done with all tests

release/4.3a0
lcarlone 2021-08-26 13:31:09 -04:00
parent 9479bddf81
commit 7d80f52b12
2 changed files with 137 additions and 137 deletions

View File

@ -90,6 +90,9 @@ class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> {
const SmartProjectionParams& params =
SmartProjectionParams())
: Base(sharedNoiseModel, params) {
// use only configuration that works with this factor
Base::params_.degeneracyMode = gtsam::ZERO_ON_DEGENERACY;
Base::params_.linearizationMode = gtsam::HESSIAN;
}
/** Virtual destructor */

View File

@ -950,144 +950,141 @@ TEST( SmartProjectionFactorP, hessianComparedToProjFactors_measurementsFromSameP
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
///* *************************************************************************/
//TEST( SmartProjectionFactorP, optimization_3poses_measurementsFromSamePose ) {
//
// using namespace vanillaPoseRS;
// Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
//
// // create inputs
// std::vector<std::pair<Key,Key>> key_pairs;
// key_pairs.push_back(std::make_pair(x1,x2));
// key_pairs.push_back(std::make_pair(x2,x3));
// key_pairs.push_back(std::make_pair(x3,x1));
//
// std::vector<double> interp_factors;
// interp_factors.push_back(interp_factor1);
// interp_factors.push_back(interp_factor2);
// interp_factors.push_back(interp_factor3);
//
// // For first factor, we create redundant measurement (taken by the same keys as factor 1, to
// // make sure the redundancy in the keys does not create problems)
// Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
// measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
// std::vector<std::pair<Key,Key>> key_pairs_redundant = key_pairs;
// key_pairs_redundant.push_back(key_pairs.at(0)); // we readd the first pair of keys
// std::vector<double> interp_factors_redundant = interp_factors;
// interp_factors_redundant.push_back(interp_factors.at(0));// we readd the first interp factor
//
// SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
// smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant, interp_factors_redundant, sharedK);
//
// SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
// smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
//
// SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
// smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, level_pose, noisePrior);
// graph.addPrior(x2, pose_right, noisePrior);
//
// Values groundTruth;
// groundTruth.insert(x1, level_pose);
// groundTruth.insert(x2, pose_right);
// groundTruth.insert(x3, pose_above);
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, level_pose);
// values.insert(x2, pose_right);
// // initialize third pose with some noise, we expect it to move back to original pose_above
// values.insert(x3, pose_above * noise_pose);
// EXPECT( // check that the pose is actually noisy
// assert_equal(
// Pose3(
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
//
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
//}
/* *************************************************************************/
TEST( SmartProjectionFactorP, optimization_3poses_measurementsFromSamePose ) {
//#ifndef DISABLE_TIMING
//#include <gtsam/base/timing.h>
//// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
////| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min: 0 max: 0)
////| -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02 children, min: 0 max: 0)
///* *************************************************************************/
//TEST( SmartProjectionPoseFactorRollingShutter, timing ) {
//
// using namespace vanillaPose;
//
// // Default cameras for simple derivatives
// static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
//
// Rot3 R = Rot3::identity();
// Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
// Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
// Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
// Pose3 body_P_sensorId = Pose3::identity();
//
// // one landmarks 1m in front of camera
// Point3 landmark1(0, 0, 10);
//
// Point2Vector measurements_lmk1;
//
// // Project 2 landmarks into 2 cameras
// measurements_lmk1.push_back(cam1.project(landmark1));
// measurements_lmk1.push_back(cam2.project(landmark1));
//
// size_t nrTests = 1000;
//
// for(size_t i = 0; i<nrTests; i++){
// SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
// double interp_factor = 0; // equivalent to measurement taken at pose 1
// smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor, sharedKSimple,
// body_P_sensorId);
// interp_factor = 1; // equivalent to measurement taken at pose 2
// smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor, sharedKSimple,
// body_P_sensorId);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// gttic_(SF_RS_LINEARIZE);
// smartFactorRS->linearize(values);
// gttoc_(SF_RS_LINEARIZE);
// }
//
// for(size_t i = 0; i<nrTests; i++){
// SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
// smartFactor->add(measurements_lmk1[0], x1);
// smartFactor->add(measurements_lmk1[1], x2);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// gttic_(RS_LINEARIZE);
// smartFactor->linearize(values);
// gttoc_(RS_LINEARIZE);
// }
// tictoc_print_();
//}
//#endif
using namespace vanillaPose;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<Key> keys;
keys.push_back(x1);
keys.push_back(x2);
keys.push_back(x3);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
// For first factor, we create redundant measurement (taken by the same keys as factor 1, to
// make sure the redundancy in the keys does not create problems)
Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
std::vector<Key> keys_redundant = keys;
keys_redundant.push_back(keys.at(0)); // we readd the first key
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs_redundant = sharedKs;
sharedKs_redundant.push_back(sharedK);// we readd the first calibration
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_lmk1_redundant, keys_redundant, sharedKs_redundant);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model));
smartFactor2->add(measurements_lmk2, keys, sharedKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model));
smartFactor3->add(measurements_lmk3, keys, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
}
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
// this factor is actually slightly faster (but comparable) to original SmartProjectionPoseFactor
//-Total: 0 CPU (0 times, 0 wall, 0.01 children, min: 0 max: 0)
//| -SmartFactorP LINEARIZE: 0 CPU (1000 times, 0.005481 wall, 0 children, min: 0 max: 0)
//| -SmartPoseFactor LINEARIZE: 0.01 CPU (1000 times, 0.007318 wall, 0.01 children, min: 0 max: 0)
/* *************************************************************************/
TEST( SmartProjectionFactorP, timing ) {
using namespace vanillaPose;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
Point2Vector measurements_lmk1;
// Project 2 landmarks into 2 cameras
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
size_t nrTests = 1000;
for(size_t i = 0; i<nrTests; i++){
SmartFactorP::shared_ptr smartFactorP(new SmartFactorP(model));
smartFactorP->add(measurements_lmk1[0], x1, sharedKSimple, body_P_sensorId);
smartFactorP->add(measurements_lmk1[1], x1, sharedKSimple, body_P_sensorId);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SmartFactorP_LINEARIZE);
smartFactorP->linearize(values);
gttoc_(SmartFactorP_LINEARIZE);
}
for(size_t i = 0; i<nrTests; i++){
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
smartFactor->add(measurements_lmk1[0], x1);
smartFactor->add(measurements_lmk1[1], x2);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SmartPoseFactor_LINEARIZE);
smartFactor->linearize(values);
gttoc_(SmartPoseFactor_LINEARIZE);
}
tictoc_print_();
}
#endif
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");