commit
82a516a40b
|
@ -17,37 +17,117 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/basis/Chebyshev2.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
double Chebyshev2::Point(size_t N, int j, double a, double b) {
|
||||
double Chebyshev2::Point(size_t N, int j) {
|
||||
if (N == 1) return 0.0;
|
||||
assert(j >= 0 && size_t(j) < N);
|
||||
const double dtheta = M_PI / (N > 1 ? (N - 1) : 1);
|
||||
// We add -PI so that we get values ordered from -1 to +1
|
||||
// sin(-M_PI_2 + dtheta*j); also works
|
||||
return a + (b - a) * (1. + cos(-M_PI + dtheta * j)) / 2;
|
||||
const double dTheta = M_PI / (N - 1);
|
||||
return -cos(dTheta * j);
|
||||
}
|
||||
|
||||
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
|
||||
// Allocate space for weights
|
||||
Weights weights(N);
|
||||
double Chebyshev2::Point(size_t N, int j, double a, double b) {
|
||||
if (N == 1) return (a + b) / 2;
|
||||
return a + (b - a) * (Point(N, j) + 1.0) / 2.0;
|
||||
}
|
||||
|
||||
// We start by getting distances from x to all Chebyshev points
|
||||
// as well as getting smallest distance
|
||||
Weights distances(N);
|
||||
Vector Chebyshev2::Points(size_t N) {
|
||||
Vector points(N);
|
||||
if (N == 1) {
|
||||
points(0) = 0.0;
|
||||
return points;
|
||||
}
|
||||
size_t half = N / 2;
|
||||
const double dTheta = M_PI / (N - 1);
|
||||
for (size_t j = 0; j < half; ++j) {
|
||||
double c = cos(j * dTheta);
|
||||
points(j) = -c;
|
||||
points(N - 1 - j) = c;
|
||||
}
|
||||
if (N % 2 == 1) {
|
||||
points(half) = 0.0;
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
const double dj =
|
||||
x - Point(N, j, a, b); // only thing that depends on [a,b]
|
||||
Vector Chebyshev2::Points(size_t N, double a, double b) {
|
||||
Vector points = Points(N);
|
||||
const double T1 = (a + b) / 2, T2 = (b - a) / 2;
|
||||
points = T1 + (T2 * points).array();
|
||||
return points;
|
||||
}
|
||||
|
||||
if (std::abs(dj) < 1e-12) {
|
||||
// exceptional case: x coincides with a Chebyshev point
|
||||
weights.setZero();
|
||||
weights(j) = 1;
|
||||
return weights;
|
||||
namespace {
|
||||
// Find the index of the Chebyshev point that coincides with x
|
||||
// within the interval [a, b]. If no such point exists, return nullopt.
|
||||
std::optional<size_t> coincidentPoint(size_t N, double x, double a, double b, double tol = 1e-12) {
|
||||
if (N == 0) return std::nullopt;
|
||||
if (N == 1) {
|
||||
double mid = (a + b) / 2;
|
||||
if (std::abs(x - mid) < tol) return 0;
|
||||
} else {
|
||||
// Compute normalized value y such that cos(j*dTheta) = y.
|
||||
double y = 1.0 - 2.0 * (x - a) / (b - a);
|
||||
if (y < -1.0 || y > 1.0) return std::nullopt;
|
||||
double dTheta = M_PI / (N - 1);
|
||||
double jCandidate = std::acos(y) / dTheta;
|
||||
size_t jRounded = static_cast<size_t>(std::round(jCandidate));
|
||||
if (std::abs(jCandidate - jRounded) < tol) return jRounded;
|
||||
}
|
||||
distances(j) = dj;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Get signed distances from x to all Chebyshev points
|
||||
Vector signedDistances(size_t N, double x, double a, double b) {
|
||||
Vector result(N);
|
||||
const Vector points = Chebyshev2::Points(N, a, b);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
const double dj = x - points[j];
|
||||
result(j) = dj;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Helper function to calculate a row of the differentiation matrix, [-1,1] interval
|
||||
Vector differentiationMatrixRow(size_t N, const Vector& points, size_t i) {
|
||||
Vector row(N);
|
||||
const size_t K = N - 1;
|
||||
double xi = points(i);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
if (i == j) {
|
||||
// Diagonal elements
|
||||
if (i == 0 || i == K)
|
||||
row(j) = (i == 0 ? -1 : 1) * (2.0 * K * K + 1) / 6.0;
|
||||
else
|
||||
row(j) = -xi / (2.0 * (1.0 - xi * xi));
|
||||
}
|
||||
else {
|
||||
double xj = points(j);
|
||||
double ci = (i == 0 || i == K) ? 2. : 1.;
|
||||
double cj = (j == 0 || j == K) ? 2. : 1.;
|
||||
double t = ((i + j) % 2) == 0 ? 1 : -1;
|
||||
row(j) = (ci / cj) * t / (xi - xj);
|
||||
}
|
||||
}
|
||||
return row;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
|
||||
// We start by getting distances from x to all Chebyshev points
|
||||
const Vector distances = signedDistances(N, x, a, b);
|
||||
|
||||
Weights weights(N);
|
||||
if (auto j = coincidentPoint(N, x, a, b)) {
|
||||
// exceptional case: x coincides with a Chebyshev point
|
||||
weights.setZero();
|
||||
weights(*j) = 1;
|
||||
return weights;
|
||||
}
|
||||
|
||||
// Beginning of interval, j = 0, x(0) = a
|
||||
|
@ -69,46 +149,9 @@ Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
|
|||
}
|
||||
|
||||
Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
|
||||
// Allocate space for weights
|
||||
Weights weightDerivatives(N);
|
||||
|
||||
// toggle variable so we don't need to use `pow` for -1
|
||||
double t = -1;
|
||||
|
||||
// We start by getting distances from x to all Chebyshev points
|
||||
// as well as getting smallest distance
|
||||
Weights distances(N);
|
||||
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
const double dj =
|
||||
x - Point(N, j, a, b); // only thing that depends on [a,b]
