passing tough test - nice!
parent
050d64bdca
commit
9479bddf81
|
|
@ -106,7 +106,7 @@ TEST( SmartProjectionFactorP, noiseless ) {
|
|||
factor.add(level_uv, x1, sharedK);
|
||||
factor.add(level_uv_right, x2, sharedK);
|
||||
|
||||
Values values; // it's a pose factor, hence these are poses
|
||||
Values values; // it's a pose factor, hence these are poses
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
||||
|
|
@ -119,8 +119,9 @@ TEST( SmartProjectionFactorP, noiseless ) {
|
|||
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
||||
|
||||
// Calculate expected derivative for point (easiest to check)
|
||||
std::function<Vector(Point3)> f = //
|
||||
std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras, std::placeholders::_1);
|
||||
std::function<Vector(Point3)> f = //
|
||||
std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras,
|
||||
std::placeholders::_1);
|
||||
|
||||
// Calculate using computeEP
|
||||
Matrix actualE;
|
||||
|
|
@ -164,7 +165,7 @@ TEST( SmartProjectionFactorP, noisy ) {
|
|||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
values.insert(x2, pose_right.compose(noise_pose));
|
||||
|
||||
SmartFactorP::shared_ptr factor(new SmartFactorP(model));
|
||||
|
|
@ -178,11 +179,11 @@ TEST( SmartProjectionFactorP, noisy ) {
|
|||
measurements.push_back(level_uv);
|
||||
measurements.push_back(level_uv_right);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
||||
KeyVector views {x1, x2};
|
||||
KeyVector views { x1, x2 };
|
||||
|
||||
factor2->add(measurements, views, sharedKs);
|
||||
double actualError2 = factor2->error(values);
|
||||
|
|
@ -194,7 +195,8 @@ TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
|
|||
using namespace vanillaPose;
|
||||
|
||||
// create arbitrary body_T_sensor (transforms from sensor to body)
|
||||
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
|
||||
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(1, 1, 1));
|
||||
|
||||
// These are the poses we want to estimate, from camera measurements
|
||||
const Pose3 sensor_T_body = body_T_sensor.inverse();
|
||||
|
|
@ -213,14 +215,14 @@ TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
|
|||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
// Create smart factors
|
||||
KeyVector views {x1, x2, x3};
|
||||
KeyVector views { x1, x2, x3 };
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(1.0);
|
||||
params.setDegeneracyMode(IGNORE_DEGENERACY);
|
||||
params.setEnableEPI(false);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
|
@ -237,7 +239,8 @@ TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
|
|||
smartFactor2.add(measurements_cam2, views, sharedKs, body_T_sensors);
|
||||
|
||||
SmartFactorP smartFactor3(model, params);
|
||||
smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);;
|
||||
smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);
|
||||
;
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
|
|
@ -291,7 +294,7 @@ TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
|
|||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedK2s;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
|
||||
sharedK2s.push_back(sharedK2);
|
||||
sharedK2s.push_back(sharedK2);
|
||||
sharedK2s.push_back(sharedK2);
|
||||
|
|
@ -322,7 +325,7 @@ TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
|
|||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
|
@ -332,8 +335,9 @@ TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
|
|||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
|
|
@ -362,13 +366,14 @@ TEST( SmartProjectionFactorP, Factors ) {
|
|||
measurements_cam1.push_back(cam2.project(landmark1));
|
||||
|
||||
// Create smart factors
|
||||
KeyVector views {x1, x2};
|
||||
KeyVector views { x1, x2 };
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor1 = boost::make_shared<SmartFactorP>(model);
|
||||
SmartFactorP::shared_ptr smartFactor1 = boost::make_shared < SmartFactorP
|
||||
> (model);
|
||||
smartFactor1->add(measurements_cam1, views, sharedKs);
|
||||
|
||||
SmartFactorP::Cameras cameras;
|
||||
|
|
@ -401,7 +406,7 @@ TEST( SmartProjectionFactorP, Factors ) {
|
|||
A2 << 10, 0, 1, 0, -1, 0;
|
||||
A1 *= 10. / sigma;
|
||||
A2 *= 10. / sigma;
|
||||
Matrix expectedInformation; // filled below
|
||||
Matrix expectedInformation; // filled below
|
||||
{
|
||||
// createHessianFactor
|
||||
Matrix66 G11 = 0.5 * A1.transpose() * A1;
|
||||
|
|
@ -422,8 +427,8 @@ TEST( SmartProjectionFactorP, Factors ) {
|
|||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
||||
boost::shared_ptr<RegularHessianFactor<6> > actual =
|
||||
smartFactor1->createHessianFactor(values, 0.0);
|
||||
boost::shared_ptr < RegularHessianFactor<6> > actual = smartFactor1
|
||||
->createHessianFactor(values, 0.0);
|
||||
