Efficient implementation of Selective Linearization

release/4.3a0
Luca Carlone 2013-09-26 15:07:56 +00:00
parent 73e72a98bd
commit 70a448f43e
1 changed files with 92 additions and 169 deletions

View File

@ -30,6 +30,11 @@
namespace gtsam {
// default threshold for selective relinearization
static double defaultLinThreshold = 1e-7; // 0.01
// default threshold for retriangulation
static double defaultTriangThreshold = 1e-7;
/**
* Structure for storing some state memory, used to speed up optimization
* @addtogroup SLAM
@ -94,6 +99,10 @@ namespace gtsam {
const SharedNoiseModel noise_; ///< noise model used
///< (important that the order is the same as the keys that we use to create the factor)
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
double linearizationThreshold; ///< threshold to decide whether to re-linearize
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
boost::shared_ptr<SmartProjectionFactorState> state_;
@ -101,7 +110,6 @@ namespace gtsam {
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
/// shorthand for base class type
@ -133,7 +141,31 @@ namespace gtsam {
const boost::shared_ptr<CALIBRATION>& K, // calibration matrix (same for all measurements)
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
measured_(measured), noise_(model), K_(K),
retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold),
body_P_sensor_(body_P_sensor),
state_(state), throwCheirality_(false), verboseCheirality_(false) {
keys_.assign(poseKeys.begin(), poseKeys.end());
}
/**
* Constructor
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
* @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionFactor(std::vector<Key> poseKeys, // camera poses
const std::vector<Point2> measured, // pixel measurements
const SharedNoiseModel& model, // noise model (same for all measurements)
const boost::shared_ptr<CALIBRATION>& K, // calibration matrix (same for all measurements)
const double linThreshold,
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
measured_(measured), noise_(model), K_(K),
retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(linThreshold),
body_P_sensor_(body_P_sensor),
state_(state), throwCheirality_(false), verboseCheirality_(false) {
keys_.assign(poseKeys.begin(), poseKeys.end());
}
@ -156,7 +188,9 @@ namespace gtsam {
bool throwCheirality, bool verboseCheirality,
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
measured_(measured), noise_(model), K_(K),
retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold),
body_P_sensor_(body_P_sensor),
state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {
}
@ -168,7 +202,8 @@ namespace gtsam {
SmartProjectionFactor(const SharedNoiseModel& model, const boost::shared_ptr<CALIBRATION>& K,
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
noise_(model), K_(K), body_P_sensor_(body_P_sensor), state_(state) {
noise_(model), K_(K), retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold),
body_P_sensor_(body_P_sensor), state_(state) {
}
/** Virtual destructor */
@ -184,81 +219,57 @@ namespace gtsam {
keys_.push_back(poseKey);
}
// This function decides whether a new triangulation is needed
inline bool decideIfTriangulate(std::vector<Pose3> cameraPoses, const Values& values) const {
// This function checks if the new linearization point is the same as the one used for previous triangulation
// (if not, a new triangulation is needed)
static bool decideIfTriangulate(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double retriangulationThreshold) {
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
bool retriangulate = true;
bool valuesEqualRetriangulation = true;
double retriangulationThreshold = 1e-9;
int poseCount = 0;
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
// if we do not have a previous linearization point or the new linearization point includes more poses
if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
return true;
if(body_P_sensor_)
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
else
cameraPose = values.at<Pose3>(k);
if (!state_->cameraPosesTriangulation.empty()) {
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
valuesEqualRetriangulation = false;
for(size_t i = 0; i < cameraPoses.size(); i++) {
if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) {
return true; // at least two poses are different, hence we retriangulate
}
} else {
valuesEqualRetriangulation = false;
}
cameraPoses.push_back(cameraPose);
poseCount++;
}
if (valuesEqualRetriangulation) {
retriangulate = false;
}
return retriangulate;
return false; // if we arrive to this point all poses are the same and we don't need re-triangulation
}
// This function decides whether a new triangulation is needed
// bool decideIfLinearize(std::vector<Pose3> cameraPoses) const {
// // "selecting linearization"
// bool doLinearize = true;
// double linearizationThreshold = 1e-2;
//
// Pose3 firstCameraPose;
// Pose3 firstCameraPoseOld;
//
// for(size_t i = 0; i < cameraPoses.size(); i++) {
// Pose3 cameraPose = cameraPoses.at(i);
//
// if (!state_->cameraPosesLinearization.empty()) { // if we have a previous linearization point
//
// if(i==0){ // we store the initial pose, this is useful for selective re-linearization
// firstCameraPose = cameraPose;
// firstCameraPoseOld = state_->cameraPosesLinearization[i];
// continue;
// }
//
// // we compare the poses in the frame of the first pose