|
||||
if (std::abs(dj) < 1e-12) {
|
||||
// exceptional case: x coincides with a Chebyshev point
|
||||
weightDerivatives.setZero();
|
||||
// compute the jth row of the differentiation matrix for this point
|
||||
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
|
||||
for (size_t k = 0; k < N; k++) {
|
||||
if (j == 0 && k == 0) {
|
||||
// we reverse the sign since we order the cheb points from -1 to 1
|
||||
weightDerivatives(k) = -(cj * (N - 1) * (N - 1) + 1) / 6.0;
|
||||
} else if (j == N - 1 && k == N - 1) {
|
||||
// we reverse the sign since we order the cheb points from -1 to 1
|
||||
weightDerivatives(k) = (cj * (N - 1) * (N - 1) + 1) / 6.0;
|
||||
} else if (k == j) {
|
||||
double xj = Point(N, j);
|
||||
double xj2 = xj * xj;
|
||||
weightDerivatives(k) = -0.5 * xj / (1 - xj2);
|
||||
} else {
|
||||
double xj = Point(N, j);
|
||||
double xk = Point(N, k);
|
||||
double ck = (k == 0 || k == N - 1) ? 2. : 1.;
|
||||
t = ((j + k) % 2) == 0 ? 1 : -1;
|
||||
weightDerivatives(k) = (cj / ck) * t / (xj - xk);
|
||||
}
|
||||
}
|
||||
return 2 * weightDerivatives / (b - a);
|
||||
}
|
||||
distances(j) = dj;
|
||||
if (auto j = coincidentPoint(N, x, a, b)) {
|
||||
// exceptional case: x coincides with a Chebyshev point
|
||||
return differentiationMatrixRow(N, Points(N), *j) / ((b - a) / 2.0);
|
||||
}
|
||||
|
||||
// This section of code computes the derivative of
|
||||
|
@ -118,8 +161,9 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
|
|||
// g and k are multiplier terms which represent the derivatives of
|
||||
// the numerator and denominator
|
||||
double g = 0, k = 0;
|
||||
double w = 1;
|
||||
double w;
|
||||
|
||||
const Vector distances = signedDistances(N, x, a, b);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
if (j == 0 || j == N - 1) {
|
||||
w = 0.5;
|
||||
|
@ -127,7 +171,7 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
|
|||
w = 1.0;
|
||||
}
|
||||
|
||||
t = (j % 2 == 0) ? 1 : -1;
|
||||
double t = (j % 2 == 0) ? 1 : -1;
|
||||
|
||||
double c = t / distances(j);
|
||||
g += w * c;
|
||||
|
@ -137,7 +181,8 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
|
|||
double s = 1; // changes sign s at every iteration
|
||||
double g2 = g * g;
|
||||
|
||||
for (size_t j = 0; j < N; j++, s = -s) {
|
||||
Weights weightDerivatives(N);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
// Beginning of interval, j = 0, x0 = -1.0 and end of interval, j = N-1,
|
||||
// x0 = 1.0
|
||||
if (j == 0 || j == N - 1) {
|
||||
|
@ -148,67 +193,121 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
|
|||
}
|
||||
weightDerivatives(j) = (w * -s / (g * distances(j) * distances(j))) -
|
||||
(w * -s * k / (g2 * distances(j)));
|
||||
s *= -1;
|
||||
}
|
||||
|
||||
return weightDerivatives;
|
||||
}
|
||||
|
||||
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a,
|
||||
double b) {
|
||||
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N) {
|
||||
DiffMatrix D(N, N);
|
||||
if (N == 1) {
|
||||
D(0, 0) = 1;
|
||||
return D;
|
||||
}
|
||||
|
||||
// toggle variable so we don't need to use `pow` for -1
|
||||
double t = -1;
|
||||
|
||||
const Vector points = Points(N);
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
double xi = Point(N, i);
|
||||
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
if (i == 0 && j == 0) {
|
||||
// we reverse the sign since we order the cheb points from -1 to 1
|
||||
D(i, j) = -(ci * (N - 1) * (N - 1) + 1) / 6.0;
|
||||
} else if (i == N - 1 && j == N - 1) {
|
||||
// we reverse the sign since we order the cheb points from -1 to 1
|
||||
D(i, j) = (ci * (N - 1) * (N - 1) + 1) / 6.0;
|
||||
} else if (i == j) {
|
||||
double xi2 = xi * xi;
|
||||
D(i, j) = -xi / (2 * (1 - xi2));
|
||||
} else {
|
||||
double xj = Point(N, j);
|
||||
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
|
||||
t = ((i + j) % 2) == 0 ? 1 : -1;
|
||||
D(i, j) = (ci / cj) * t / (xi - xj);
|
||||
}
|
||||
}
|
||||
D.row(i) = differentiationMatrixRow(N, points, i);
|
||||
}
|
||||
// scale the matrix to the range
|
||||
return D / ((b - a) / 2.0);
|
||||
return D;
|
||||
}
|
||||
|
||||
Weights Chebyshev2::IntegrationWeights(size_t N, double a, double b) {
|
||||
// Allocate space for weights
|
||||
Weights weights(N);
|
||||
size_t K = N - 1, // number of intervals between N points
|
||||
K2 = K * K;
|
||||
weights(0) = 0.5 * (b - a) / (K2 + K % 2 - 1);
|
||||
weights(N - 1) = weights(0);
|
||||
|
||||
size_t last_k = K / 2 + K % 2 - 1;
|
||||
|
||||
for (size_t i = 1; i <= N - 2; ++i) {
|
||||
double theta = i * M_PI / K;
|
||||
weights(i) = (K % 2 == 0) ? 1 - cos(K * theta) / (K2 - 1) : 1;
|
||||
|
||||
for (size_t k = 1; k <= last_k; ++k)
|
||||
weights(i) -= 2 * cos(2 * k * theta) / (4 * k * k - 1);
|
||||
weights(i) *= (b - a) / K;
|
||||
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a, double b) {
|
||||
DiffMatrix D(N, N);
|
||||
if (N == 1) {
|
||||
D(0, 0) = 1;
|
||||
return D;
|
||||
}
|
||||
|
||||
// Calculate for [-1,1] and scale for [a,b]
|
||||
return DifferentiationMatrix(N) / ((b - a) / 2.0);
|
||||
}
|
||||
|
||||
Matrix Chebyshev2::IntegrationMatrix(size_t N) {
|
||||
// Obtain the differentiation matrix.