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
|
||||
EXPECT(assert_equal(expected, *actual, 1e-6));
|
||||
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
|
||||
|
|
@ -436,7 +441,7 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
|
|||
|
||||
using namespace vanillaPose;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
KeyVector views { x1, x2, x3 };
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
|
|
@ -445,7 +450,7 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
|
|||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
|
@ -470,7 +475,7 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
|
|||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
|
@ -480,8 +485,9 @@ TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
|
|||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(1.11022302e-16, -0.0314107591, 0.99950656, -0.99950656,
|
||||
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
|
||||
-0.0313952598), Point3(0.1, -0.1, 1.9)),
|
||||
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
|
||||
-0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
|
|
@ -497,7 +503,7 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
|
|||
|
||||
double excludeLandmarksFutherThanDist = 2;
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
KeyVector views { x1, x2, x3 };
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
|
|
@ -506,7 +512,7 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
|
|||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
|
@ -518,16 +524,13 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
|
|||
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
||||
params.setEnableEPI(false);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor1(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params));
|
||||
smartFactor1->add(measurements_cam1, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor2(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params));
|
||||
smartFactor2->add(measurements_cam2, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor3(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params));
|
||||
smartFactor3->add(measurements_cam3, views, sharedKs);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
|
@ -541,7 +544,7 @@ TEST( SmartProjectionFactorP, landmarkDistance ) {
|
|||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
|
@ -560,11 +563,11 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
|
|||
using namespace vanillaPose;
|
||||
|
||||
double excludeLandmarksFutherThanDist = 1e10;
|
||||
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
|
||||
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
KeyVector views { x1, x2, x3 };
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
|
@ -580,7 +583,7 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
|
|||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
|
||||
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
|
||||
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setLinearizationMode(gtsam::HESSIAN);
|
||||
|
|
@ -588,20 +591,16 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
|
|||
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
||||
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor1(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params));
|
||||
smartFactor1->add(measurements_cam1, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor2(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params));
|
||||
smartFactor2->add(measurements_cam2, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor3(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params));
|
||||
smartFactor3->add(measurements_cam3, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor4(
|
||||
new SmartFactorP(model, params));
|
||||
SmartFactorP::shared_ptr smartFactor4(new SmartFactorP(model, params));
|
||||
smartFactor4->add(measurements_cam4, views, sharedKs);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
|
@ -629,7 +628,7 @@ TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
|
|||
/* *************************************************************************/
|
||||
TEST( SmartProjectionFactorP, CheckHessian) {
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
KeyVector views { x1, x2, x3 };
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
||||
|
|
@ -647,7 +646,7 @@ TEST( SmartProjectionFactorP, CheckHessian) {
|
|||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
|
@ -656,16 +655,13 @@ TEST( SmartProjectionFactorP, CheckHessian) {
|
|||
params.setRankTolerance(10);
|
||||
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor1(
|
||||
new SmartFactorP(model, params)); // HESSIAN, by default
|
||||
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params)); // HESSIAN, by default
|
||||
