gtsam/python/gtsam/examples/Pose3ISAM2Example.py

166 lines
6.0 KiB
Python

"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Pose SLAM example using iSAM2 in 3D space.
Author: Jerred Chen
Modelled after version by:
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
"""
from __future__ import print_function
import gtsam
from gtsam import Pose3, Rot3
from gtsam.symbol_shorthand import X
import gtsam.utils.plot as gtsam_plot
import numpy as np
from numpy import cos, sin, pi
from numpy.random import multivariate_normal as mult_gauss
import matplotlib.pyplot as plt
def Pose3SLAM_ISAM2_plot(graph, current_estimate):
"""
Plots incremental state of the robot for 3D Pose SLAM using iSAM2
Author: Jerred Chen
Based on version by:
- Ellon Paiva (Python),
- Duy Nguyen Ta and Frank Dellaert (MATLAB)
"""
marginals = gtsam.Marginals(graph, current_estimate)
fig = plt.figure(0)
axes = fig.gca(projection='3d')
plt.cla()
i = 0
while current_estimate.exists(X(i)):
gtsam_plot.plot_pose3(0, current_estimate.atPose3(X(i)), 10,
marginals.marginalCovariance(X(i)))
i += 1
axes.set_xlim3d(-30, 45)
axes.set_ylim3d(-30, 45)
axes.set_zlim3d(-30, 45)
plt.pause(1)
return marginals
def createPoses():
"""
Creates ground truth poses of the robot.
"""
P0 = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
P1 = np.array([[0, -1, 0, 15],
[1, 0, 0, 15],
[0, 0, 1, 20],
[0, 0, 0, 1]])
P2 = np.array([[cos(pi/4), 0, sin(pi/4), 30],
[0, 1, 0, 30],
[-sin(pi/4), 0, cos(pi/4), 30],
[0, 0, 0, 1]])
P3 = np.array([[0, 1, 0, 30],
[0, 0, -1, 0],
[-1, 0, 0, -15],
[0, 0, 0, 1]])
P4 = np.array([[-1, 0, 0, 0],
[0, -1, 0, -10],
[0, 0, 1, -10],
[0, 0, 0, 1]])
P5 = P0[:]
return [Pose3(P0), Pose3(P1), Pose3(P2), Pose3(P3), Pose3(P4), Pose3(P5)]
def Pose3_ISAM2_example():
"""
"""
plt.ion()
def vector6(x, y, z, a, b, c):
"""Create 6d double numpy array."""
return np.array([x, y, z, a, b, c], dtype=float)
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector6(0.1, 0.1, 0.1, 0.3, 0.3, 0.3))
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector6(0.1, 0.1, 0.1, 0.2, 0.2, 0.2))
poses = createPoses()
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.1)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Add prior factor to the first pose
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], PRIOR_NOISE))
initial_estimate.insert(X(0), poses[0].compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
def determine_loop_closure(odom, current_estimate, xyz_tol=0.6, rot_tol=0.3):
"""
Simple brute force approach which iterates through previous states
and checks for loop closure.
### Parameters:
odom: (numpy.ndarray) 1x6 vector representing noisy odometry transformation
measurement in the body frame, [roll, pitch, yaw, x, y, z]
current_estimate: (gtsam.Values) The current estimates computed by iSAM2.
xyz_tol: (double) Optional argument for the translational tolerance.
rot_tol: (double) Optional argument for the rotational tolerance.
### Returns:
k: (int) The key of the state which is helping add the loop closure constraint.
If loop closure is not found, then None is returned.
"""
if current_estimate:
rot = Rot3.RzRyRx(odom[:3])
odom_tf = Pose3(rot, odom[3:6].reshape(-1,1))
prev_est = current_estimate.atPose3(X(i-1))
curr_est = prev_est.transformPoseFrom(odom_tf)
for k in range(i):
pose = current_estimate.atPose3(X(k))
if (abs(pose.matrix()[:3,:3] - curr_est.matrix()[:3,:3]) <= rot_tol).all() and \
(abs(pose.matrix()[:3,3] - curr_est.matrix()[:3,3]) <= xyz_tol).all():
return k
current_estimate = None
for i in range(1, len(poses)):
# The odometry "ground truth" measurement between poses
odom_tf = poses[i-1].transformPoseTo(poses[i])
odom_xyz = odom_tf.x(), odom_tf.y(), odom_tf.z()
odom_rpy = odom_tf.rotation().rpy()
# Odometry measurement that is received by the robot and corrupted by gaussian noise
measurement = mult_gauss(np.hstack((odom_rpy,odom_xyz)), ODOMETRY_NOISE.covariance())
loop = determine_loop_closure(measurement, current_estimate)
if loop is not None:
graph.push_back(gtsam.BetweenFactorPose3(X(i-1), X(loop), gtsam.Pose3(odom_tf), ODOMETRY_NOISE))
else:
graph.push_back(gtsam.BetweenFactorPose3(X(i-1), X(i), gtsam.Pose3(odom_tf), ODOMETRY_NOISE))
# Intentionally insert poor initializations
initial_estimate.insert(X(i), poses[i].compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
isam.update(graph, initial_estimate)
isam.update()
current_estimate = isam.calculateEstimate()
print("*"*50)
print(f"Inference after State {i}:")
print(current_estimate)
marginals = Pose3SLAM_ISAM2_plot(graph, current_estimate)
initial_estimate.clear()
i = 0
while current_estimate.exists(X(i)):
print(f"X{i} covariance:\n{marginals.marginalCovariance(X(i))}\n")
i += 1
plt.ioff()
plt.show()
if __name__ == '__main__':
Pose3_ISAM2_example()