Efficient implementation of Selective Linearization
parent
73e72a98bd
commit
70a448f43e
|
@ -30,6 +30,11 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
// default threshold for selective relinearization
|
||||
static double defaultLinThreshold = 1e-7; // 0.01
|
||||
// default threshold for retriangulation
|
||||
static double defaultTriangThreshold = 1e-7;
|
||||
|
||||
/**
|
||||
* Structure for storing some state memory, used to speed up optimization
|
||||
* @addtogroup SLAM
|
||||
|
@ -94,6 +99,10 @@ namespace gtsam {
|
|||
const SharedNoiseModel noise_; ///< noise model used
|
||||
///< (important that the order is the same as the keys that we use to create the factor)
|
||||
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
|
||||
|
||||
double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
|
||||
double linearizationThreshold; ///< threshold to decide whether to re-linearize
|
||||
|
||||
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
boost::shared_ptr<SmartProjectionFactorState> state_;
|
||||
|
||||
|
@ -101,7 +110,6 @@ namespace gtsam {
|
|||
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
||||
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||
|
||||
|
||||
public:
|
||||
|
||||
/// shorthand for base class type
|
||||
|
@ -133,7 +141,31 @@ namespace gtsam {
|
|||
const boost::shared_ptr<CALIBRATION>& K, // calibration matrix (same for all measurements)
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
|
||||
measured_(measured), noise_(model), K_(K),
|
||||
retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold),
|
||||
body_P_sensor_(body_P_sensor),
|
||||
state_(state), throwCheirality_(false), verboseCheirality_(false) {
|
||||
keys_.assign(poseKeys.begin(), poseKeys.end());
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
|
||||
* @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
|
||||
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
|
||||
* @param K shared pointer to the constant calibration
|
||||
* @param body_P_sensor is the transform from body to sensor frame (default identity)
|
||||
*/
|
||||
SmartProjectionFactor(std::vector<Key> poseKeys, // camera poses
|
||||
const std::vector<Point2> measured, // pixel measurements
|
||||
const SharedNoiseModel& model, // noise model (same for all measurements)
|
||||
const boost::shared_ptr<CALIBRATION>& K, // calibration matrix (same for all measurements)
|
||||
const double linThreshold,
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
measured_(measured), noise_(model), K_(K),
|
||||
retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(linThreshold),
|
||||
body_P_sensor_(body_P_sensor),
|
||||
state_(state), throwCheirality_(false), verboseCheirality_(false) {
|
||||
keys_.assign(poseKeys.begin(), poseKeys.end());
|
||||
}
|
||||
|
@ -156,7 +188,9 @@ namespace gtsam {
|
|||
bool throwCheirality, bool verboseCheirality,
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
|
||||
measured_(measured), noise_(model), K_(K),
|
||||
retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold),
|
||||
body_P_sensor_(body_P_sensor),
|
||||
state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {
|
||||
}
|
||||
|
||||
|
@ -168,7 +202,8 @@ namespace gtsam {
|
|||
SmartProjectionFactor(const SharedNoiseModel& model, const boost::shared_ptr<CALIBRATION>& K,
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
noise_(model), K_(K), body_P_sensor_(body_P_sensor), state_(state) {
|
||||
noise_(model), K_(K), retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold),
|
||||
body_P_sensor_(body_P_sensor), state_(state) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
|
@ -184,81 +219,57 @@ namespace gtsam {
|
|||
keys_.push_back(poseKey);
|
||||
}
|
||||
|
||||
// This function decides whether a new triangulation is needed
|
||||
inline bool decideIfTriangulate(std::vector<Pose3> cameraPoses, const Values& values) const {
|
||||
// This function checks if the new linearization point is the same as the one used for previous triangulation
|
||||
// (if not, a new triangulation is needed)
|
||||
static bool decideIfTriangulate(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double retriangulationThreshold) {
|
||||
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
|
||||
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
|
||||
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
|
||||
bool retriangulate = true;
|
||||
bool valuesEqualRetriangulation = true;
|
||||
double retriangulationThreshold = 1e-9;
|
||||