smartFactor1->add(measurements_cam1, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor2(
|
||||
new SmartFactorP(model, params)); // HESSIAN, by default
|
||||
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params)); // HESSIAN, by default
|
||||
smartFactor2->add(measurements_cam2, views, sharedKs);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor3(
|
||||
new SmartFactorP(model, params)); // HESSIAN, by default
|
||||
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params)); // HESSIAN, by default
|
||||
smartFactor3->add(measurements_cam3, views, sharedKs);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
|
|
@ -675,7 +671,7 @@ TEST( SmartProjectionFactorP, CheckHessian) {
|
|||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
|
@ -685,8 +681,8 @@ TEST( SmartProjectionFactorP, CheckHessian) {
|
|||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
||||
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
||||
-0.130455917),
|
||||
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
||||
-0.130455917),
|
||||
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
|
|
@ -708,7 +704,7 @@ TEST( SmartProjectionFactorP, CheckHessian) {
|
|||
+ factor2->augmentedInformation() + factor3->augmentedInformation();
|
||||
|
||||
// Check Information vector
|
||||
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
|
||||
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
|
||||
|
||||
// Check Hessian
|
||||
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-6));
|
||||
|
|
@ -719,7 +715,7 @@ TEST( SmartProjectionFactorP, Hessian ) {
|
|||
|
||||
using namespace vanillaPose2;
|
||||
|
||||
KeyVector views {x1, x2};
|
||||
KeyVector views { x1, x2 };
|
||||
|
||||
// Project three landmarks into 2 cameras
|
||||
Point2 cam1_uv1 = cam1.project(landmark1);
|
||||
|
|
@ -728,7 +724,7 @@ TEST( SmartProjectionFactorP, Hessian ) {
|
|||
measurements_cam1.push_back(cam1_uv1);
|
||||
measurements_cam1.push_back(cam2_uv1);
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> sharedK2s;
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
|
||||
sharedK2s.push_back(sharedK2);
|
||||
sharedK2s.push_back(sharedK2);
|
||||
|
||||
|
|
@ -736,7 +732,7 @@ TEST( SmartProjectionFactorP, Hessian ) {
|
|||
smartFactor1->add(measurements_cam1, views, sharedK2s);
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
|
@ -773,9 +769,9 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
|
|||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
KeyVector views {x1, x2, x3};
|
||||
KeyVector views { x1, x2, x3 };
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3Bundler>> sharedBundlerKs;
|
||||
std::vector < boost::shared_ptr < Cal3Bundler >> sharedBundlerKs;
|
||||
sharedBundlerKs.push_back(sharedBundlerK);
|
||||
sharedBundlerKs.push_back(sharedBundlerK);
|
||||
sharedBundlerKs.push_back(sharedBundlerK);
|
||||
|
|
@ -800,7 +796,7 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
|
|||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
|
@ -810,8 +806,9 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
|
|||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
|
|
@ -819,6 +816,279 @@ TEST( SmartProjectionFactorP, Cal3Bundler ) {
|
|||
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
|
||||
static Symbol l0('L', 0);
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionFactorP, hessianComparedToProjFactors_measurementsFromSamePose) {
|
||||
// in this test we make sure the fact works even if we have multiple pixel measurements of the same landmark
|
||||
// at a single pose, a setup that occurs in multi-camera systems
|
||||
|
||||
using namespace vanillaPose;
|
||||
Point2Vector measurements_lmk1;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
|
||||
|
||||
// create redundant measurements:
|
||||
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
|
||||
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
|
||||
|
||||
// create inputs
|
||||
std::vector<Key> keys;
|
||||
keys.push_back(x1);
|
||||
keys.push_back(x2);
|
||||
keys.push_back(x3);
|
||||
keys.push_back(x1);
|
||||
|
||||
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
sharedKs.push_back(sharedK);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
|
||||
smartFactor1->add(measurements_lmk1_redundant, keys, sharedKs);
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, level_pose);
|
||||
values.insert(x2, pose_right);
|
||||
// initialize third pose with some noise to get a nontrivial linearization point
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
EXPECT( // check that the pose is actually noisy
|
||||
assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
|
||||
// linearization point for the poses
|
||||
Pose3 pose1 = level_pose;
|
||||
Pose3 pose2 = pose_right;
|
||||
Pose3 pose3 = pose_above * noise_pose;
