formatting
parent
038c1c0b8e
commit
71c528a87d
|
@ -11,7 +11,7 @@
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @file SmartStereoProjectionFactorPP.h
|
* @file SmartStereoProjectionFactorPP.h
|
||||||
* @brief Smart stereo factor on poses and extrinsic calibration
|
* @brief Smart stereo factor on poses (P) and camera extrinsic pose (P) calibrations
|
||||||
* @author Luca Carlone
|
* @author Luca Carlone
|
||||||
* @author Frank Dellaert
|
* @author Frank Dellaert
|
||||||
*/
|
*/
|
||||||
|
@ -33,8 +33,8 @@ namespace gtsam {
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This factor optimizes the extrinsic camera calibration (pose of camera wrt body),
|
* This factor optimizes the pose of the body as well as the extrinsic camera calibration (pose of camera wrt body).
|
||||||
* and each camera has its own extrinsic calibration.
|
* Each camera has its own extrinsic calibration.
|
||||||
* This factor requires that values contain the involved poses and extrinsics (both Pose3).
|
* This factor requires that values contain the involved poses and extrinsics (both Pose3).
|
||||||
* @addtogroup SLAM
|
* @addtogroup SLAM
|
||||||
*/
|
*/
|
||||||
|
@ -72,9 +72,9 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
* @param Isotropic measurement noise
|
* @param Isotropic measurement noise
|
||||||
* @param params internal parameters of the smart factors
|
* @param params internal parameters of the smart factors
|
||||||
*/
|
*/
|
||||||
SmartStereoProjectionFactorPP(
|
SmartStereoProjectionFactorPP(const SharedNoiseModel& sharedNoiseModel,
|
||||||
const SharedNoiseModel& sharedNoiseModel,
|
const SmartStereoProjectionParams& params =
|
||||||
const SmartStereoProjectionParams& params = SmartStereoProjectionParams());
|
SmartStereoProjectionParams());
|
||||||
|
|
||||||
/** Virtual destructor */
|
/** Virtual destructor */
|
||||||
~SmartStereoProjectionFactorPP() override = default;
|
~SmartStereoProjectionFactorPP() override = default;
|
||||||
|
@ -87,8 +87,8 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
* @param body_P_cam_key is key corresponding to the camera observing the same landmark
|
* @param body_P_cam_key is key corresponding to the camera observing the same landmark
|
||||||
* @param K is the (fixed) camera calibration
|
* @param K is the (fixed) camera calibration
|
||||||
*/
|
*/
|
||||||
void add(const StereoPoint2& measured,
|
void add(const StereoPoint2& measured, const Key& w_P_body_key,
|
||||||
const Key& w_P_body_key, const Key& body_P_cam_key,
|
const Key& body_P_cam_key,
|
||||||
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -128,7 +128,10 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
|
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
|
||||||
|
|
||||||
/// equals
|
/// equals
|
||||||
const KeyVector& getExtrinsicPoseKeys() const {return body_P_cam_keys_;};
|
const KeyVector& getExtrinsicPoseKeys() const {
|
||||||
|
return body_P_cam_keys_;
|
||||||
|
}
|
||||||
|
;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* error calculates the error of the factor.
|
* error calculates the error of the factor.
