passing tough test - nice!

release/4.3a0
lcarlone 2021-08-26 12:52:12 -04:00
parent 050d64bdca
commit 9479bddf81
1 changed files with 336 additions and 66 deletions

View File

@ -106,7 +106,7 @@ TEST( SmartProjectionFactorP, noiseless ) {
factor.add(level_uv, x1, sharedK);
factor.add(level_uv_right, x2, sharedK);
Values values; // it's a pose factor, hence these are poses
Values values; // it's a pose factor, hence these are poses
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -119,8 +119,9 @@ TEST( SmartProjectionFactorP, noiseless ) {
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
// Calculate expected derivative for point (easiest to check)
std::function<Vector(Point3)> f = //
std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras, std::placeholders::_1);
std::function<Vector(Point3)> f = //
std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras,
std::placeholders::_1);
// Calculate using computeEP
Matrix actualE;
@ -164,7 +165,7 @@ TEST( SmartProjectionFactorP, noisy ) {
Values values;
values.insert(x1, cam1.pose());
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Point3(0.5, 0.1, 0.3));
values.insert(x2, pose_right.compose(noise_pose));
SmartFactorP::shared_ptr factor(new SmartFactorP(model));
@ -178,11 +179,11 @@ TEST( SmartProjectionFactorP, noisy ) {
measurements.push_back(level_uv);
measurements.push_back(level_uv_right);
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
KeyVector views {x1, x2};
KeyVector views { x1, x2 };
factor2->add(measurements, views, sharedKs);
double actualError2 = factor2->error(values);
@ -194,7 +195,8 @@ TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
using namespace vanillaPose;
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(1, 1, 1));
// These are the poses we want to estimate, from camera measurements
const Pose3 sensor_T_body = body_T_sensor.inverse();
@ -213,14 +215,14 @@ TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create smart factors
KeyVector views {x1, x2, x3};
KeyVector views { x1, x2, x3 };
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(IGNORE_DEGENERACY);
params.setEnableEPI(false);
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
@ -237,7 +239,8 @@ TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
smartFactor2.add(measurements_cam2, views, sharedKs, body_T_sensors);
SmartFactorP smartFactor3(model, params);
smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);;
smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);
;
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -291,7 +294,7 @@ TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
views.push_back(x2);
views.push_back(x3);
std::vector<boost::shared_ptr<Cal3_S2>> sharedK2s;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
sharedK2s.push_back(sharedK2);
sharedK2s.push_back(sharedK2);
sharedK2s.push_back(sharedK2);
@ -322,7 +325,7 @@ TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -332,8 +335,9 @@ TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
@ -362,13 +366,14 @@ TEST( SmartProjectionFactorP, Factors ) {
measurements_cam1.push_back(cam2.project(landmark1));
// Create smart factors
KeyVector views {x1, x2};
KeyVector views { x1, x2 };
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartFactorP::shared_ptr smartFactor1 = boost::make_shared<SmartFactorP>(model);
SmartFactorP::shared_ptr smartFactor1 = boost::make_shared < SmartFactorP
> (model);
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::Cameras cameras;
@ -401,7 +406,7 @@ TEST( SmartProjectionFactorP, Factors ) {
A2 << 10, 0, 1, 0, -1, 0;
A1 *= 10. / sigma;
A2 *= 10. / sigma;
Matrix expectedInformation; // filled below
Matrix expectedInformation; // filled below
{
// createHessianFactor
Matrix66 G11 = 0.5 * A1.transpose() * A1;
@ -422,8 +427,8 @@ TEST( SmartProjectionFactorP, Factors ) {
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
boost::shared_ptr<RegularHessianFactor<6> > actual =
smartFactor1->createHessianFactor(values, 0.0);
boost::shared_ptr < RegularHessianFactor<6> > actual = smartFactor1
->createHessianFactor(values, 0.0);
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
EXPECT(assert_equal(expected, *actual, 1e-6));
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
@ -436,7 +441,7 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
using namespace vanillaPose;
KeyVector views {x1, x2, x3};
KeyVector views { x1, x2, x3 };
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
@ -445,7 +450,7 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
@ -470,7 +475,7 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -480,8 +485,9 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
assert_equal(
Pose3(
Rot3(1.11022302e-16, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
-0.0313952598), Point3(0.1, -0.1, 1.9)),
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
-0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
@ -497,7 +503,7 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
double excludeLandmarksFutherThanDist = 2;
KeyVector views {x1, x2, x3};
KeyVector views { x1, x2, x3 };
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
@ -506,7 +512,7 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
@ -518,16 +524,13 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(false);
SmartFactorP::shared_ptr smartFactor1(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params));
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params));
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params));
smartFactor3->add(measurements_cam3, views, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -541,7 +544,7 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -560,11 +563,11 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
using namespace vanillaPose;