|
||||
int poseCount = 0;
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
Pose3 cameraPose;
|
||||
// if we do not have a previous linearization point or the new linearization point includes more poses
|
||||
if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
|
||||
return true;
|
||||
|
||||
if(body_P_sensor_)
|
||||
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
|
||||
else
|
||||
cameraPose = values.at<Pose3>(k);
|
||||
|
||||
if (!state_->cameraPosesTriangulation.empty()) {
|
||||
|
||||
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
|
||||
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
|
||||
valuesEqualRetriangulation = false;
|
||||
for(size_t i = 0; i < cameraPoses.size(); i++) {
|
||||
if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) {
|
||||
return true; // at least two poses are different, hence we retriangulate
|
||||
}
|
||||
|
||||
} else {
|
||||
valuesEqualRetriangulation = false;
|
||||
}
|
||||
|
||||
cameraPoses.push_back(cameraPose);
|
||||
poseCount++;
|
||||
}
|
||||
|
||||
if (valuesEqualRetriangulation) {
|
||||
retriangulate = false;
|
||||
}
|
||||
|
||||
return retriangulate;
|
||||
return false; // if we arrive to this point all poses are the same and we don't need re-triangulation
|
||||
}
|
||||
|
||||
// This function decides whether a new triangulation is needed
|
||||
// bool decideIfLinearize(std::vector<Pose3> cameraPoses) const {
|
||||
// // "selecting linearization"
|
||||
// bool doLinearize = true;
|
||||
// double linearizationThreshold = 1e-2;
|
||||
//
|
||||
// Pose3 firstCameraPose;
|
||||
// Pose3 firstCameraPoseOld;
|
||||
//
|
||||
// for(size_t i = 0; i < cameraPoses.size(); i++) {
|
||||
// Pose3 cameraPose = cameraPoses.at(i);
|
||||
//
|
||||
// if (!state_->cameraPosesLinearization.empty()) { // if we have a previous linearization point
|
||||
//
|
||||
// if(i==0){ // we store the initial pose, this is useful for selective re-linearization
|
||||
// firstCameraPose = cameraPose;
|
||||
// firstCameraPoseOld = state_->cameraPosesLinearization[i];
|
||||
// continue;
|
||||
// }
|
||||
//
|
||||
// // we compare the poses in the frame of the first pose
|
||||
// Pose3 localCameraPose = firstCameraPose.between(cameraPose);
|
||||
// Pose3 localCameraPoseOld = firstCameraPoseOld.between(state_->cameraPosesLinearization[i]);
|
||||
//
|
||||
// if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) {
|
||||
// doLinearize = false;
|
||||
// }
|
||||
//
|
||||
// } else {
|
||||
// doLinearize = false;
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// return doLinearize;
|
||||
// }
|
||||
// This function checks if the new linearization point is 'close' to the previous one used for linearization
|
||||
// (if not, a new linearization is needed)
|
||||
static bool decideIfLinearize(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double linearizationThreshold) {
|
||||
// "selective linearization"
|
||||
// The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
|
||||
// (we only care about the "rigidity" of the poses, not about their absolute pose)
|
||||
|
||||
// if we do not have a previous linearization point or the new linearization point includes more poses
|
||||
if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
|
||||
return true;
|
||||
|
||||
Pose3 firstCameraPose;
|
||||
Pose3 firstCameraPoseOld;
|
||||
|
||||
for(size_t i = 0; i < cameraPoses.size(); i++) {
|
||||
|
||||
if(i==0){ // we store the initial pose, this is useful for selective re-linearization
|
||||
firstCameraPose = cameraPoses[i];
|
||||
firstCameraPoseOld = oldPoses[i];
|
||||
continue;
|
||||
}
|
||||
|
||||
// we compare the poses in the frame of the first pose
|
||||
Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]);
|
||||
Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]);
|
||||
|
||||
if (!cameraPoses[i].equals(oldPoses[i], linearizationThreshold)) {
|
||||
return true; // at least two "relative" poses are different, hence we re-linerize
|
||||
}
|
||||
}
|
||||
return false; // if we arrive to this point all poses are the same and we don't need re-linerize
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
|
@ -314,21 +325,16 @@ namespace gtsam {
|
|||
|
||||
// Collect all poses (Cameras)
|
||||
std::vector<Pose3> cameraPoses;
|
||||
|
||||
bool retriangulate = true; // decideIfTriangulate(cameraPoses, values);
|
||||
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
Pose3 cameraPose;
|
||||
|
||||
if(body_P_sensor_)
|
||||