|
||||
const Matrix D = DifferentiationMatrix(N);
|
||||
|
||||
// Compute the pseudo-inverse of the differentiation matrix.
|
||||
Eigen::JacobiSVD<Matrix> svd(D, Eigen::ComputeThinU | Eigen::ComputeThinV);
|
||||
const auto& S = svd.singularValues();
|
||||
Matrix invS = Matrix::Zero(N, N);
|
||||
for (size_t i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i);
|
||||
Matrix P = svd.matrixV() * invS * svd.matrixU().transpose();
|
||||
|
||||
// Return a version of P that makes sure (P*f)(0) = 0.
|
||||
const Weights row0 = P.row(0);
|
||||
P.rowwise() -= row0;
|
||||
return P;
|
||||
}
|
||||
|
||||
Matrix Chebyshev2::IntegrationMatrix(size_t N, double a, double b) {
|
||||
return IntegrationMatrix(N) * (b - a) / 2.0;
|
||||
}
|
||||
|
||||
/*
|
||||
Trefethen00book, pg 128, clencurt.m
|
||||
Note that N in clencurt.m is 1 less than our N, we call it K below.
|
||||
K = N-1;
|
||||
theta = pi*(0:K)'/K;
|
||||
w = zeros(1,N); ii = 2:K; v = ones(K-1, 1);
|
||||
if mod(K,2) == 0
|
||||
w(1) = 1/(K^2-1); w(N) = w(1);
|
||||
for k=1:K/2-1, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||
v = v - cos(K*theta(ii))/(K^2-1);
|
||||
else
|
||||
w(1) = 1/K^2; w(N) = w(1);
|
||||
for k=1:K/2, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||
end
|
||||
w(ii) = 2*v/K;
|
||||
*/
|
||||
Weights Chebyshev2::IntegrationWeights(size_t N) {
|
||||
Weights weights(N);
|
||||
const size_t K = N - 1, // number of intervals between N points
|
||||
K2 = K * K;
|
||||
|
||||
// Compute endpoint weight.
|
||||
weights(0) = 1.0 / (K2 + K % 2 - 1);
|
||||
weights(N - 1) = weights(0);
|
||||
|
||||
// Compute up to the middle; mirror symmetry holds.
|
||||
const size_t mid = (N - 1) / 2;
|
||||
double dTheta = M_PI / K;
|
||||
for (size_t i = 1; i <= mid; ++i) {
|
||||
double w = (K % 2 == 0) ? 1 - cos(i * M_PI) / (K2 - 1) : 1;
|
||||
const size_t last_k = K / 2 + K % 2 - 1;
|
||||
const double theta = i * dTheta;
|
||||
for (size_t k = 1; k <= last_k; ++k)
|
||||
w -= 2.0 * cos(2 * k * theta) / (4 * k * k - 1);
|
||||
w *= 2.0 / K;
|
||||
weights(i) = w;
|
||||
weights(N - 1 - i) = w;
|
||||
}
|
||||
return weights;
|
||||
}
|
||||
|
||||
Weights Chebyshev2::IntegrationWeights(size_t N, double a, double b) {
|
||||
return IntegrationWeights(N) * (b - a) / 2.0;
|
||||
}
|
||||
|
||||
Weights Chebyshev2::DoubleIntegrationWeights(size_t N) {
|
||||
// we have w * P, where w are the Clenshaw-Curtis weights and P is the integration matrix
|
||||
// But P does not by default return a function starting at zero.
|
||||
return Chebyshev2::IntegrationWeights(N) * Chebyshev2::IntegrationMatrix(N);
|
||||
}
|
||||
|
||||
Weights Chebyshev2::DoubleIntegrationWeights(size_t N, double a, double b) {
|
||||
return Chebyshev2::IntegrationWeights(N, a, b) * Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create vector of values at Chebyshev points given scalar-valued function.
