Create JacobianFactor derived class for fixed size and add raw memory access

release/4.3a0
Sungtae An 2014-11-12 04:25:28 -05:00
parent 2acb5a2611
commit 7a504f3bab
1 changed files with 140 additions and 3 deletions

View File

@ -1,4 +1,141 @@
#ifndef REGULARJACOBIANFACTOR_H
#define REGULARJACOBIANFACTOR_H
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file RegularJacobianFactor.h
* @brief JacobianFactor class with fixed sized blcoks
* @author Sungtae An
* @date Nov 11, 2014
*/
#pragma once
#include <gtsam/linear/JacobianFactor.h>
#include <boost/foreach.hpp>
#include <vector>
namespace gtsam {
template<size_t D>
class RegularJacobianFactor: public JacobianFactor {
private:
typedef Eigen::Matrix<double, D, D> MatrixDD; // camera hessian block
typedef Eigen::Matrix<double, D, 1> VectorD;
// Use eigen magic to access raw memory
typedef Eigen::Map<VectorD> DMap;
typedef Eigen::Map<const VectorD> ConstDMap;
public:
/** Construct an n-ary factor
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
* collection of keys and matrices making up the factor. */
template<typename TERMS>
RegularJacobianFactor(const TERMS& terms, const Vector& b,
const SharedDiagonal& model = SharedDiagonal()) :
JacobianFactor(terms, b, model) {
}
/** Constructor with arbitrary number keys, and where the augmented matrix is given all together
* instead of in block terms. Note that only the active view of the provided augmented matrix
* is used, and that the matrix data is copied into a newly-allocated matrix in the constructed
* factor. */
template<typename KEYS>
RegularJacobianFactor(const KEYS& keys,
const VerticalBlockMatrix& augmentedMatrix,
const SharedDiagonal& sigmas = SharedDiagonal()) :
JacobianFactor(keys, augmentedMatrix, sigmas) {
}
/// Return the diagonal of the Hessian for this factor
VectorValues hessianDiagonal() const {
return JacobianFactor::hessianDiagonal();
}
/// Raw memory access version of hessianDiagonal
void hessianDiagonal(double* d) const {
// Loop over all variables in the factor
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
// Get the diagonal block, and insert its diagonal
DVector dj;
for (size_t k = 0; k < D; ++k)
dj(k) = Ab_(j).col(k).squaredNorm();
DMap(d + D * j) += dj;
}
}
/// y += alpha * A'*A*x
void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const {
JacobianFactor::multiplyHessianAdd(alpha, x, y);
}
void multiplyHessianAdd(double alpha, const double* x, double* y,
std::vector<size_t> keys) const {
if (empty())
return;
Vector Ax = zero(Ab_.rows());
// Just iterate over all A matrices and multiply in correct config part
for (size_t pos = 0; pos < size(); ++pos)
Ax += Ab_(pos)
* ConstDMap(x + keys[keys_[pos]],
keys[keys_[pos] + 1] - keys[keys_[pos]]);
// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) {
model_->whitenInPlace(Ax);
model_->whitenInPlace(Ax);
}
// multiply with alpha
Ax *= alpha;
// Again iterate over all A matrices and insert Ai^e into y
for (size_t pos = 0; pos < size(); ++pos)
DMap(y + keys[keys_[pos]], keys[keys_[pos] + 1] - keys[keys_[pos]]) += Ab_(
pos).transpose() * Ax;
}
void multiplyHessianAdd(double alpha, const double* x, double* y) const {
if (empty()) return;
Vector Ax = zero(Ab_.rows());
// Just iterate over all A matrices and multiply in correct config part
for(size_t pos=0; pos<size(); ++pos)
Ax += Ab_(pos) * ConstDMap(x + D * keys_[pos]);
// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) { model_->whitenInPlace(Ax); model_->whitenInPlace(Ax); }
// multiply with alpha
Ax *= alpha;
// Again iterate over all A matrices and insert Ai^e into y
for(size_t pos=0; pos<size(); ++pos)
DMap(y + D * keys_[pos]) += Ab_(pos).transpose() * Ax;
}
VectorValues gradientAtZero() const {
return JacobianFactor::gradientAtZero();
}
void gradientAtZero(double* d) const {
//throw std::runtime_error("gradientAtZero not implemented for Jacobian factor");
}
};
}
#endif // REGULARJACOBIANFACTOR_H