added new Python examples using iSAM2

release/4.3a0
jerredchen 2021-10-13 00:13:05 -04:00
parent a74008d6e8
commit 859c5f8d07
2 changed files with 318 additions and 0 deletions

View File

@ -0,0 +1,153 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Pose SLAM example using iSAM2 in the 2D plane.
Author: Jerred Chen, Yusuf Ali
Modelled after:
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
- Pose2SLAMExample by: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
from __future__ import print_function
import math
import numpy as np
from numpy.random import multivariate_normal as mult_gauss
import gtsam
import matplotlib.pyplot as plt
import gtsam.utils.plot as gtsam_plot
def Pose2SLAM_ISAM2_plot(graph, current_estimate):
"""
Plots incremental state of the robot for 2D Pose SLAM using iSAM2
Author: Jerred Chen
Based on version by:
- Ellon Paiva (Python),
- Duy Nguyen Ta and Frank Dellaert (MATLAB)
"""
marginals = gtsam.Marginals(graph, current_estimate)
fig = plt.figure(0)
axes = fig.gca()
plt.cla()
i = 1
while current_estimate.exists(i):
gtsam_plot.plot_pose2(0, current_estimate.atPose2(i), 0.5, marginals.marginalCovariance(i))
i += 1
plt.axis('equal')
axes.set_xlim(-1, 5)
axes.set_ylim(-1, 3)
plt.pause(1)
return marginals
def Pose2SLAM_ISAM2_example():
plt.ion()
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=float)
# Although this example only uses linear measurements and Gaussian noise models, it is important
# to note that iSAM2 can be utilized to its full potential during nonlinear optimization. This example
# simply showcases how iSAM2 may be applied to a Pose2 SLAM problem.
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector3(0.3, 0.3, 0.1))
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector3(0.2, 0.2, 0.1))
# Create a Nonlinear factor graph as well as the data structure to hold state estimates.
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# iSAM2 parameters which can adjust the threshold necessary to force relinearization and how many
# update calls are required to perform the relinearization.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.1)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# The ground truth odometry measurements (without noise) of the robot during the trajectory.
odom_arr = [(2, 0, 0),
(2, 0, math.pi/2),
(2, 0, math.pi/2),
(2, 0, math.pi/2),
(2, 0, math.pi/2)]
# The initial estimates for robot poses 2-5. Pose 1 is initialized by the prior.
# To demonstrate iSAM2 incremental optimization, poor initializations were intentionally inserted.
pose_est = [gtsam.Pose2(2.3, 0.1, -0.2),
gtsam.Pose2(4.1, 0.1, math.pi/2),
gtsam.Pose2(4.0, 2.0, math.pi),
gtsam.Pose2(2.1, 2.1, -math.pi/2),
gtsam.Pose2(1.9, -0.2, 0.2)]
graph.push_back(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), PRIOR_NOISE))
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
def determine_loop_closure(odom, current_estimate, xy_tol=0.6, theta_tol=0.3):
"""
Simple brute force approach which iterates through previous states
and checks for loop closure.
### Parameters:
odom: (numpy.ndarray) 1x3 vector representing noisy odometry (x, y, theta)
measurement in the body frame.
current_estimate: (gtsam.Values) The current estimates computed by iSAM2.
xy_tol: (double) Optional argument for the x-y measurement tolerance.
theta_tol: (double) Optional argument for the theta measurement tolerance.
### Returns:
k: (int) The key of the state which is helping add the loop closure constraint.
If loop closure is not found, then None is returned.
"""
if current_estimate:
prev_est = current_estimate.atPose2(i+1)
rotated_odom = prev_est.rotation().matrix() @ odom[:2]
curr_xy = np.array([prev_est.x() + rotated_odom[0],
prev_est.y() + rotated_odom[1]])
curr_theta = prev_est.theta() + odom[2]
for k in range(1, i+1):
pose_xy = np.array([current_estimate.atPose2(k).x(),
current_estimate.atPose2(k).y()])
pose_theta = current_estimate.atPose2(k).theta()
if (abs(pose_xy - curr_xy) <= xy_tol).all() and \
(abs(pose_theta - curr_theta) <= theta_tol):
return k
current_estimate = None
for i in range(len(odom_arr)):
odom_x, odom_y, odom_theta = odom_arr[i]
# Odometry measurement that is received by the robot and corrupted by gaussian noise
odom = mult_gauss(odom_arr[i], ODOMETRY_NOISE.covariance())
# Determine if there is loop closure based on the odometry measurement and the previous estimate of the state
loop = determine_loop_closure(odom, current_estimate)
if loop:
graph.push_back(gtsam.BetweenFactorPose2(i + 1, loop, gtsam.Pose2(odom_x, odom_y, odom_theta), ODOMETRY_NOISE))
else:
graph.push_back(gtsam.BetweenFactorPose2(i + 1, i + 2, gtsam.Pose2(odom_x, odom_y, odom_theta), ODOMETRY_NOISE))
initial_estimate.insert(i + 2, pose_est[i])
# Incremental update to iSAM2's internal Baye's tree, which only optimizes upon the added variables
# as well as any affected variables
isam.update(graph, initial_estimate)
# Another iSAM2 update can be performed for additional optimization
isam.update()
current_estimate = isam.calculateEstimate()
print("*"*50)
print(f"Inference after State {i+1}:")
print(current_estimate)
marginals = Pose2SLAM_ISAM2_plot(graph, current_estimate)
initial_estimate.clear()
for i in range(1, len(odom_arr)+1):
print(f"X{i} covariance:\n{marginals.marginalCovariance(i)}\n")
plt.ioff()
plt.show()
if __name__ == "__main__":
Pose2SLAM_ISAM2_example()