|
||||
*/
|
||||
Vector Chebyshev2::vector(std::function<double(double)> f, size_t N, double a, double b) {
|
||||
Vector fvals(N);
|
||||
const Vector points = Points(N, a, b);
|
||||
for (size_t j = 0; j < N; j++) fvals(j) = f(points(j));
|
||||
return fvals;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -51,9 +51,17 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
|||
using Parameters = Eigen::Matrix<double, /*Nx1*/ -1, 1>;
|
||||
using DiffMatrix = Eigen::Matrix<double, /*NxN*/ -1, -1>;
|
||||
|
||||
/**
|
||||
* @brief Specific Chebyshev point, within [-1,1] interval.
|
||||
*
|
||||
* @param N The degree of the polynomial
|
||||
* @param j The index of the Chebyshev point
|
||||
* @return double
|
||||
*/
|
||||
static double Point(size_t N, int j);
|
||||
|
||||
/**
|
||||
* @brief Specific Chebyshev point, within [a,b] interval.
|
||||
* Default interval is [-1, 1]
|
||||
*
|
||||
* @param N The degree of the polynomial
|
||||
* @param j The index of the Chebyshev point
|
||||
|
@ -61,24 +69,13 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
|||
* @param b Upper bound of interval (default: 1)
|
||||
* @return double
|
||||
*/
|
||||
static double Point(size_t N, int j, double a = -1, double b = 1);
|
||||
static double Point(size_t N, int j, double a, double b);
|
||||
|
||||
/// All Chebyshev points
|
||||
static Vector Points(size_t N) {
|
||||
Vector points(N);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
points(j) = Point(N, j);
|
||||
}
|
||||
return points;
|
||||
}
|
||||
static Vector Points(size_t N);
|
||||
|
||||
/// All Chebyshev points, within [a,b] interval
|
||||
static Vector Points(size_t N, double a, double b) {
|
||||
Vector points = Points(N);
|
||||
const double T1 = (a + b) / 2, T2 = (b - a) / 2;
|
||||
points = T1 + (T2 * points).array();
|
||||
return points;
|
||||
}
|
||||
static Vector Points(size_t N, double a, double b);
|
||||
|
||||
/**
|
||||
* Evaluate Chebyshev Weights on [-1,1] at any x up to order N-1 (N values)
|
||||
|
@ -88,53 +85,61 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
|||
* obtain a linear map from parameter vectors f to interpolated values f(x).
|
||||
* Optional [a,b] interval can be specified as well.
|
||||
*/
|
||||
static Weights CalculateWeights(size_t N, double x, double a = -1,
|
||||
double b = 1);
|
||||
static Weights CalculateWeights(size_t N, double x, double a = -1, double b = 1);
|
||||
|
||||
/**
|
||||
* Evaluate derivative of barycentric weights.
|
||||
* This is easy and efficient via the DifferentiationMatrix.
|
||||
*/
|
||||
static Weights DerivativeWeights(size_t N, double x, double a = -1,
|
||||
double b = 1);
|
||||
static Weights DerivativeWeights(size_t N, double x, double a = -1, double b = 1);
|
||||
|
||||
/// compute D = differentiation matrix, Trefethen00book p.53
|
||||
/// when given a parameter vector f of function values at the Chebyshev
|
||||
/// Compute D = differentiation matrix, Trefethen00book p.53
|
||||
/// When given a parameter vector f of function values at the Chebyshev
|
||||
/// points, D*f are the values of f'.
|
||||
/// https://people.maths.ox.ac.uk/trefethen/8all.pdf Theorem 8.4
|
||||
static DiffMatrix DifferentiationMatrix(size_t N, double a = -1,
|
||||
double b = 1);
|
||||
static DiffMatrix DifferentiationMatrix(size_t N);
|
||||
|
||||
/// Compute D = differentiation matrix, for interval [a,b]
|
||||
static DiffMatrix DifferentiationMatrix(size_t N, double a, double b);
|
||||
|
||||
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P such that for any f,
|
||||
/// F = P * f recovers F (the antiderivative) satisfying f = D * F and F(0)=0.
|
||||
static Matrix IntegrationMatrix(size_t N);
|
||||
|
||||
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P for interval [a,b]
|
||||
static Matrix IntegrationMatrix(size_t N, double a, double b);
|
||||
|
||||
/**
|
||||
* Evaluate Clenshaw-Curtis integration weights.
|
||||
* Calculate Clenshaw-Curtis integration weights.
|
||||
* Trefethen00book, pg 128, clencurt.m
|
||||
* Note that N in clencurt.m is 1 less than our N
|
||||
* K = N-1;
|
||||
theta = pi*(0:K)'/K;
|
||||
w = zeros(1,N); ii = 2:K; v = ones(K-1, 1);
|
||||
if mod(K,2) == 0
|
||||
w(1) = 1/(K^2-1); w(N) = w(1);
|
||||
for k=1:K/2-1, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||
v = v - cos(K*theta(ii))/(K^2-1);
|
||||
else
|
||||
w(1) = 1/K^2; w(N) = w(1);
|
||||
for k=1:K/2, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||
end
|
||||
w(ii) = 2*v/K;
|
||||
|
||||
*/
|
||||
static Weights IntegrationWeights(size_t N, double a = -1, double b = 1);
|
||||
static Weights IntegrationWeights(size_t N);
|
||||
|
||||
/// Calculate Clenshaw-Curtis integration weights, for interval [a,b]
|
||||
static Weights IntegrationWeights(size_t N, double a, double b);
|
||||
|
||||
/**
|
||||
* Create matrix of values at Chebyshev points given vector-valued function.