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
KeyVector views {x1, x2, x3};
KeyVector views { x1, x2, x3 };
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
@ -580,7 +583,7 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
SmartProjectionParams params;
params.setLinearizationMode(gtsam::HESSIAN);
@ -588,20 +591,16 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
SmartFactorP::shared_ptr smartFactor1(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params));
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params));
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params));
smartFactor3->add(measurements_cam3, views, sharedKs);
SmartFactorP::shared_ptr smartFactor4(
new SmartFactorP(model, params));
SmartFactorP::shared_ptr smartFactor4(new SmartFactorP(model, params));
smartFactor4->add(measurements_cam4, views, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -629,7 +628,7 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
/* *************************************************************************/
TEST( SmartProjectionFactorP, CheckHessian) {
KeyVector views {x1, x2, x3};
KeyVector views { x1, x2, x3 };
using namespace vanillaPose;
@ -647,7 +646,7 @@ TEST( SmartProjectionFactorP, CheckHessian) {
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
@ -656,16 +655,13 @@ TEST( SmartProjectionFactorP, CheckHessian) {
params.setRankTolerance(10);
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
SmartFactorP::shared_ptr smartFactor1(
new SmartFactorP(model, params)); // HESSIAN, by default
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params)); // HESSIAN, by default
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(
new SmartFactorP(model, params)); // HESSIAN, by default
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params)); // HESSIAN, by default
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(
new SmartFactorP(model, params)); // HESSIAN, by default
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params)); // HESSIAN, by default
smartFactor3->add(measurements_cam3, views, sharedKs);
NonlinearFactorGraph graph;
@ -675,7 +671,7 @@ TEST( SmartProjectionFactorP, CheckHessian) {
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -685,8 +681,8 @@ TEST( SmartProjectionFactorP, CheckHessian) {
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
values.at<Pose3>(x3)));
@ -708,7 +704,7 @@ TEST( SmartProjectionFactorP, CheckHessian) {
+ factor2->augmentedInformation() + factor3->augmentedInformation();
// Check Information vector
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
// Check Hessian
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-6));
@ -719,7 +715,7 @@ TEST( SmartProjectionFactorP, Hessian ) {
using namespace vanillaPose2;
KeyVector views {x1, x2};
KeyVector views { x1, x2 };
// Project three landmarks into 2 cameras
Point2 cam1_uv1 = cam1.project(landmark1);
@ -728,7 +724,7 @@ TEST( SmartProjectionFactorP, Hessian ) {
measurements_cam1.push_back(cam1_uv1);
measurements_cam1.push_back(cam2_uv1);
std::vector<boost::shared_ptr<Cal3_S2>> sharedK2s;
std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
sharedK2s.push_back(sharedK2);
sharedK2s.push_back(sharedK2);
@ -736,7 +732,7 @@ TEST( SmartProjectionFactorP, Hessian ) {
smartFactor1->add(measurements_cam1, views, sharedK2s);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Point3(0.5, 0.1, 0.3));
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -773,9 +769,9 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
KeyVector views {x1, x2, x3};
KeyVector views { x1, x2, x3 };
std::vector<boost::shared_ptr<Cal3Bundler>> sharedBundlerKs;
std::vector < boost::shared_ptr < Cal3Bundler >> sharedBundlerKs;
sharedBundlerKs.push_back(sharedBundlerK);
sharedBundlerKs.push_back(sharedBundlerK);
sharedBundlerKs.push_back(sharedBundlerK);
@ -800,7 +796,7 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
@ -810,8 +806,9 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
@ -819,6 +816,279 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3), 1e-6));
}
#include <gtsam/slam/ProjectionFactor.h>
typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
static Symbol l0('L', 0);
/* *************************************************************************/
TEST( SmartProjectionFactorP, hessianComparedToProjFactors_measurementsFromSamePose) {
// in this test we make sure the fact works even if we have multiple pixel measurements of the same landmark
// at a single pose, a setup that occurs in multi-camera systems
using namespace vanillaPose;
Point2Vector measurements_lmk1;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// create redundant measurements:
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
// create inputs
std::vector<Key> keys;
keys.push_back(x1);
keys.push_back(x2);
keys.push_back(x3);
keys.push_back(x1);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_lmk1_redundant, keys, sharedKs);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
Pose3 pose2 = pose_right;
Pose3 pose3 = pose_above * noise_pose;
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
boost::shared_ptr<GaussianFactor> linearfactor1 = smartFactor1->linearize(
values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
// linearization point for the 3D point
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use standard ProjectionFactor factor to calculate the Jacobians
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
Matrix E = Matrix::Zero(2 * 4, 3);
Vector b = Vector::Zero(2 * 4);
// create projection factors rolling shutter
TestProjectionFactor factor11(measurements_lmk1_redundant[0], model, x1, l0,
sharedK);
Matrix HPoseActual, HEActual;
// note: b is minus the reprojection error, cf the smart factor jacobian computation
b.segment<2>(0) = -factor11.evaluateError(pose1, *point, HPoseActual,