|
||||||
|
@ -153,34 +156,37 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
/// Assumes the point has been computed
|
/// Assumes the point has been computed
|
||||||
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
||||||
void computeJacobiansAndCorrectForMissingMeasurements(
|
void computeJacobiansAndCorrectForMissingMeasurements(
|
||||||
FBlocks& Fs,
|
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
|
||||||
Matrix& E, Vector& b, const Values& values) const {
|
|
||||||
if (!result_) {
|
if (!result_) {
|
||||||
throw ("computeJacobiansWithTriangulatedPoint");
|
throw("computeJacobiansWithTriangulatedPoint");
|
||||||
} else { // valid result: compute jacobians
|
} else { // valid result: compute jacobians
|
||||||
size_t numViews = measured_.size();
|
size_t numViews = measured_.size();
|
||||||
E = Matrix::Zero(3*numViews,3); // a StereoPoint2 for each view
|
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view
|
||||||
b = Vector::Zero(3*numViews); // a StereoPoint2 for each view
|
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
|
||||||
Matrix dPoseCam_dPoseBody,dPoseCam_dPoseExt, dProject_dPoseCam,Ei;
|
Matrix dPoseCam_dPoseBody, dPoseCam_dPoseExt, dProject_dPoseCam, Ei;
|
||||||
|
|
||||||
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||||
Pose3 w_P_body = values.at<Pose3>(w_P_body_keys_.at(i));
|
Pose3 w_P_body = values.at<Pose3>(w_P_body_keys_.at(i));
|
||||||
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
|
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
|
||||||
StereoCamera camera(w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt), K_all_[i]);
|
StereoCamera camera(
|
||||||
StereoPoint2 reprojectionError = StereoPoint2(camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i));
|
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt),
|
||||||
|
K_all_[i]);
|
||||||
|
StereoPoint2 reprojectionError = StereoPoint2(
|
||||||
|
camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i));
|
||||||
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
||||||
J.block<ZDim,6>(0,0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6)
|
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6)
|
||||||
J.block<ZDim,6>(0,6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6)
|
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6)
|
||||||
if(std::isnan(measured_.at(i).uR())) // if the right pixel is invalid
|
if (std::isnan(measured_.at(i).uR())) // if the right pixel is invalid
|
||||||
{
|
{
|
||||||
J.block<1,12>(1,0) = Matrix::Zero(1,12);
|
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
|
||||||
Ei.block<1,3>(1,0) = Matrix::Zero(1,3);
|
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
|
||||||
reprojectionError = StereoPoint2(reprojectionError.uL(), 0.0, reprojectionError.v() );
|
reprojectionError = StereoPoint2(reprojectionError.uL(), 0.0,
|
||||||
|
reprojectionError.v());
|
||||||
}
|
}
|
||||||
Fs.push_back(J);
|
Fs.push_back(J);
|
||||||
size_t row = 3*i;
|
size_t row = 3 * i;
|
||||||
b.segment<ZDim>(row) = - reprojectionError.vector();
|
b.segment<ZDim>(row) = -reprojectionError.vector();
|
||||||
E.block<3,3>(row,0) = Ei;
|
E.block<3, 3>(row, 0) = Ei;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -194,7 +200,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
|
|
||||||
// Create structures for Hessian Factors
|
// Create structures for Hessian Factors
|
||||||
KeyVector js;
|
KeyVector js;
|
||||||
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||||
std::vector<Vector> gs(nrUniqueKeys);
|
std::vector<Vector> gs(nrUniqueKeys);
|
||||||
|
|
||||||
if (this->measured_.size() != cameras(values).size())
|
if (this->measured_.size() != cameras(values).size())
|
||||||
|
@ -205,12 +211,12 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
|
|
||||||
if (!result_) {
|
if (!result_) {
|
||||||
// failed: return"empty" Hessian
|
// failed: return"empty" Hessian
|
||||||
for(Matrix& m: Gs)
|
for (Matrix& m : Gs)
|
||||||
m = Matrix::Zero(DimPose,DimPose);
|
m = Matrix::Zero(DimPose, DimPose);