|
||||
* Calculate Double Clenshaw-Curtis integration weights
|
||||
* We compute them as W * P, where W are the Clenshaw-Curtis weights and P is
|
||||
* the integration matrix.
|
||||
*/
|
||||
static Weights DoubleIntegrationWeights(size_t N);
|
||||
|
||||
/// Calculate Double Clenshaw-Curtis integration weights, for interval [a,b]
|
||||
static Weights DoubleIntegrationWeights(size_t N, double a, double b);
|
||||
|
||||
/// Create matrix of values at Chebyshev points given vector-valued function.
|
||||
static Vector vector(std::function<double(double)> f,
|
||||
size_t N, double a = -1, double b = 1);
|
||||
|
||||
/// Create matrix of values at Chebyshev points given vector-valued function.
|
||||
template <size_t M>
|
||||
static Matrix matrix(std::function<Eigen::Matrix<double, M, 1>(double)> f,
|
||||
size_t N, double a = -1, double b = 1) {
|
||||
size_t N, double a = -1, double b = 1) {
|
||||
Matrix Xmat(M, N);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
Xmat.col(j) = f(Point(N, j, a, b));
|
||||
}
|
||||
const Vector points = Points(N, a, b);
|
||||
for (size_t j = 0; j < N; j++) Xmat.col(j) = f(points(j));
|
||||
return Xmat;
|
||||
}
|
||||
}; // \ Chebyshev2
|
||||
|
|
|
@ -9,13 +9,13 @@
|
|||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testChebyshev2.cpp
|
||||
* @date July 4, 2020
|
||||
* @author Varun Agrawal
|
||||
* @brief Unit tests for Chebyshev Basis Decompositions via pseudo-spectral
|
||||
* methods
|
||||
*/
|
||||
/**
|
||||
* @file testChebyshev2.cpp
|
||||
* @date July 4, 2020
|
||||
* @author Varun Agrawal
|
||||
* @brief Unit tests for Chebyshev Basis Decompositions via pseudo-spectral
|
||||
* methods
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
|
@ -28,18 +28,11 @@
|
|||
#include <cstddef>
|
||||
#include <functional>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
namespace {
|
||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
|
||||
|
||||
const size_t N = 32;
|
||||
} // namespace
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, Point) {
|
||||
static const int N = 5;
|
||||
static const size_t N = 5;
|
||||
auto points = Chebyshev2::Points(N);
|
||||
Vector expected(N);
|
||||
expected << -1., -sqrt(2.) / 2., 0., sqrt(2.) / 2., 1.;
|
||||
|
@ -57,7 +50,7 @@ TEST(Chebyshev2, Point) {
|
|||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, PointInInterval) {
|
||||
static const int N = 5;
|
||||
static const size_t N = 5;
|
||||
auto points = Chebyshev2::Points(N, 0, 20);
|
||||
Vector expected(N);
|
||||
expected << 0., 1. - sqrt(2.) / 2., 1., 1. + sqrt(2.) / 2., 2.;
|
||||
|
@ -77,7 +70,7 @@ TEST(Chebyshev2, PointInInterval) {
|
|||
//******************************************************************************
|
||||
// InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, 0.5]
|
||||
TEST(Chebyshev2, Interpolate2) {
|
||||
size_t N = 3;
|
||||
const size_t N = 3;
|
||||
Chebyshev2::EvaluationFunctor fx(N, 0.5);
|
||||
Vector f(N);
|
||||
f << 4, 2, 6;
|
||||
|
@ -121,16 +114,17 @@ TEST(Chebyshev2, InterpolateVector) {
|
|||
|
||||
// Check derivative
|
||||
std::function<Vector2(Matrix)> f =
|
||||
std::bind(&Chebyshev2::VectorEvaluationFunctor::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
std::bind(&Chebyshev2::VectorEvaluationFunctor::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
Matrix numericalH =
|
||||
numericalDerivative11<Vector2, Matrix, 2 * N>(f, X);
|
||||
numericalDerivative11<Vector2, Matrix, 2 * N>(f, X);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
// Interpolating poses using the exponential map
|
||||
TEST(Chebyshev2, InterpolatePose2) {
|
||||
const size_t N = 32;
|
||||
double t = 30, a = 0, b = 100;
|
||||
|
||||
Matrix X(3, N);
|
||||
|
@ -149,10 +143,10 @@ TEST(Chebyshev2, InterpolatePose2) {
|
|||
|
||||
// Check derivative
|
||||
std::function<Pose2(Matrix)> f =
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose2>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose2>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
Matrix numericalH =
|
||||
numericalDerivative11<Pose2, Matrix, 3 * N>(f, X);
|
||||
numericalDerivative11<Pose2, Matrix, 3 * N>(f, X);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
|
@ -160,6 +154,7 @@ TEST(Chebyshev2, InterpolatePose2) {
|
|||
//******************************************************************************
|
||||
// Interpolating poses using the exponential map
|
||||
TEST(Chebyshev2, InterpolatePose3) {
|
||||
const size_t N = 32;
|
||||
double a = 10, b = 100;
|
||||
double t = Chebyshev2::Points(N, a, b)(11);
|
||||
|
||||
|
@ -179,10 +174,10 @@ TEST(Chebyshev2, InterpolatePose3) {
|
|||
|
||||
// Check derivative
|
||||
std::function<Pose3(Matrix)> f =
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose3>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose3>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
Matrix numericalH =
|
||||
numericalDerivative11<Pose3, Matrix, 6 * N>(f, X);
|
||||