|
||||
|
||||
// ==== check Hessian of smartFactor1 =====
|
||||
// -- compute actual Hessian
|
||||
boost::shared_ptr<GaussianFactor> linearfactor1 = smartFactor1->linearize(
|
||||
values);
|
||||
Matrix actualHessian = linearfactor1->information();
|
||||
|
||||
// -- compute expected Hessian from manual Schur complement from Jacobians
|
||||
// linearization point for the 3D point
|
||||
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
|
||||
TriangulationResult point = smartFactor1->point();
|
||||
EXPECT(point.valid()); // check triangulated point is valid
|
||||
|
||||
// Use standard ProjectionFactor factor to calculate the Jacobians
|
||||
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
|
||||
Matrix E = Matrix::Zero(2 * 4, 3);
|
||||
Vector b = Vector::Zero(2 * 4);
|
||||
|
||||
// create projection factors rolling shutter
|
||||
TestProjectionFactor factor11(measurements_lmk1_redundant[0], model, x1, l0,
|
||||
sharedK);
|
||||
Matrix HPoseActual, HEActual;
|
||||
// note: b is minus the reprojection error, cf the smart factor jacobian computation
|
||||
b.segment<2>(0) = -factor11.evaluateError(pose1, *point, HPoseActual,
|
||||
HEActual);
|
||||
F.block<2, 6>(0, 0) = HPoseActual;
|
||||
E.block<2, 3>(0, 0) = HEActual;
|
||||
|
||||
TestProjectionFactor factor12(measurements_lmk1_redundant[1], model, x2, l0,
|
||||
sharedK);
|
||||
b.segment<2>(2) = -factor12.evaluateError(pose2, *point, HPoseActual,
|
||||
HEActual);
|
||||
F.block<2, 6>(2, 6) = HPoseActual;
|
||||
E.block<2, 3>(2, 0) = HEActual;
|
||||
|
||||
TestProjectionFactor factor13(measurements_lmk1_redundant[2], model, x3, l0,
|
||||
sharedK);
|
||||
b.segment<2>(4) = -factor13.evaluateError(pose3, *point, HPoseActual,
|
||||
HEActual);
|
||||
F.block<2, 6>(4, 12) = HPoseActual;
|
||||
E.block<2, 3>(4, 0) = HEActual;
|
||||
|
||||
TestProjectionFactor factor14(measurements_lmk1_redundant[3], model, x1, l0,
|
||||
sharedK);
|
||||
b.segment<2>(6) = -factor11.evaluateError(pose1, *point, HPoseActual,
|
||||
HEActual);
|
||||
F.block<2, 6>(6, 0) = HPoseActual;
|
||||
E.block<2, 3>(6, 0) = HEActual;
|
||||
|
||||
// whiten
|
||||
F = (1 / sigma) * F;
|
||||
E = (1 / sigma) * E;
|
||||
b = (1 / sigma) * b;
|
||||
//* G = F' * F - F' * E * P * E' * F
|
||||
Matrix P = (E.transpose() * E).inverse();
|
||||
Matrix expectedHessian = F.transpose() * F
|
||||
- (F.transpose() * E * P * E.transpose() * F);
|
||||
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
|
||||
|
||||
// ==== check Information vector of smartFactor1 =====
|
||||
GaussianFactorGraph gfg;
|
||||
gfg.add(linearfactor1);
|
||||
Matrix actualHessian_v2 = gfg.hessian().first;
|
||||
EXPECT(assert_equal(actualHessian_v2, actualHessian, 1e-6)); // sanity check on hessian
|
||||
|
||||
// -- compute actual information vector
|
||||
Vector actualInfoVector = gfg.hessian().second;
|
||||
|
||||
// -- compute expected information vector from manual Schur complement from Jacobians
|
||||
//* g = F' * (b - E * P * E' * b)
|
||||
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
|
||||
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
|
||||
|
||||
// ==== check error of smartFactor1 (again) =====
|
||||
NonlinearFactorGraph nfg_projFactors;
|
||||
nfg_projFactors.add(factor11);
|
||||
nfg_projFactors.add(factor12);
|
||||
nfg_projFactors.add(factor13);
|
||||
nfg_projFactors.add(factor14);
|
||||
values.insert(l0, *point);
|
||||
|
||||
double actualError = smartFactor1->error(values);
|
||||
double expectedError = nfg_projFactors.error(values);
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
}
|
||||
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartProjectionFactorP, optimization_3poses_measurementsFromSamePose ) {
|
||||
//
|
||||
// using namespace vanillaPoseRS;
|
||||
// Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
|
||||
//
|
||||
// // Project three landmarks into three cameras
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
|
||||
//
|
||||
// // create inputs
|
||||
// std::vector<std::pair<Key,Key>> key_pairs;
|
||||
// key_pairs.push_back(std::make_pair(x1,x2));
|
||||
// key_pairs.push_back(std::make_pair(x2,x3));
|
||||
// key_pairs.push_back(std::make_pair(x3,x1));
|
||||
//
|
||||
// std::vector<double> interp_factors;
|
||||
// interp_factors.push_back(interp_factor1);
|
||||
// interp_factors.push_back(interp_factor2);
|
||||
// interp_factors.push_back(interp_factor3);
|
||||
//
|
||||
// // For first factor, we create redundant measurement (taken by the same keys as factor 1, to
|
||||
// // make sure the redundancy in the keys does not create problems)
|
||||
// Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
|
||||
// measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
|
||||
