Selective relinearization

release/4.3a0
Luca Carlone 2013-09-26 01:06:55 +00:00
parent 9f68c04792
commit 73e72a98bd
4 changed files with 202 additions and 99 deletions

View File

@ -264,7 +264,7 @@ int main(int argc, char** argv) {
}
if (useSmartProjectionFactor) {
SmartFactor::shared_ptr smartFactor(new SmartFactor(measurements, pixel_sigma, views, K));
SmartFactor::shared_ptr smartFactor(new SmartFactor(views, measurements, pixel_sigma, K));
graph.push_back(smartFactor);
}
@ -290,7 +290,7 @@ int main(int argc, char** argv) {
}
// Add last measurements
if (useSmartProjectionFactor) {
SmartFactor::shared_ptr smartFactor(new SmartFactor(measurements, pixel_sigma, views, K));
SmartFactor::shared_ptr smartFactor(new SmartFactor(views, measurements, pixel_sigma, K));
graph.push_back(smartFactor);
}

View File

@ -437,7 +437,7 @@ int main(int argc, char** argv) {
// This is a new landmark, create a new factor and add to mapping
boost::shared_ptr<SmartProjectionFactorState> smartFactorState(new SmartProjectionFactorState());
SmartFactor::shared_ptr smartFactor(new SmartFactor(measurements, pixel_sigma, views, K));
SmartFactor::shared_ptr smartFactor(new SmartFactor(views, measurements, pixel_sigma, K));
smartFactorStates.insert( make_pair(L(l), smartFactorState) );
smartFactors.insert( make_pair(L(l), smartFactor) );
graph.push_back(smartFactor);