numericalDerivative11<Pose3, Matrix, 6 * N>(f, X);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-8));
|
||||
}
|
||||
#endif
|
||||
|
@ -197,7 +192,7 @@ TEST(Chebyshev2, Decomposition) {
|
|||
}
|
||||
|
||||
// Do Chebyshev Decomposition
|
||||
FitBasis<Chebyshev2> actual(sequence, model, 3);
|
||||
FitBasis<Chebyshev2> actual(sequence, nullptr, 3);
|
||||
|
||||
// Check
|
||||
Vector expected(3);
|
||||
|
@ -212,8 +207,8 @@ TEST(Chebyshev2, DifferentiationMatrix3) {
|
|||
Matrix expected(N, N);
|
||||
// Differentiation matrix computed from chebfun
|
||||
expected << 1.5000, -2.0000, 0.5000, //
|
||||
0.5000, -0.0000, -0.5000, //
|
||||
-0.5000, 2.0000, -1.5000;
|
||||
0.5000, -0.0000, -0.5000, //
|
||||
-0.5000, 2.0000, -1.5000;
|
||||
// multiply by -1 since the chebyshev points have a phase shift wrt Trefethen
|
||||
// This was verified with chebfun
|
||||
expected = -expected;
|
||||
|
@ -228,11 +223,11 @@ TEST(Chebyshev2, DerivativeMatrix6) {
|
|||
const size_t N = 6;
|
||||
Matrix expected(N, N);
|
||||
expected << 8.5000, -10.4721, 2.8944, -1.5279, 1.1056, -0.5000, //
|
||||
2.6180, -1.1708, -2.0000, 0.8944, -0.6180, 0.2764, //
|
||||
-0.7236, 2.0000, -0.1708, -1.6180, 0.8944, -0.3820, //
|
||||
0.3820, -0.8944, 1.6180, 0.1708, -2.0000, 0.7236, //
|
||||
-0.2764, 0.6180, -0.8944, 2.0000, 1.1708, -2.6180, //
|
||||
0.5000, -1.1056, 1.5279, -2.8944, 10.4721, -8.5000;
|
||||
2.6180, -1.1708, -2.0000, 0.8944, -0.6180, 0.2764, //
|
||||
-0.7236, 2.0000, -0.1708, -1.6180, 0.8944, -0.3820, //
|
||||
0.3820, -0.8944, 1.6180, 0.1708, -2.0000, 0.7236, //
|
||||
-0.2764, 0.6180, -0.8944, 2.0000, 1.1708, -2.6180, //
|
||||
0.5000, -1.1056, 1.5279, -2.8944, 10.4721, -8.5000;
|
||||
// multiply by -1 since the chebyshev points have a phase shift wrt Trefethen
|
||||
// This was verified with chebfun
|
||||
expected = -expected;
|
||||
|
@ -255,10 +250,8 @@ double fprime(double x) {
|
|||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, CalculateWeights) {
|
||||
Eigen::Matrix<double, -1, 1> fvals(N);
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
fvals(i) = f(Chebyshev2::Point(N, i));
|
||||
}
|
||||
const size_t N = 32;
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
double x1 = 0.7, x2 = -0.376;
|
||||
Weights weights1 = Chebyshev2::CalculateWeights(N, x1);
|
||||
Weights weights2 = Chebyshev2::CalculateWeights(N, x2);
|
||||
|
@ -267,12 +260,9 @@ TEST(Chebyshev2, CalculateWeights) {
|
|||
}
|
||||
|
||||
TEST(Chebyshev2, CalculateWeights2) {
|
||||
const size_t N = 32;
|
||||
double a = 0, b = 10, x1 = 7, x2 = 4.12;
|
||||
|
||||
Eigen::Matrix<double, -1, 1> fvals(N);
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
fvals(i) = f(Chebyshev2::Point(N, i, a, b));
|
||||
}
|
||||
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
||||
|
||||
Weights weights1 = Chebyshev2::CalculateWeights(N, x1, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(f(x1), weights1 * fvals, 1e-8);
|
||||
|
@ -283,34 +273,39 @@ TEST(Chebyshev2, CalculateWeights2) {
|
|||
EXPECT_DOUBLES_EQUAL(expected2, actual2, 1e-8);
|
||||
}
|
||||
|
||||
TEST(Chebyshev2, DerivativeWeights) {
|
||||
Eigen::Matrix<double, -1, 1> fvals(N);
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
fvals(i) = f(Chebyshev2::Point(N, i));
|
||||
// Test CalculateWeights when a point coincides with a Chebyshev point
|
||||
TEST(Chebyshev2, CalculateWeights_CoincidingPoint) {
|
||||
const size_t N = 5;
|
||||
const double coincidingPoint = Chebyshev2::Point(N, 1); // Pick the 2nd point
|
||||
|
||||
// Generate weights for the coinciding point
|
||||
Weights weights = Chebyshev2::CalculateWeights(N, coincidingPoint);
|
||||
|
||||
// Verify that the weights are zero everywhere except at the coinciding point
|
||||
for (size_t j = 0; j < N; ++j) {
|
||||
EXPECT_DOUBLES_EQUAL(j == 1 ? 1.0 : 0.0, weights(j), 1e-9);
|
||||
}
|
||||
double x1 = 0.7, x2 = -0.376, x3 = 0.0;
|
||||
Weights dWeights1 = Chebyshev2::DerivativeWeights(N, x1);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x1), dWeights1 * fvals, 1e-9);
|
||||
}
|
||||
|
||||
Weights dWeights2 = Chebyshev2::DerivativeWeights(N, x2);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x2), dWeights2 * fvals, 1e-9);
|
||||
TEST(Chebyshev2, DerivativeWeights) {
|
||||
const size_t N = 32;
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
std::vector<double> testPoints = { 0.7, -0.376, 0.0 };
|
||||
for (double x : testPoints) {
|
||||
Weights dWeights = Chebyshev2::DerivativeWeights(N, x);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x), dWeights * fvals, 1e-9);
|
||||
}
|
||||
|
||||
Weights dWeights3 = Chebyshev2::DerivativeWeights(N, x3);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x3), dWeights3 * fvals, 1e-9);
|
||||
|
||||
// test if derivative calculation and cheb point is correct
|
||||
// test if derivative calculation at Chebyshev point is correct
|
||||
double x4 = Chebyshev2::Point(N, 3);
|
||||
