Merge pull request #781 from danbarla/danbarla_dev
commit
6f02ebde14
|
@ -19,6 +19,21 @@ from gtsam.utils.test_case import GtsamTestCase
|
||||||
class TestKalmanFilter(GtsamTestCase):
|
class TestKalmanFilter(GtsamTestCase):
|
||||||
|
|
||||||
def test_KalmanFilter(self):
|
def test_KalmanFilter(self):
|
||||||
|
"""
|
||||||
|
Kalman Filter Definitions:
|
||||||
|
F - State Transition Model
|
||||||
|
B - Control Input Model
|
||||||
|
u - Control Vector
|
||||||
|
modelQ - Covariance of the process Noise (input for KalmanFilter object) - sigma as input
|
||||||
|
Q - Covariance of the process Noise (for reference calculation) - sigma^2 as input
|
||||||
|
H - Observation Model
|
||||||
|
z1 - Observation iteration 1
|
||||||
|
z2 - Observation iteration 2
|
||||||
|
z3 - observation iteration 3
|
||||||
|
modelR - Covariance of the observation Noise (input for KalmanFilter object) - sigma as input
|
||||||
|
R - Covariance of the observation Noise (for reference calculation) - sigma^2 as input
|
||||||
|
"""
|
||||||
|
|
||||||
F = np.eye(2)
|
F = np.eye(2)
|
||||||
B = np.eye(2)
|
B = np.eye(2)
|
||||||
u = np.array([1.0, 0.0])
|
u = np.array([1.0, 0.0])
|
||||||
|
|
Loading…
Reference in New Issue