View File

@ -59,28 +59,24 @@ namespace gtsam {
double overallError;
std::vector<Pose3> cameraPosesError;
// Hessian
// Hessian representation (after Schur complement)
bool calculatedHessian;
Matrix H;
Vector gs_vector;
double f;
std::vector<Matrix> Gs;
std::vector<Vector> gs;
double f;
// Jacobian representation (before Schur complement)
Matrix Hx;
Matrix Hl;
Vector b;
// C = Hl'Hl
// Cinv = inv(Hl'Hl)
// Matrix3 Cinv;
// E = Hx'Hl
// w = Hl'b
};
int SmartProjectionFactorState::lastID = 0;
@ -105,6 +101,7 @@ namespace gtsam {
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
/// shorthand for base class type
@ -124,15 +121,16 @@ namespace gtsam {
/**
* Constructor
* TODO: Mark argument order standard (keys, measurement, parameters)
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
* @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
SmartProjectionFactor(std::vector<Key> poseKeys, // camera poses
const std::vector<Point2> measured, // pixel measurements
const SharedNoiseModel& model, // noise model (same for all measurements)
const boost::shared_ptr<CALIBRATION>& K, // calibration matrix (same for all measurements)
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
@ -151,14 +149,15 @@ namespace gtsam {
* @param verboseCheirality determines whether exceptions are printed for Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
SmartProjectionFactor(std::vector<Key> poseKeys,
const std::vector<Point2> measured,
const SharedNoiseModel& model,
const boost::shared_ptr<CALIBRATION>& K,
bool throwCheirality, bool verboseCheirality,
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {
}
/**
@ -185,6 +184,83 @@ namespace gtsam {
keys_.push_back(poseKey);
}
// This function decides whether a new triangulation is needed
inline bool decideIfTriangulate(std::vector<Pose3> cameraPoses, const Values& values) const {
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
bool retriangulate = true;
bool valuesEqualRetriangulation = true;
double retriangulationThreshold = 1e-9;
int poseCount = 0;
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_)
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
else
cameraPose = values.at<Pose3>(k);
if (!state_->cameraPosesTriangulation.empty()) {
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
valuesEqualRetriangulation = false;
}
} else {
valuesEqualRetriangulation = false;
}
cameraPoses.push_back(cameraPose);
poseCount++;
}
if (valuesEqualRetriangulation) {
retriangulate = false;
}
return retriangulate;
}
// This function decides whether a new triangulation is needed
// bool decideIfLinearize(std::vector<Pose3> cameraPoses) const {
// // "selecting linearization"
// bool doLinearize = true;
// double linearizationThreshold = 1e-2;
//
// Pose3 firstCameraPose;
// Pose3 firstCameraPoseOld;
//
// for(size_t i = 0; i < cameraPoses.size(); i++) {
// Pose3 cameraPose = cameraPoses.at(i);
//
// if (!state_->cameraPosesLinearization.empty()) { // if we have a previous linearization point
//
// if(i==0){ // we store the initial pose, this is useful for selective re-linearization
// firstCameraPose = cameraPose;
// firstCameraPoseOld = state_->cameraPosesLinearization[i];
// continue;
// }
//
// // we compare the poses in the frame of the first pose
// Pose3 localCameraPose = firstCameraPose.between(cameraPose);
// Pose3 localCameraPoseOld = firstCameraPoseOld.between(state_->cameraPosesLinearization[i]);
//
// if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) {
// doLinearize = false;
// }
//
// } else {
// doLinearize = false;
// }
// }
//
// return doLinearize;
// }
/**
* print
* @param s optional string naming the factor
@ -226,25 +302,21 @@ namespace gtsam {
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
bool blockwise = false;
double retriangulationThreshold = 1e-9;
int dim_landmark = 3;
bool retriangulate = true;
bool blockwise = false; // the full matrix version in faster
int dim_landmark = 3; // for degenerate instances this will become 2 (direction-only information)
// Create structures for Hessian Factors
unsigned int numKeys = keys_.size();
std::vector<Index> js;
std::vector<Matrix> Gs(numKeys*(numKeys+1)/2);
std::vector<Vector> gs(numKeys);
double f=0;
Vector changeLinPoses(numKeys*6);
Point3 changeLinPoint;
// Collect all poses (Cameras)
bool valuesEqualRetriangulation = true;
std::vector<Pose3> cameraPoses;
int poseCount = 0;
bool retriangulate = true; // decideIfTriangulate(cameraPoses, values);
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
@ -253,27 +325,10 @@ namespace gtsam {
else
cameraPose = values.at<Pose3>(k);
if (!state_->cameraPosesTriangulation.empty()) {
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
valuesEqualRetriangulation = false;
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
}else{
Vector changeLinPoses_i = Pose3::Logmap(state_->cameraPosesTriangulation[poseCount].between(cameraPose));
subInsert(changeLinPoses, changeLinPoses_i, 6*poseCount);
}
} else {
valuesEqualRetriangulation = false;
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
}
cameraPoses.push_back(cameraPose);
poseCount++;
}
if (valuesEqualRetriangulation) {
retriangulate = false;
} else {
if(retriangulate) {
state_->cameraPosesTriangulation = cameraPoses;
}
@ -281,7 +336,7 @@ namespace gtsam {
// We triangulate the 3D position of the landmark
try {
Point3 newPoint = triangulatePoint3(cameraPoses, measured_, *K_);
changeLinPoint = newPoint - state_->point; // TODO: implement this check for the degenerate case
// changeLinPoint = newPoint - state_->point; // TODO: implement this check for the degenerate case
state_->point = newPoint;
state_->degenerate = false;
state_->cheiralityException = false;
@ -313,6 +368,17 @@ namespace gtsam {
dim_landmark = 2;
}
bool doLinearize = true; //= decideIfLinearize(cameraPoses);
if (doLinearize) {
state_->cameraPosesLinearization = cameraPoses;
}
if(!doLinearize){ // return the previous Hessian factor
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
//otherwise redo linearization
if (blockwise){
// ==========================================================================================================
std::cout << "Deprecated use of blockwise version. This is slower and no longer supported" << std::endl;
@ -401,40 +467,11 @@ namespace gtsam {
}
else{
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_);
Matrix Hxi, Hli;
// Selective relinearization (check if new linearization is needed)
Vector repErr_i;
try {
repErr_i = - ( camera.project(state_->point) - measured_.at(i) ).vector();
} catch ( CheiralityException& e) {
std::cout << "Cheirality exception " << state_->ID << std::endl;
exit(EXIT_FAILURE);
}
noise_-> whitenInPlace(repErr_i);
f += repErr_i.squaredNorm();
Vector linRepErr;
linRepErr = state_->Hx * changeLinPoses + state_->Hl * changeLinPoint.vector() - state_->b;
double f_lin = linRepErr.squaredNorm();
// Relinearization check
if (state_->f - f_lin > 1e-7){
double rho = (state_->f - f) / (state_->f - f_lin);
if( fabs(rho) > 0.75 ){
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
}
else{
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
Vector bi;
try {
bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
@ -494,15 +531,15 @@ namespace gtsam {
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
*/
virtual double error(const Values& values) const {
double retriangulationThreshold = 1e-9;
if (this->active(values)) {
double overallError=0;
bool retriangulate = true;
// Collect all poses (Cameras)
bool valuesEqualRetriangulation = true;
std::vector<Pose3> cameraPoses;
int poseCount = 0;
// check if triangulation and linearization are actually needed
bool retriangulate = true; //decideIfTriangulate(cameraPoses, values);
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
@ -511,21 +548,10 @@ namespace gtsam {
else
cameraPose = values.at<Pose3>(k);
if (!state_->cameraPosesTriangulation.empty()) {
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
valuesEqualRetriangulation = false;
}
} else {
valuesEqualRetriangulation = false;
}
cameraPoses.push_back(cameraPose);
poseCount++;
}
if (valuesEqualRetriangulation) {
retriangulate = false;
} else {
if(retriangulate) {
state_->cameraPosesTriangulation = cameraPoses;
}
@ -629,3 +655,80 @@ namespace gtsam {
};
} // \ namespace gtsam
/*
// Discarded version of decideIfTriangulate and decideIfLinearize
* This function decides whether a new triangulation and linearization is needed
bool decideIfLinearize(std::vector<Pose3> cameraPoses) {
// Selective relinearization (check if new linearization is needed)
Vector repErr_i;
try {
repErr_i = - ( camera.project(state_->point) - measured_.at(i) ).vector();
} catch ( CheiralityException& e) {
std::cout << "Cheirality exception " << state_->ID << std::endl;
exit(EXIT_FAILURE);
}
noise_-> whitenInPlace(repErr_i);
f += repErr_i.squaredNorm();
Vector linRepErr;
linRepErr = state_->Hx * changeLinPoses + state_->Hl * changeLinPoint.vector() - state_->b;
double f_lin = linRepErr.squaredNorm();
// Relinearization check
if (state_->f - f_lin > 1e-7){
double rho = (state_->f - f) / (state_->f - f_lin);
if( fabs(rho) > 0.75 ){
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
}
else{
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
bool decideIfTriangulateAndLinearize(std::vector<Pose3> cameraPoses) {
// Vector changeLinPoses(numKeys*6);
// Point3 changeLinPoint;
Pose3 firstCameraPose;
Pose3 firstCameraPoseOld;
int poseCount = 0;
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_)
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
else
cameraPose = values.at<Pose3>(k);
if (!state_->cameraPosesTriangulation.empty()) {
if(poseCount==0){ // we store the initial pose, this is useful for selective re-linearization
firstCameraPose = cameraPose;
firstCameraPoseOld = state_->cameraPosesTriangulation[poseCount];
}
// TODO: are you sure that when using "add" the number of poses will be ok? (old linearization point will contain 1 pose less)
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
valuesEqualRetriangulation = false;
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
}else{
Vector changeLinPoses_i = Pose3::Logmap(state_->cameraPosesTriangulation[poseCount].between(cameraPose));
subInsert(changeLinPoses, changeLinPoses_i, 6*poseCount);
}
} else {
valuesEqualRetriangulation = false;
subInsert(changeLinPoses, Vector::Zero(6), 6*poseCount);
}
cameraPoses.push_back(cameraPose);
poseCount++;
}
}
*/