View File

@ -0,0 +1,165 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Pose SLAM example using iSAM2 in 3D space.
Author: Jerred Chen
Modelled after version by:
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
"""
from __future__ import print_function
import gtsam
from gtsam import Pose3, Rot3
from gtsam.symbol_shorthand import X
import gtsam.utils.plot as gtsam_plot
import numpy as np
from numpy import cos, sin, pi
from numpy.random import multivariate_normal as mult_gauss
import matplotlib.pyplot as plt
def Pose3SLAM_ISAM2_plot(graph, current_estimate):
"""
Plots incremental state of the robot for 3D Pose SLAM using iSAM2
Author: Jerred Chen
Based on version by:
- Ellon Paiva (Python),
- Duy Nguyen Ta and Frank Dellaert (MATLAB)
"""
marginals = gtsam.Marginals(graph, current_estimate)
fig = plt.figure(0)
axes = fig.gca(projection='3d')
plt.cla()
i = 0
while current_estimate.exists(X(i)):
gtsam_plot.plot_pose3(0, current_estimate.atPose3(X(i)), 10,
marginals.marginalCovariance(X(i)))
i += 1
axes.set_xlim3d(-30, 45)
axes.set_ylim3d(-30, 45)
axes.set_zlim3d(-30, 45)
plt.pause(1)
return marginals
def createPoses():
"""
Creates ground truth poses of the robot.
"""
P0 = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
P1 = np.array([[0, -1, 0, 15],
[1, 0, 0, 15],
[0, 0, 1, 20],
[0, 0, 0, 1]])
P2 = np.array([[cos(pi/4), 0, sin(pi/4), 30],
[0, 1, 0, 30],
[-sin(pi/4), 0, cos(pi/4), 30],
[0, 0, 0, 1]])
P3 = np.array([[0, 1, 0, 30],
[0, 0, -1, 0],
[-1, 0, 0, -15],
[0, 0, 0, 1]])
P4 = np.array([[-1, 0, 0, 0],
[0, -1, 0, -10],
[0, 0, 1, -10],
[0, 0, 0, 1]])
P5 = P0[:]
return [Pose3(P0), Pose3(P1), Pose3(P2), Pose3(P3), Pose3(P4), Pose3(P5)]
def Pose3_ISAM2_example():
"""
"""
plt.ion()
def vector6(x, y, z, a, b, c):
"""Create 6d double numpy array."""
return np.array([x, y, z, a, b, c], dtype=float)
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector6(0.1, 0.1, 0.1, 0.3, 0.3, 0.3))
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector6(0.1, 0.1, 0.1, 0.2, 0.2, 0.2))
poses = createPoses()
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.1)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Add prior factor to the first pose
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], PRIOR_NOISE))
initial_estimate.insert(X(0), poses[0].compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
def determine_loop_closure(odom, current_estimate, xyz_tol=0.6, rot_tol=0.3):
"""
Simple brute force approach which iterates through previous states
and checks for loop closure.
### Parameters:
odom: (numpy.ndarray) 1x6 vector representing noisy odometry transformation
measurement in the body frame, [roll, pitch, yaw, x, y, z]
current_estimate: (gtsam.Values) The current estimates computed by iSAM2.
xyz_tol: (double) Optional argument for the translational tolerance.
rot_tol: (double) Optional argument for the rotational tolerance.
### Returns:
k: (int) The key of the state which is helping add the loop closure constraint.
If loop closure is not found, then None is returned.
"""
if current_estimate:
rot = Rot3.RzRyRx(odom[:3])
odom_tf = Pose3(rot, odom[3:6].reshape(-1,1))
prev_est = current_estimate.atPose3(X(i-1))
curr_est = prev_est.transformPoseFrom(odom_tf)
for k in range(i):
pose = current_estimate.atPose3(X(k))
if (abs(pose.matrix()[:3,:3] - curr_est.matrix()[:3,:3]) <= rot_tol).all() and \
(abs(pose.matrix()[:3,3] - curr_est.matrix()[:3,3]) <= xyz_tol).all():
return k
current_estimate = None
for i in range(1, len(poses)):
# The odometry "ground truth" measurement between poses
odom_tf = poses[i-1].transformPoseTo(poses[i])
odom_xyz = odom_tf.x(), odom_tf.y(), odom_tf.z()
odom_rpy = odom_tf.rotation().rpy()
# Odometry measurement that is received by the robot and corrupted by gaussian noise
measurement = mult_gauss(np.hstack((odom_rpy,odom_xyz)), ODOMETRY_NOISE.covariance())
loop = determine_loop_closure(measurement, current_estimate)
if loop is not None:
graph.push_back(gtsam.BetweenFactorPose3(X(i-1), X(loop), gtsam.Pose3(odom_tf), ODOMETRY_NOISE))
else:
graph.push_back(gtsam.BetweenFactorPose3(X(i-1), X(i), gtsam.Pose3(odom_tf), ODOMETRY_NOISE))
# Intentionally insert poor initializations
initial_estimate.insert(X(i), poses[i].compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
isam.update(graph, initial_estimate)
isam.update()
current_estimate = isam.calculateEstimate()
print("*"*50)
print(f"Inference after State {i}:")
print(current_estimate)
marginals = Pose3SLAM_ISAM2_plot(graph, current_estimate)
initial_estimate.clear()
i = 0
while current_estimate.exists(X(i)):
print(f"X{i} covariance:\n{marginals.marginalCovariance(X(i))}\n")
i += 1
plt.ioff()
plt.show()
if __name__ == '__main__':
Pose3_ISAM2_example()