354 lines
14 KiB
C++
354 lines
14 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartStereoProjectionFactorPP.h
|
|
* @brief Smart stereo factor on poses (P) and camera extrinsic pose (P) calibrations
|
|
* @author Luca Carlone
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam_unstable/slam/SmartStereoProjectionFactor.h>
|
|
|
|
namespace gtsam {
|
|
/**
|
|
*
|
|
* @addtogroup SLAM
|
|
*
|
|
* If you are using the factor, please cite:
|
|
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
|
|
* Eliminating conditionally independent sets in factor graphs:
|
|
* a unifying perspective based on smart factors,
|
|
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
|
*/
|
|
|
|
/**
|
|
* This factor optimizes the pose of the body as well as the extrinsic camera calibration (pose of camera wrt body).
|
|
* Each camera has its own extrinsic calibration.
|
|
* This factor requires that values contain the involved poses and extrinsics (both Pose3).
|
|
* @addtogroup SLAM
|
|
*/
|
|
class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|
protected:
|
|
/// shared pointer to calibration object (one for each camera)
|
|
std::vector<boost::shared_ptr<Cal3_S2Stereo>> K_all_;
|
|
|
|
/// The keys corresponding to the pose of the body for each view
|
|
KeyVector w_P_body_keys_;
|
|
|
|
/// The keys corresponding to the extrinsic pose calibration for each view
|
|
KeyVector body_P_cam_keys_;
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// shorthand for base class type
|
|
typedef SmartStereoProjectionFactor Base;
|
|
|
|
/// shorthand for this class
|
|
typedef SmartStereoProjectionFactorPP This;
|
|
|
|
/// shorthand for a smart pointer to a factor
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
static const int Dim = 12; ///< Camera dimension
|
|
static const int DimPose = 6; ///< Camera dimension
|
|
static const int ZDim = 3; ///< Measurement dimension
|
|
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F blocks (derivatives wrpt camera)
|
|
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
|
|
|
|
/**
|
|
* Constructor
|
|
* @param Isotropic measurement noise
|
|
* @param params internal parameters of the smart factors
|
|
*/
|
|
SmartStereoProjectionFactorPP(const SharedNoiseModel& sharedNoiseModel,
|
|
const SmartStereoProjectionParams& params =
|
|
SmartStereoProjectionParams());
|
|
|
|
/** Virtual destructor */
|
|
~SmartStereoProjectionFactorPP() override = default;
|
|
|
|
/**
|
|
* add a new measurement, with a pose key, and an extrinsic pose key
|
|
* @param measured is the 3-dimensional location of the projection of a
|
|
* single landmark in the a single view (the measurement)
|
|
* @param w_P_body_key is key corresponding to the camera observing the same landmark
|
|
* @param body_P_cam_key is key corresponding to the camera observing the same landmark
|
|
* @param K is the (fixed) camera calibration
|
|
*/
|
|
void add(const StereoPoint2& measured, const Key& w_P_body_key,
|
|
const Key& body_P_cam_key,
|
|
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
|
|
|
/**
|
|
* Variant of the previous one in which we include a set of measurements
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m view (the measurements)
|
|
* @param w_P_body_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param body_P_cam_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param Ks vector of calibration objects
|
|
*/
|
|
void add(const std::vector<StereoPoint2>& measurements,
|
|
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
|
|
const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks);
|
|
|
|
/**
|
|
* Variant of the previous one in which we include a set of measurements with
|
|
* the same noise and calibration
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m view (the measurement)
|
|
* @param w_P_body_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param body_P_cam_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param K the (known) camera calibration (same for all measurements)
|
|
*/
|
|
void add(const std::vector<StereoPoint2>& measurements,
|
|
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
|
|
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
|
DefaultKeyFormatter) const override;
|
|
|
|
/// equals
|
|
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
|
|
|
|
/// equals
|
|
const KeyVector& getExtrinsicPoseKeys() const {
|
|
return body_P_cam_keys_;
|
|
}
|
|
;
|
|
|
|
/**
|
|
* error calculates the error of the factor.