View File

@ -73,7 +73,7 @@ TEST( SmartProjectionFactor, Constructor) {
std::vector<Point2> measurements;
measurements.push_back(Point2(323.0, 240.0));
TestSmartProjectionFactor factor(measurements, model, views, K);
TestSmartProjectionFactor factor(views, measurements, model, K);
}
/* ************************************************************************* */
@ -87,7 +87,7 @@ TEST( SmartProjectionFactor, ConstructorWithTransform) {
measurements.push_back(Point2(323.0, 240.0));
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestSmartProjectionFactor factor(measurements, model, views, K, body_P_sensor);
TestSmartProjectionFactor factor(views, measurements, model, K, body_P_sensor);
}
/* ************************************************************************* */
@ -98,8 +98,8 @@ TEST( SmartProjectionFactor, Equals ) {
std::vector<Key> views;
views += X(1);
TestSmartProjectionFactor factor1(measurements, model, views, K);
TestSmartProjectionFactor factor2(measurements, model, views, K);
TestSmartProjectionFactor factor1(views, measurements, model, K);
TestSmartProjectionFactor factor2(views, measurements, model, K);
CHECK(assert_equal(factor1, factor2));
}
@ -113,8 +113,8 @@ TEST( SmartProjectionFactor, EqualsWithTransform ) {
std::vector<Key> views;
views += X(1);
TestSmartProjectionFactor factor1(measurements, model, views, K, body_P_sensor);
TestSmartProjectionFactor factor2(measurements, model, views, K, body_P_sensor);
TestSmartProjectionFactor factor1(views, measurements, model, K, body_P_sensor);
TestSmartProjectionFactor factor2(views, measurements, model, K, body_P_sensor);
CHECK(assert_equal(factor1, factor2));
}
@ -631,8 +631,8 @@ TEST( SmartProjectionFactor, 3poses_2land_rotation_only_smart_projection_factor
typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
SmartFactor::shared_ptr smartFactor1(new SmartFactor(measurements_cam1, noiseProjection, views, K));
SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K));
SmartFactor::shared_ptr smartFactor1(new SmartFactor(views, measurements_cam1, noiseProjection, K));
SmartFactor::shared_ptr smartFactor2(new SmartFactor(views, measurements_cam2, noiseProjection, K));
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);