements for HBN
|
||||
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
|
||||
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
|
||||
gfg.error(hv1) / hbn.error(hv1), 1e-9);
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "51.7762/48.2238");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
{
|
||||
// Add a different measurement z1 on x1 that favors m==1
|
||||
const Vector1 z1(7.0);
|
||||
given.insert_or_assign(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "49.0762/50.9238");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.005));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative
|
||||
* measurements and vastly different motion model: either stand still or move
|
||||
* far. This yields a very informative posterior.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, TwoStateModel4) {
|
||||
double mu0 = 0.0, mu1 = 10.0;
|
||||
double sigma0 = 0.2, sigma1 = 5.0;
|
||||
auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1);
|
||||
|
||||
// We only check the 2-measurement case
|
||||
const Vector1 z0(0.0), z1(10.0);
|
||||
VectorValues given{{Z(0), z0}, {Z(1), z1}};
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "8.91527/91.0847");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -36,6 +36,7 @@
|
|||
#include <numeric>
|
||||
|
||||
#include "Switching.h"
|
||||
#include "gtsam/nonlinear/NonlinearFactor.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -119,7 +120,7 @@ TEST(HybridNonlinearFactorGraph, Resize) {
|
|||
namespace test_motion {
|
||||
gtsam::DiscreteKey m1(M(1), 2);
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
|
||||
std::vector<NonlinearFactor::shared_ptr> components = {
|
||||
std::vector<NoiseModelFactor::shared_ptr> components = {
|
||||
std::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
|
||||
std::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model)};
|
||||
} // namespace test_motion
|
||||
|
@ -207,7 +208,7 @@ TEST(HybridNonlinearFactorGraph, PushBack) {
|
|||
factors.emplace_shared<PriorFactor<Pose2>>(1, Pose2(1, 0, 0), noise);
|
||||
factors.emplace_shared<PriorFactor<Pose2>>(2, Pose2(2, 0, 0), noise);
|
||||
// TODO(Varun) This does not currently work. It should work once HybridFactor
|
||||
// becomes a base class of NonlinearFactor.
|
||||
// becomes a base class of NoiseModelFactor.
|
||||
// hnfg.push_back(factors.begin(), factors.end());
|
||||
|
||||
// EXPECT_LONGS_EQUAL(3, hnfg.size());
|
||||
|
@ -807,7 +808,7 @@ TEST(HybridNonlinearFactorGraph, DefaultDecisionTree) {
|
|||
// Add odometry factor
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
std::vector<NonlinearFactor::shared_ptr> motion_models = {
|
||||
std::vector<NoiseModelFactor::shared_ptr> motion_models = {
|
||||
std::make_shared<PlanarMotionModel>(X(0), X(1), Pose2(0, 0, 0),
|
||||
noise_model),
|
||||
std::make_shared<PlanarMotionModel>(X(0), X(1), odometry, noise_model)};
|
||||
|
@ -874,8 +875,7 @@ static HybridNonlinearFactorGraph CreateFactorGraph(
|
|||
// Create HybridNonlinearFactor
|
||||
// We take negative since we want
|
||||
// the underlying scalar to be log(\sqrt(|2πΣ|))
|
||||
std::vector<NonlinearFactorValuePair> factors{{f0, model0->negLogConstant()},
|
||||
{f1, model1->negLogConstant()}};
|
||||
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
|
||||
|
||||
HybridNonlinearFactor mixtureFactor(m1, factors);
|
||||
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include <numeric>
|
||||
|
||||
#include "Switching.h"
|
||||
#include "gtsam/nonlinear/NonlinearFactor.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -438,7 +439,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
|
|||
noise_model),
|
||||
moving = std::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
|
||||
noise_model);
|
||||
std::vector<NonlinearFactor::shared_ptr> components{moving, still};
|
||||
std::vector<NoiseModelFactor::shared_ptr> components{moving, still};
|
||||
fg.emplace_shared<HybridNonlinearFactor>(DiscreteKey(M(1), 2), components);
|
||||
|
||||
// Add equivalent of ImuFactor
|
||||
|
|
Loading…
Reference in New Issue