|
|
*/
|
|
double error(const Values& values) const override;
|
|
|
|
/** return the calibration object */
|
|
inline std::vector<boost::shared_ptr<Cal3_S2Stereo>> calibration() const {
|
|
return K_all_;
|
|
}
|
|
|
|
/**
|
|
* Collect all cameras involved in this factor
|
|
* @param values Values structure which must contain camera poses
|
|
* corresponding
|
|
* to keys involved in this factor
|
|
* @return vector of Values
|
|
*/
|
|
Base::Cameras cameras(const Values& values) const override;
|
|
|
|
/// Compute F, E only (called below in both vanilla and SVD versions)
|
|
/// Assumes the point has been computed
|
|
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
|
void computeJacobiansAndCorrectForMissingMeasurements(
|
|
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
|
|
if (!result_) {
|
|
throw("computeJacobiansWithTriangulatedPoint");
|
|
} else { // valid result: compute jacobians
|
|
size_t numViews = measured_.size();
|
|
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view
|
|
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
|
|
Matrix dPoseCam_dPoseBody, dPoseCam_dPoseExt, dProject_dPoseCam, Ei;
|
|
|
|
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
|
Pose3 w_P_body = values.at<Pose3>(w_P_body_keys_.at(i));
|
|
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
|
|
StereoCamera camera(
|
|
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt),
|
|
K_all_[i]);
|
|
StereoPoint2 reprojectionError = StereoPoint2(
|
|
camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i));
|
|
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
|
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6)
|
|
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6)
|
|
if (std::isnan(measured_.at(i).uR())) // if the right pixel is invalid
|
|
{
|
|
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
|
|
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
|
|
reprojectionError = StereoPoint2(reprojectionError.uL(), 0.0,
|
|
reprojectionError.v());
|
|
}
|
|
Fs.push_back(J);
|
|
size_t row = 3 * i;
|
|
b.segment<ZDim>(row) = -reprojectionError.vector();
|
|
E.block<3, 3>(row, 0) = Ei;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
|
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
|
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
|
false) const {
|
|
|
|
size_t nrUniqueKeys = keys_.size();
|
|
|
|
// Create structures for Hessian Factors
|
|
KeyVector js;
|
|
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
|
std::vector<Vector> gs(nrUniqueKeys);
|
|
|
|
if (this->measured_.size() != cameras(values).size())
|
|
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
|
|
"measured_.size() inconsistent with input");
|
|
|
|
triangulateSafe(cameras(values));
|
|
|
|
if (!result_) {
|
|
// failed: return"empty" Hessian
|
|
for (Matrix& m : Gs)
|
|
m = Matrix::Zero(DimPose, DimPose);
|
|
for (Vector& v : gs)
|
|
v = Vector::Zero(DimPose);
|
|
return boost::make_shared < RegularHessianFactor<DimPose>
|
|
> (keys_, Gs, gs, 0.0);
|
|
}
|
|
|
|
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
|
FBlocks Fs;
|
|
Matrix F, E;
|
|
Vector b;
|
|
computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
|
|
|
|
// Whiten using noise model
|
|
noiseModel_->WhitenSystem(E, b);
|
|
for (size_t i = 0; i < Fs.size(); i++)
|
|
Fs[i] = noiseModel_->Whiten(Fs[i]);
|
|
|
|
// build augmented hessian
|
|
Matrix3 P;
|
|
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
|
|
|
// marginalize point
|
|
SymmetricBlockMatrix augmentedHessian = //
|
|
Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
|
|
|
|
// now pack into an Hessian factor
|
|
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
|
std::fill(dims.begin(), dims.end() - 1, 6);
|
|
dims.back() = 1;
|
|
|
|
size_t nrNonuniqueKeys = w_P_body_keys_.size() + body_P_cam_keys_.size();
|
|
SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
|
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
|
|
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
|
dims, Matrix(augmentedHessian.selfadjointView()));
|
|
} else { // if multiple cameras share a calibration
|
|
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
|
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
|
nonuniqueDims.back() = 1;
|
|
augmentedHessian = SymmetricBlockMatrix(
|
|
nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
|
|
|
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
|
KeyVector nonuniqueKeys;
|
|
for (size_t i = 0; i < w_P_body_keys_.size(); i++) {
|
|
nonuniqueKeys.push_back(w_P_body_keys_.at(i));
|
|
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
|
|
}
|
|
|
|
// get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
|
|
std::map<Key, size_t> keyToSlotMap;
|
|
for (size_t k = 0; k < nrUniqueKeys; k++) {
|
|
keyToSlotMap[keys_[k]] = k;
|
|
}
|
|
|
|
// initialize matrix to zero
|
|
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
|
dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
|
|
|
|
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
|
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
|
|
Key key_i = nonuniqueKeys.at(i);
|
|
|
|
// update information vector
|
|
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
|
keyToSlotMap[key_i], nrUniqueKeys,
|
|
augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
|
|
|
|
// update blocks
|
|
for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
|
|
Key key_j = nonuniqueKeys.at(j);
|
|
if (i == j) {
|
|
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
|
keyToSlotMap[key_i], augmentedHessian.diagonalBlock(i));
|
|
} else { // (i < j)
|
|
if (keyToSlotMap[key_i] != keyToSlotMap[key_j]) {
|
|
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
|
keyToSlotMap[key_i], keyToSlotMap[key_j],
|
|
augmentedHessian.aboveDiagonalBlock(i, j));
|
|
} else {
|
|
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
|
keyToSlotMap[key_i],
|
|
augmentedHessian.aboveDiagonalBlock(i, j)
|
|
+ augmentedHessian.aboveDiagonalBlock(i, j).transpose());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
|
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
|
}
|
|
|
|
return boost::make_shared < RegularHessianFactor<DimPose>
|
|
> (keys_, augmentedHessianUniqueKeys);
|
|
}
|
|
|
|
/**
|
|
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
|
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
|
* @return a Gaussian factor
|
|
*/
|
|
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
|
const Values& values, const double lambda = 0.0) const {
|
|
// depending on flag set on construction we may linearize to different linear factors
|
|
switch (params_.linearizationMode) {
|
|
case HESSIAN:
|
|
return createHessianFactor(values, lambda);
|
|
default:
|
|
throw std::runtime_error(
|
|
"SmartStereoProjectionFactorPP: unknown linearization mode");
|
|
}
|
|
}
|
|
|
|
/// linearize
|
|
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const
|
|
override {
|
|
return linearizeDamped(values);
|
|
}
|
|
|
|
private:
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
|
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
ar & BOOST_SERIALIZATION_NVP(K_all_);
|
|
}
|
|
|
|
};
|
|
// end of class declaration
|
|
|
|
/// traits
|
|
template<>
|
|
struct traits<SmartStereoProjectionFactorPP> : public Testable<
|
|
SmartStereoProjectionFactorPP> {
|
|
};
|
|
|
|
} // namespace gtsam
|