HEActual);
F.block<2, 6>(0, 0) = HPoseActual;
E.block<2, 3>(0, 0) = HEActual;
TestProjectionFactor factor12(measurements_lmk1_redundant[1], model, x2, l0,
sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, *point, HPoseActual,
HEActual);
F.block<2, 6>(2, 6) = HPoseActual;
E.block<2, 3>(2, 0) = HEActual;
TestProjectionFactor factor13(measurements_lmk1_redundant[2], model, x3, l0,
sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, *point, HPoseActual,
HEActual);
F.block<2, 6>(4, 12) = HPoseActual;
E.block<2, 3>(4, 0) = HEActual;
TestProjectionFactor factor14(measurements_lmk1_redundant[3], model, x1, l0,
sharedK);
b.segment<2>(6) = -factor11.evaluateError(pose1, *point, HPoseActual,
HEActual);
F.block<2, 6>(6, 0) = HPoseActual;
E.block<2, 3>(6, 0) = HEActual;
// whiten
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian = F.transpose() * F
- (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian, 1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
// ==== check error of smartFactor1 (again) =====
NonlinearFactorGraph nfg_projFactors;
nfg_projFactors.add(factor11);
nfg_projFactors.add(factor12);
nfg_projFactors.add(factor13);
nfg_projFactors.add(factor14);
values.insert(l0, *point);
double actualError = smartFactor1->error(values);
double expectedError = nfg_projFactors.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
///* *************************************************************************/
//TEST( SmartProjectionFactorP, optimization_3poses_measurementsFromSamePose ) {
//
// using namespace vanillaPoseRS;
// Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
//
// // create inputs
// std::vector<std::pair<Key,Key>> key_pairs;
// key_pairs.push_back(std::make_pair(x1,x2));
// key_pairs.push_back(std::make_pair(x2,x3));
// key_pairs.push_back(std::make_pair(x3,x1));
//
// std::vector<double> interp_factors;
// interp_factors.push_back(interp_factor1);
// interp_factors.push_back(interp_factor2);
// interp_factors.push_back(interp_factor3);
//
// // For first factor, we create redundant measurement (taken by the same keys as factor 1, to
// // make sure the redundancy in the keys does not create problems)
// Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
// measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
// std::vector<std::pair<Key,Key>> key_pairs_redundant = key_pairs;
// key_pairs_redundant.push_back(key_pairs.at(0)); // we readd the first pair of keys
// std::vector<double> interp_factors_redundant = interp_factors;
// interp_factors_redundant.push_back(interp_factors.at(0));// we readd the first interp factor
//
// SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
// smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant, interp_factors_redundant, sharedK);
//
// SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
// smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
//
// SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
// smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, level_pose, noisePrior);
// graph.addPrior(x2, pose_right, noisePrior);
//
// Values groundTruth;
// groundTruth.insert(x1, level_pose);
// groundTruth.insert(x2, pose_right);
// groundTruth.insert(x3, pose_above);
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, level_pose);
// values.insert(x2, pose_right);
// // initialize third pose with some noise, we expect it to move back to original pose_above
// values.insert(x3, pose_above * noise_pose);
// EXPECT( // check that the pose is actually noisy
// assert_equal(
// Pose3(
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
//
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
//}
//#ifndef DISABLE_TIMING
//#include <gtsam/base/timing.h>
//// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
////| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min: 0 max: 0)
////| -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02 children, min: 0 max: 0)
///* *************************************************************************/
//TEST( SmartProjectionPoseFactorRollingShutter, timing ) {
//
// using namespace vanillaPose;
//
// // Default cameras for simple derivatives
// static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
//
// Rot3 R = Rot3::identity();
// Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
// Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
// Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
// Pose3 body_P_sensorId = Pose3::identity();
//
// // one landmarks 1m in front of camera
// Point3 landmark1(0, 0, 10);
//
// Point2Vector measurements_lmk1;
//
// // Project 2 landmarks into 2 cameras
// measurements_lmk1.push_back(cam1.project(landmark1));
// measurements_lmk1.push_back(cam2.project(landmark1));
//
// size_t nrTests = 1000;
//
// for(size_t i = 0; i<nrTests; i++){
// SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
// double interp_factor = 0; // equivalent to measurement taken at pose 1
// smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor, sharedKSimple,
// body_P_sensorId);
// interp_factor = 1; // equivalent to measurement taken at pose 2
// smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor, sharedKSimple,
// body_P_sensorId);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// gttic_(SF_RS_LINEARIZE);
// smartFactorRS->linearize(values);
// gttoc_(SF_RS_LINEARIZE);
// }
//
// for(size_t i = 0; i<nrTests; i++){
// SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
// smartFactor->add(measurements_lmk1[0], x1);
// smartFactor->add(measurements_lmk1[1], x2);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// gttic_(RS_LINEARIZE);
// smartFactor->linearize(values);
// gttoc_(RS_LINEARIZE);
// }
// tictoc_print_();
//}
//#endif
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");