|
||||||
for(Vector& v: gs)
|
for (Vector& v : gs)
|
||||||
v = Vector::Zero(DimPose);
|
v = Vector::Zero(DimPose);
|
||||||
return boost::make_shared<RegularHessianFactor<DimPose> >(keys_,
|
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||||
Gs, gs, 0.0);
|
> (keys_, Gs, gs, 0.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
||||||
|
@ -230,7 +236,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
|
|
||||||
// marginalize point
|
// marginalize point
|
||||||
SymmetricBlockMatrix augmentedHessian = //
|
SymmetricBlockMatrix augmentedHessian = //
|
||||||
Cameras::SchurComplement<3,Dim>(Fs, E, P, b);
|
Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
|
||||||
|
|
||||||
// now pack into an Hessian factor
|
// now pack into an Hessian factor
|
||||||
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
||||||
|
@ -239,97 +245,109 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||||
|
|
||||||
size_t nrNonuniqueKeys = w_P_body_keys_.size() + body_P_cam_keys_.size();
|
size_t nrNonuniqueKeys = w_P_body_keys_.size() + body_P_cam_keys_.size();
|
||||||
SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
||||||
if ( nrUniqueKeys == nrNonuniqueKeys ){ // if there is 1 calibration key per camera
|
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
|
||||||
augmentedHessianUniqueKeys = SymmetricBlockMatrix(dims, Matrix(augmentedHessian.selfadjointView()));
|
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||||
}else{ // if multiple cameras share a calibration
|
dims, Matrix(augmentedHessian.selfadjointView()));
|
||||||
|
} else { // if multiple cameras share a calibration
|
||||||
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
||||||
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
||||||
nonuniqueDims.back() = 1;
|
nonuniqueDims.back() = 1;
|
||||||
augmentedHessian = SymmetricBlockMatrix(nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
augmentedHessian = SymmetricBlockMatrix(
|
||||||
|
nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
||||||
|
|
||||||
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
||||||
KeyVector nonuniqueKeys;
|
KeyVector nonuniqueKeys;
|
||||||
for(size_t i=0; i < w_P_body_keys_.size();i++){
|
for (size_t i = 0; i < w_P_body_keys_.size(); i++) {
|
||||||
nonuniqueKeys.push_back(w_P_body_keys_.at(i));
|
nonuniqueKeys.push_back(w_P_body_keys_.at(i));
|
||||||
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
|
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
|
||||||
}
|
}
|
||||||
|
|
||||||
// get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
|
// get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
|
||||||
std::map<Key,size_t> keyToSlotMap;
|
std::map<Key, size_t> keyToSlotMap;
|
||||||
for(size_t k=0; k<nrUniqueKeys;k++){
|
for (size_t k = 0; k < nrUniqueKeys; k++) {
|
||||||
keyToSlotMap[keys_[k]] = k;
|
keyToSlotMap[keys_[k]] = k;
|
||||||
}
|
}
|
||||||
|
|
||||||
// initialize matrix to zero
|
// initialize matrix to zero
|
||||||
augmentedHessianUniqueKeys = SymmetricBlockMatrix(dims, Matrix::Zero(6*nrUniqueKeys+1,6*nrUniqueKeys+1));
|
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||||
|
dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
|
||||||
|
|
||||||
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
||||||
for(size_t i=0; i<nrNonuniqueKeys;i++){ // rows
|
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
|
||||||
Key key_i = nonuniqueKeys.at(i);
|
Key key_i = nonuniqueKeys.at(i);
|
||||||
|
|
||||||
// update information vector
|
// update information vector
|
||||||
augmentedHessianUniqueKeys.updateOffDiagonalBlock( keyToSlotMap[key_i] , nrUniqueKeys,
|
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
||||||
augmentedHessian.aboveDiagonalBlock(i,nrNonuniqueKeys));
|
keyToSlotMap[key_i], nrUniqueKeys,
|
||||||
|
augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
|
||||||
|
|
||||||
// update blocks
|
// update blocks
|
||||||
for(size_t j=i; j<nrNonuniqueKeys;j++){ // cols
|
for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