// Pose3 localCameraPose = firstCameraPose.between(cameraPose);
// Pose3 localCameraPoseOld = firstCameraPoseOld.between(state_->cameraPosesLinearization[i]);
//
// if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) {
// doLinearize = false;
// }
//
// } else {
// doLinearize = false;
// }
// }
//
// return doLinearize;
// }
// This function checks if the new linearization point is 'close' to the previous one used for linearization
// (if not, a new linearization is needed)
static bool decideIfLinearize(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double linearizationThreshold) {
// "selective linearization"
// The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
// (we only care about the "rigidity" of the poses, not about their absolute pose)
// if we do not have a previous linearization point or the new linearization point includes more poses
if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
return true;
Pose3 firstCameraPose;
Pose3 firstCameraPoseOld;
for(size_t i = 0; i < cameraPoses.size(); i++) {
if(i==0){ // we store the initial pose, this is useful for selective re-linearization
firstCameraPose = cameraPoses[i];
firstCameraPoseOld = oldPoses[i];
continue;
}
// we compare the poses in the frame of the first pose
Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]);
Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]);
if (!cameraPoses[i].equals(oldPoses[i], linearizationThreshold)) {
return true; // at least two "relative" poses are different, hence we re-linerize
}
}
return false; // if we arrive to this point all poses are the same and we don't need re-linerize
}
/**
@ -314,21 +325,16 @@ namespace gtsam {
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
bool retriangulate = true; // decideIfTriangulate(cameraPoses, values);
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_)
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
else
cameraPose = values.at<Pose3>(k);
if(body_P_sensor_) { cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
else { cameraPose = values.at<Pose3>(k);}
cameraPoses.push_back(cameraPose);
}
if(retriangulate) {
bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
if(retriangulate) {// we store the current poses used for triangulation
state_->cameraPosesTriangulation = cameraPoses;
}
@ -368,7 +374,7 @@ namespace gtsam {
dim_landmark = 2;
}
bool doLinearize = true; //= decideIfLinearize(cameraPoses);
bool doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold);
if (doLinearize) {
state_->cameraPosesLinearization = cameraPoses;
@ -536,22 +542,16 @@ namespace gtsam {
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
// check if triangulation and linearization are actually needed
bool retriangulate = true; //decideIfTriangulate(cameraPoses, values);
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_)
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
else
cameraPose = values.at<Pose3>(k);
if(body_P_sensor_) { cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
else { cameraPose = values.at<Pose3>(k);}
cameraPoses.push_back(cameraPose);
}
if(retriangulate) {
bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
if(retriangulate) {// we store the current poses used for triangulation
state_->cameraPosesTriangulation = cameraPoses;
}
@ -655,80 +655,3 @@ namespace gtsam {
};
} // \ namespace gtsam
/*
// Discarded version of decideIfTriangulate and decideIfLinearize
* This function decides whether a new triangulation and linearization is needed
bool decideIfLinearize(std::vector<Pose3> cameraPoses) {
// Selective relinearization (check if new linearization is needed)
Vector repErr_i;
try {
repErr_i = - ( camera.project(state_->point) - measured_.at(i) ).vector();
} catch ( CheiralityException& e) {
std::cout << "Cheirality exception " << state_->ID << std::endl;
exit(EXIT_FAILURE);
}
noise_-> whitenInPlace(repErr_i);
f += repErr_i.squaredNorm();
Vector linRepErr;
linRepErr = state_->Hx * changeLinPoses + state_->Hl * changeLinPoint.vector() - state_->b;
double f_lin = linRepErr.squaredNorm();
// Relinearization check
if (state_->f - f_lin > 1e-7){
double rho = (state_->f - f) / (state_->f - f_lin);
if( fabs(rho) > 0.75 ){
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
}
else{
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
bool decideIfTriangulateAndLinearize(std::vector<Pose3> cameraPoses) {
// Vector changeLinPoses(numKeys*6);
// Point3 changeLinPoint;
Pose3 firstCameraPose;
Pose3 firstCameraPoseOld;
int poseCount = 0;
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_)
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
else
cameraPose = values.at<Pose3>(k);
if (!state_->cameraPosesTriangulation.empty()) {
if(poseCount==0){ // we store the initial pose, this is useful for selective re-linearization
firstCameraPose = cameraPose;
firstCameraPoseOld = state_->cameraPosesTriangulation[poseCount];
}
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
valuesEqualRetriangulation = false;
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
}else{
Vector changeLinPoses_i = Pose3::Logmap(state_->cameraPosesTriangulation[poseCount].between(cameraPose));
subInsert(changeLinPoses, changeLinPoses_i, 6*poseCount);
}
} else {
valuesEqualRetriangulation = false;
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
}
cameraPoses.push_back(cameraPose);
poseCount++;
}
}
*/