// std::vector<std::pair<Key,Key>> key_pairs_redundant = key_pairs;
|
||||
// key_pairs_redundant.push_back(key_pairs.at(0)); // we readd the first pair of keys
|
||||
// std::vector<double> interp_factors_redundant = interp_factors;
|
||||
// interp_factors_redundant.push_back(interp_factors.at(0));// we readd the first interp factor
|
||||
//
|
||||
// SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
|
||||
// smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant, interp_factors_redundant, sharedK);
|
||||
//
|
||||
// SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
|
||||
// smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
|
||||
//
|
||||
// SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
|
||||
// smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
|
||||
//
|
||||
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
//
|
||||
// NonlinearFactorGraph graph;
|
||||
// graph.push_back(smartFactor1);
|
||||
// graph.push_back(smartFactor2);
|
||||
// graph.push_back(smartFactor3);
|
||||
// graph.addPrior(x1, level_pose, noisePrior);
|
||||
// graph.addPrior(x2, pose_right, noisePrior);
|
||||
//
|
||||
// Values groundTruth;
|
||||
// groundTruth.insert(x1, level_pose);
|
||||
// groundTruth.insert(x2, pose_right);
|
||||
// groundTruth.insert(x3, pose_above);
|
||||
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
//
|
||||
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
// Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
// Values values;
|
||||
// values.insert(x1, level_pose);
|
||||
// values.insert(x2, pose_right);
|
||||
// // initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
// values.insert(x3, pose_above * noise_pose);
|
||||
// EXPECT( // check that the pose is actually noisy
|
||||
// assert_equal(
|
||||
// Pose3(
|
||||
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
//
|
||||
// Values result;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
// result = optimizer.optimize();
|
||||
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
|
||||
//}
|
||||
|
||||
//#ifndef DISABLE_TIMING
|
||||
//#include <gtsam/base/timing.h>
|
||||
//// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
|
||||
////| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min: 0 max: 0)
|
||||
////| -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02 children, min: 0 max: 0)
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartProjectionPoseFactorRollingShutter, timing ) {
|
||||
//
|
||||
// using namespace vanillaPose;
|
||||
//
|
||||
// // Default cameras for simple derivatives
|
||||
// static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
|
||||
//
|
||||
// Rot3 R = Rot3::identity();
|
||||
// Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
|
||||
// Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
|
||||
// Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
|
||||
// Pose3 body_P_sensorId = Pose3::identity();
|
||||
//
|
||||
// // one landmarks 1m in front of camera
|
||||
// Point3 landmark1(0, 0, 10);
|
||||
//
|
||||
// Point2Vector measurements_lmk1;
|
||||
//
|
||||
// // Project 2 landmarks into 2 cameras
|
||||
// measurements_lmk1.push_back(cam1.project(landmark1));
|
||||
// measurements_lmk1.push_back(cam2.project(landmark1));
|
||||
//
|
||||
// size_t nrTests = 1000;
|
||||
//
|
||||
// for(size_t i = 0; i<nrTests; i++){
|
||||
// SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
|
||||
// double interp_factor = 0; // equivalent to measurement taken at pose 1
|
||||
// smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor, sharedKSimple,
|
||||
// body_P_sensorId);
|
||||
// interp_factor = 1; // equivalent to measurement taken at pose 2
|
||||
// smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor, sharedKSimple,
|
||||
// body_P_sensorId);
|
||||
//
|
||||
// Values values;
|
||||
// values.insert(x1, pose1);
|
||||
// values.insert(x2, pose2);
|
||||
// gttic_(SF_RS_LINEARIZE);
|
||||
// smartFactorRS->linearize(values);
|
||||
// gttoc_(SF_RS_LINEARIZE);
|
||||
// }
|
||||
//
|
||||
// for(size_t i = 0; i<nrTests; i++){
|
||||
// SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
|
||||
// smartFactor->add(measurements_lmk1[0], x1);
|
||||
// smartFactor->add(measurements_lmk1[1], x2);
|
||||
//
|
||||
// Values values;
|
||||
// values.insert(x1, pose1);
|
||||
// values.insert(x2, pose2);
|
||||
// gttic_(RS_LINEARIZE);
|
||||
// smartFactor->linearize(values);
|
||||
// gttoc_(RS_LINEARIZE);
|
||||
// }
|
||||
// tictoc_print_();
|
||||
//}
|
||||
//#endif
|
||||
|
||||
/* ************************************************************************* */
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
|
||||
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
|
||||
|
|
|
|||
Loading…
Reference in New Issue