|
||||||
Key key_j = nonuniqueKeys.at(j);
|
Key key_j = nonuniqueKeys.at(j);
|
||||||
if(i==j){
|
if (i == j) {
|
||||||
augmentedHessianUniqueKeys.updateDiagonalBlock( keyToSlotMap[key_i] , augmentedHessian.diagonalBlock(i));
|
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||||
}else{ // (i < j)
|
keyToSlotMap[key_i], augmentedHessian.diagonalBlock(i));
|
||||||
if( keyToSlotMap[key_i] != keyToSlotMap[key_j] ){
|
} else { // (i < j)
|
||||||
augmentedHessianUniqueKeys.updateOffDiagonalBlock( keyToSlotMap[key_i] , keyToSlotMap[key_j],
|
if (keyToSlotMap[key_i] != keyToSlotMap[key_j]) {
|
||||||
augmentedHessian.aboveDiagonalBlock(i,j));
|
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
||||||
}else{
|
keyToSlotMap[key_i], keyToSlotMap[key_j],
|
||||||
augmentedHessianUniqueKeys.updateDiagonalBlock( keyToSlotMap[key_i] ,
|
augmentedHessian.aboveDiagonalBlock(i, j));
|
||||||
augmentedHessian.aboveDiagonalBlock(i,j) +
|
} else {
|
||||||
augmentedHessian.aboveDiagonalBlock(i,j).transpose());
|
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||||
|
keyToSlotMap[key_i],
|
||||||
|
augmentedHessian.aboveDiagonalBlock(i, j)
|
||||||
|
+ augmentedHessian.aboveDiagonalBlock(i, j).transpose());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
augmentedHessianUniqueKeys.updateDiagonalBlock(nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||||
|
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
||||||
}
|
}
|
||||||
|
|
||||||
return boost::make_shared<RegularHessianFactor<DimPose> >(keys_, augmentedHessianUniqueKeys);
|
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||||
|
> (keys_, augmentedHessianUniqueKeys);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Linearize to Gaussian Factor
|
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
||||||
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
||||||
* @return a Gaussian factor
|
* @return a Gaussian factor
|
||||||
*/
|
*/
|
||||||
boost::shared_ptr<GaussianFactor> linearizeDamped(const Values& values,
|
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
||||||
const double lambda = 0.0) const {
|
const Values& values, const double lambda = 0.0) const {
|
||||||
// depending on flag set on construction we may linearize to different linear factors
|
// depending on flag set on construction we may linearize to different linear factors
|
||||||
switch (params_.linearizationMode) {
|
switch (params_.linearizationMode) {
|
||||||
case HESSIAN:
|
case HESSIAN:
|
||||||
return createHessianFactor(values, lambda);
|
return createHessianFactor(values, lambda);
|
||||||
default:
|
default:
|
||||||
throw std::runtime_error("SmartStereoProjectionFactorPP: unknown linearization mode");
|
throw std::runtime_error(
|
||||||
|
"SmartStereoProjectionFactorPP: unknown linearization mode");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// linearize
|
/// linearize
|
||||||
boost::shared_ptr<GaussianFactor> linearize(
|
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const
|
||||||
const Values& values) const override {
|
override {
|
||||||
return linearizeDamped(values);
|
return linearizeDamped(values);
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
/// Serialization function
|
/// Serialization function
|
||||||
friend class boost::serialization::access;
|
friend class boost::serialization::access;
|
||||||
template <class ARCHIVE>
|
template<class ARCHIVE>
|
||||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||||
ar& BOOST_SERIALIZATION_NVP(K_all_);
|
ar & BOOST_SERIALIZATION_NVP(K_all_);
|
||||||
}
|
}
|
||||||
|
|
||||||
}; // end of class declaration
|
};
|
||||||
|
// end of class declaration
|
||||||
|
|
||||||
/// traits
|
/// traits
|
||||||
template <>
|
template<>
|
||||||
struct traits<SmartStereoProjectionFactorPP>
|
struct traits<SmartStereoProjectionFactorPP> : public Testable<
|
||||||
: public Testable<SmartStereoProjectionFactorPP> {};
|
SmartStereoProjectionFactorPP> {
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
Loading…
Reference in New Issue