Weights dWeights4 = Chebyshev2::DerivativeWeights(N, x4);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x4), dWeights4 * fvals, 1e-9);
|
||||
}
|
||||
|
||||
TEST(Chebyshev2, DerivativeWeights2) {
|
||||
const size_t N = 32;
|
||||
double x1 = 5, x2 = 4.12, a = 0, b = 10;
|
||||
|
||||
Eigen::Matrix<double, -1, 1> fvals(N);
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
fvals(i) = f(Chebyshev2::Point(N, i, a, b));
|
||||
}
|
||||
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
||||
|
||||
Weights dWeights1 = Chebyshev2::DerivativeWeights(N, x1, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x1), dWeights1 * fvals, 1e-8);
|
||||
|
@ -318,12 +313,13 @@ TEST(Chebyshev2, DerivativeWeights2) {
|
|||
Weights dWeights2 = Chebyshev2::DerivativeWeights(N, x2, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x2), dWeights2 * fvals, 1e-8);
|
||||
|
||||
// test if derivative calculation and Chebyshev point is correct
|
||||
// test if derivative calculation at Chebyshev point is correct
|
||||
double x3 = Chebyshev2::Point(N, 3, a, b);
|
||||
Weights dWeights3 = Chebyshev2::DerivativeWeights(N, x3, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x3), dWeights3 * fvals, 1e-8);
|
||||
}
|
||||
|
||||
|
||||
//******************************************************************************
|
||||
// Check two different ways to calculate the derivative weights
|
||||
TEST(Chebyshev2, DerivativeWeightsDifferentiationMatrix) {
|
||||
|
@ -366,9 +362,8 @@ double proxy3(double x) {
|
|||
return Chebyshev2::EvaluationFunctor(6, x)(f3_at_6points);
|
||||
}
|
||||
|
||||
// Check Derivative evaluation at point x=0.2
|
||||
TEST(Chebyshev2, Derivative6) {
|
||||
// Check Derivative evaluation at point x=0.2
|
||||
|
||||
// calculate expected values by numerical derivative of synthesis
|
||||
const double x = 0.2;
|
||||
Matrix numeric_dTdx = numericalDerivative11<double, double>(proxy3, x);
|
||||
|
@ -420,15 +415,15 @@ TEST(Chebyshev2, VectorDerivativeFunctor) {
|
|||
EXPECT(assert_equal(Vector::Zero(M), (Vector)fx(X, actualH), 1e-8));
|
||||
|
||||
// Test Jacobian
|
||||
Matrix expectedH = numericalDerivative11<Vector2, Matrix, M * N>(
|
||||
std::bind(&VecD::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
Matrix expectedH = numericalDerivative11<Vector2, Matrix, M* N>(
|
||||
std::bind(&VecD::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-7));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
// Test VectorDerivativeFunctor with polynomial function
|
||||
TEST(Chebyshev2, VectorDerivativeFunctor2) {
|
||||
const size_t N = 64, M = 1, T = 15;
|
||||
const size_t N = 4, M = 1, T = 15;
|
||||
using VecD = Chebyshev2::VectorDerivativeFunctor;
|
||||
|
||||
const Vector points = Chebyshev2::Points(N, 0, T);
|
||||
|
@ -451,8 +446,8 @@ TEST(Chebyshev2, VectorDerivativeFunctor2) {
|
|||
Matrix actualH(M, M * N);
|
||||
VecD vecd(M, N, points(0), 0, T);
|
||||
vecd(X, actualH);
|
||||
Matrix expectedH = numericalDerivative11<Vector1, Matrix, M * N>(
|
||||
std::bind(&VecD::operator(), vecd, std::placeholders::_1, nullptr), X);
|
||||
Matrix expectedH = numericalDerivative11<Vector1, Matrix, M* N>(
|
||||
std::bind(&VecD::operator(), vecd, std::placeholders::_1, nullptr), X);
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-6));
|
||||
}
|
||||
|
||||
|
@ -468,28 +463,124 @@ TEST(Chebyshev2, ComponentDerivativeFunctor) {
|
|||
Matrix actualH(1, M * N);
|
||||
EXPECT_DOUBLES_EQUAL(0, fx(X, actualH), 1e-8);
|
||||
|
||||
Matrix expectedH = numericalDerivative11<double, Matrix, M * N>(
|
||||
std::bind(&CompFunc::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
Matrix expectedH = numericalDerivative11<double, Matrix, M* N>(
|
||||
std::bind(&CompFunc::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-7));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, IntegralWeights) {
|
||||
const size_t N7 = 7;
|
||||
Vector actual = Chebyshev2::IntegrationWeights(N7);
|
||||
Vector expected = (Vector(N7) << 0.0285714285714286, 0.253968253968254,
|
||||
0.457142857142857, 0.520634920634921, 0.457142857142857,
|
||||
0.253968253968254, 0.0285714285714286)
|
||||
.finished();
|
||||
TEST(Chebyshev2, IntegrationMatrix) {
|
||||
const size_t N = 10; // number of intervals => N+1 nodes
|
||||
const double a = 0, b = 10;
|
||||
|
||||
// Create integration matrix
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
|
||||
// Let's check that integrating a constant yields
|
||||
// the sum of the lengths of the intervals:
|
||||
Vector F = P * Vector::Ones(N);
|
||||
EXPECT_DOUBLES_EQUAL(0, F(0), 1e-9); // check first value is 0
|
||||
Vector points = Chebyshev2::Points(N, a, b);
|
||||
Vector ramp(N);
|
||||
for (size_t i = 0; i < N; ++i) ramp(i) = points(i) - a;
|
||||
EXPECT(assert_equal(ramp, F, 1e-9));
|
||||
|
||||
// Get values of the derivative (fprime) at the Chebyshev nodes
|
||||
Vector fp = Chebyshev2::vector(fprime, N, a, b);
|
||||
|
||||
// Integrate to get back f, using the integration matrix.