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
|
||||
else
|
||||
cameraPose = values.at<Pose3>(k);
|
||||
|
||||
if(body_P_sensor_) { cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
|
||||
else { cameraPose = values.at<Pose3>(k);}
|
||||
cameraPoses.push_back(cameraPose);
|
||||
}
|
||||
|
||||
if(retriangulate) {
|
||||
bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
|
||||
|
||||
if(retriangulate) {// we store the current poses used for triangulation
|
||||
state_->cameraPosesTriangulation = cameraPoses;
|
||||
}
|
||||
|
||||
|
@ -368,7 +374,7 @@ namespace gtsam {
|
|||
dim_landmark = 2;
|
||||
}
|
||||
|
||||
bool doLinearize = true; //= decideIfLinearize(cameraPoses);
|
||||
bool doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold);
|
||||
|
||||
if (doLinearize) {
|
||||
state_->cameraPosesLinearization = cameraPoses;
|
||||
|
@ -536,22 +542,16 @@ namespace gtsam {
|
|||
|
||||
// Collect all poses (Cameras)
|
||||
std::vector<Pose3> cameraPoses;
|
||||
|
||||
// check if triangulation and linearization are actually needed
|
||||
bool retriangulate = true; //decideIfTriangulate(cameraPoses, values);
|
||||
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
Pose3 cameraPose;
|
||||
|
||||
if(body_P_sensor_)
|
||||
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
|
||||
else
|
||||
cameraPose = values.at<Pose3>(k);
|
||||
|
||||
if(body_P_sensor_) { cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
|
||||
else { cameraPose = values.at<Pose3>(k);}
|
||||
cameraPoses.push_back(cameraPose);
|
||||
}
|
||||
|
||||
if(retriangulate) {
|
||||
bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
|
||||
|
||||
if(retriangulate) {// we store the current poses used for triangulation
|
||||
state_->cameraPosesTriangulation = cameraPoses;
|
||||
}
|
||||
|
||||
|
@ -655,80 +655,3 @@ namespace gtsam {
|
|||
};
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
||||
/*
|
||||
// Discarded version of decideIfTriangulate and decideIfLinearize
|
||||
* This function decides whether a new triangulation and linearization is needed
|
||||
bool decideIfLinearize(std::vector<Pose3> cameraPoses) {
|
||||
// Selective relinearization (check if new linearization is needed)
|
||||
Vector repErr_i;
|
||||
try {
|
||||
repErr_i = - ( camera.project(state_->point) - measured_.at(i) ).vector();
|
||||
} catch ( CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << state_->ID << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
noise_-> whitenInPlace(repErr_i);
|
||||
f += repErr_i.squaredNorm();
|
||||
|
||||
Vector linRepErr;
|
||||
|
||||
linRepErr = state_->Hx * changeLinPoses + state_->Hl * changeLinPoint.vector() - state_->b;
|
||||
|
||||
double f_lin = linRepErr.squaredNorm();
|
||||
|
||||
// Relinearization check
|
||||
if (state_->f - f_lin > 1e-7){
|
||||
double rho = (state_->f - f) / (state_->f - f_lin);
|
||||
if( fabs(rho) > 0.75 ){
|
||||
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
|
||||
}
|
||||
}
|
||||
else{
|
||||
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool decideIfTriangulateAndLinearize(std::vector<Pose3> cameraPoses) {
|
||||
// Vector changeLinPoses(numKeys*6);
|
||||
// Point3 changeLinPoint;
|
||||
|
||||
Pose3 firstCameraPose;
|
||||
Pose3 firstCameraPoseOld;
|
||||
|
||||
int poseCount = 0;
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
Pose3 cameraPose;
|
||||
|
||||
if(body_P_sensor_)
|
||||
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
|
||||
else
|
||||
cameraPose = values.at<Pose3>(k);
|
||||
|
||||
if (!state_->cameraPosesTriangulation.empty()) {
|
||||
|
||||
if(poseCount==0){ // we store the initial pose, this is useful for selective re-linearization
|
||||
firstCameraPose = cameraPose;
|
||||
firstCameraPoseOld = state_->cameraPosesTriangulation[poseCount];
|
||||
}
|
||||
|
||||
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
|
||||
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
|
||||
valuesEqualRetriangulation = false;
|
||||
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
|
||||
}else{
|
||||
Vector changeLinPoses_i = Pose3::Logmap(state_->cameraPosesTriangulation[poseCount].between(cameraPose));
|
||||
subInsert(changeLinPoses, changeLinPoses_i, 6*poseCount);
|
||||
}
|
||||
} else {
|
||||
valuesEqualRetriangulation = false;
|
||||
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
|
||||
}
|
||||
|
||||
cameraPoses.push_back(cameraPose);
|
||||
poseCount++;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
|
Loading…
Reference in New Issue