|
||||
// Since there is a constant term, we need to add it back.
|
||||
Vector F_est = P * fp;
|
||||
EXPECT_DOUBLES_EQUAL(0, F_est(0), 1e-9); // check first value is 0
|
||||
|
||||
// For comparison, get actual function values at the nodes
|
||||
Vector F_true = Chebyshev2::vector(f, N, a, b);
|
||||
|
||||
// Verify the integration matrix worked correctly, after adding back the
|
||||
// constant term
|
||||
F_est.array() += f(a);
|
||||
EXPECT(assert_equal(F_true, F_est, 1e-9));
|
||||
|
||||
// Differentiate the result to get back to our derivative function
|
||||
Matrix D = Chebyshev2::DifferentiationMatrix(N, a, b);
|
||||
Vector ff_est = D * F_est;
|
||||
|
||||
// Verify the round trip worked
|
||||
EXPECT(assert_equal(fp, ff_est, 1e-9));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, IntegrationWeights7) {
|
||||
const size_t N = 7;
|
||||
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
|
||||
|
||||
// Expected values were calculated using chebfun:
|
||||
Weights expected = (Weights(N) << 0.0285714285714286, 0.253968253968254,
|
||||
0.457142857142857, 0.520634920634921, 0.457142857142857,
|
||||
0.253968253968254, 0.0285714285714286)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
const size_t N8 = 8;
|
||||
Vector actual2 = Chebyshev2::IntegrationWeights(N8);
|
||||
Vector expected2 = (Vector(N8) << 0.0204081632653061, 0.190141007218208,
|
||||
0.352242423718159, 0.437208405798326, 0.437208405798326,
|
||||
0.352242423718159, 0.190141007218208, 0.0204081632653061)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected2, actual2));
|
||||
// Assert that multiplying with all ones gives the correct integral (2.0)
|
||||
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
|
||||
|
||||
// Integrating f' over [-1,1] should give f(1) - f(-1)
|
||||
Vector fp = Chebyshev2::vector(fprime, N);
|
||||
double expectedF = f(1) - f(-1);
|
||||
double actualW = actual * fp;
|
||||
EXPECT_DOUBLES_EQUAL(expectedF, actualW, 1e-9);
|
||||
|
||||
// We can calculate an alternate set of weights using the integration matrix:
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N);
|
||||
Weights p7 = P.row(N-1);
|
||||
|
||||
// Check that the two sets of weights give the same results
|
||||
EXPECT_DOUBLES_EQUAL(expectedF, p7 * fp, 1e-9);
|
||||
|
||||
// And same for integrate f itself:
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
EXPECT_DOUBLES_EQUAL(p7*fvals, actual * fvals, 1e-9);
|
||||
}
|
||||
|
||||
// Check N=8
|
||||
TEST(Chebyshev2, IntegrationWeights8) {
|
||||
const size_t N = 8;
|
||||
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
|
||||
Weights expected = (Weights(N) << 0.0204081632653061, 0.190141007218208,
|
||||
0.352242423718159, 0.437208405798326, 0.437208405798326,
|
||||
0.352242423718159, 0.190141007218208, 0.0204081632653061)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, DoubleIntegrationWeights) {
|
||||
const size_t N = 7;
|
||||
const double a = 0, b = 10;
|
||||
// Let's integrate constant twice get a test case:
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
auto ones = Vector::Ones(N);
|
||||
Vector ramp = P * ones;
|
||||
Vector quadratic = P * ramp;
|
||||
|
||||
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
|
||||
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
|
||||
}
|
||||
|
||||
TEST(Chebyshev2, DoubleIntegrationWeights2) {
|
||||
const size_t N = 8;
|
||||
const double a = 0, b = 3;
|
||||
// Let's integrate constant twice get a test case:
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
auto ones = Vector::Ones(N);
|
||||
Vector ramp = P * ones;
|
||||
Vector quadratic = P * ramp;
|
||||
|
||||
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
|
||||
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
Loading…
Reference in New Issue