Updated more matlab examples
parent
080dd7d57c
commit
62f28bb798
|
@ -55,7 +55,7 @@ import gtsam.*
|
|||
cla;
|
||||
hold on;
|
||||
|
||||
plot2DTrajectory(result, Marginals(graph, result));
|
||||
plot2DTrajectory(result, [], Marginals(graph, result));
|
||||
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
|
|
|
@ -52,7 +52,7 @@ import gtsam.*
|
|||
cla;
|
||||
hold on;
|
||||
|
||||
plot2DTrajectory(result, Marginals(graph, result));
|
||||
plot2DTrajectory(result, [], Marginals(graph, result));
|
||||
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
|
|
|
@ -25,72 +25,59 @@ i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
|
|||
j1 = symbol('l',1); j2 = symbol('l',2);
|
||||
|
||||
%% Create graph container and add factors to it
|
||||
graph = planarSLAM.Graph;
|
||||
graph = gtsam.NonlinearFactorGraph;
|
||||
|
||||
%% Add prior
|
||||
import gtsam.*
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
import gtsam.*
|
||||
odometry = Pose2(2.0, 0.0, 0.0);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.addRelativePose(i1, i2, odometry, odometryNoise);
|
||||
graph.addRelativePose(i2, i3, odometry, odometryNoise);
|
||||
graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
|
||||
|
||||
%% Add bearing/range measurement factors
|
||||
import gtsam.*
|
||||
degrees = pi/180;
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
|
||||
graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise);
|
||||
graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise);
|
||||
graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise);
|
||||
graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise));
|
||||
graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
|
||||
graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
|
||||
|
||||
% print
|
||||
graph.print(sprintf('\nFull graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
import gtsam.*
|
||||
initialEstimate = planarSLAM.Values;
|
||||
initialEstimate.insertPose(i1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(i2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(i3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate.insertPoint(j1, Point2(1.8, 2.1));
|
||||
initialEstimate.insertPoint(j2, Point2(4.1, 1.8));
|
||||
initialEstimate = Values;
|
||||
initialEstimate.insert(i1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insert(i2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insert(i3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate.insert(j1, Point2(1.8, 2.1));
|
||||
initialEstimate.insert(j2, Point2(4.1, 1.8));
|
||||
|
||||
initialEstimate.print(sprintf('\nInitial estimate:\n'));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initialEstimate,1);
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print(sprintf('\nFinal result:\n'));
|
||||
|
||||
%% Plot Covariance Ellipses
|
||||
import gtsam.*
|
||||
cla;hold on
|
||||
marginals = graph.marginals(result);
|
||||
for i=1:3
|
||||
key = symbol('x',i);
|
||||
pose{i} = result.pose(key);
|
||||
P{i}=marginals.marginalCovariance(key);
|
||||
if i>1
|
||||
plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
|
||||
end
|
||||
end
|
||||
for i=1:3
|
||||
plotPose2(pose{i},'g',P{i})
|
||||
end
|
||||
point = {};
|
||||
for j=1:2
|
||||
key = symbol('l',j);
|
||||
point{j} = result.point(key);
|
||||
Q{j}=marginals.marginalCovariance(key);
|
||||
plotPoint2(point{j},'b',Q{j})
|
||||
end
|
||||
plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
|
||||
plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
|
||||
plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
|
||||
|
||||
marginals = Marginals(graph, result);
|
||||
plot2DTrajectory(result, [], marginals);
|
||||
plot2DPoints(result, marginals);
|
||||
|
||||
plot([result.at(i1).x; result.at(j1).x],[result.at(i1).y; result.at(j1).y], 'c-');
|
||||
plot([result.at(i2).x; result.at(j1).x],[result.at(i2).y; result.at(j1).y], 'c-');
|
||||
plot([result.at(i3).x; result.at(j2).x],[result.at(i3).y; result.at(j2).y], 'c-');
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
view(2)
|
||||
|
|
|
@ -14,14 +14,14 @@
|
|||
%% Create the same factor graph as in PlanarSLAMExample
|
||||
import gtsam.*
|
||||
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
|
||||
graph = planarSLAM.Graph;
|
||||
graph = NonlinearFactorGraph;
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph
|
||||
odometry = Pose2(2.0, 0.0, 0.0);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.addRelativePose(i1, i2, odometry, odometryNoise);
|
||||
graph.addRelativePose(i2, i3, odometry, odometryNoise);
|
||||
graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
|
||||
|
||||
%% Except, for measurements we offer a choice
|
||||
import gtsam.*
|
||||
|
@ -29,48 +29,41 @@ j1 = symbol('l',1); j2 = symbol('l',2);
|
|||
degrees = pi/180;
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
|
||||
if 1
|
||||
graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise);
|
||||
graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise);
|
||||
graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise));
|
||||
graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
|
||||
else
|
||||
bearingModel = noiseModel.Diagonal.Sigmas(0.1);
|
||||
graph.addBearing(i1, j1, Rot2(45*degrees), bearingModel);
|
||||
graph.addBearing(i2, j1, Rot2(90*degrees), bearingModel);
|
||||
graph.add(BearingFactor2D(i1, j1, Rot2(45*degrees), bearingModel));
|
||||
graph.add(BearingFactor2D(i2, j1, Rot2(90*degrees), bearingModel));
|
||||
end
|
||||
graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise);
|
||||
graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
|
||||
|
||||
%% Initialize MCMC sampler with ground truth
|
||||
sample = planarSLAM.Values;
|
||||
sample.insertPose(i1, Pose2(0,0,0));
|
||||
sample.insertPose(i2, Pose2(2,0,0));
|
||||
sample.insertPose(i3, Pose2(4,0,0));
|
||||
sample.insertPoint(j1, Point2(2,2));
|
||||
sample.insertPoint(j2, Point2(4,2));
|
||||
sample = Values;
|
||||
sample.insert(i1, Pose2(0,0,0));
|
||||
sample.insert(i2, Pose2(2,0,0));
|
||||
sample.insert(i3, Pose2(4,0,0));
|
||||
sample.insert(j1, Point2(2,2));
|
||||
sample.insert(j2, Point2(4,2));
|
||||
|
||||
%% Calculate and plot Covariance Ellipses
|
||||
figure(1);clf;hold on
|
||||
marginals = graph.marginals(sample);
|
||||
for i=1:3
|
||||
key = symbol('x',i);
|
||||
pose{i} = sample.pose(key);
|
||||
P{i}=marginals.marginalCovariance(key);
|
||||
if i>1
|
||||
plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
|
||||
end
|
||||
end
|
||||
for i=1:3
|
||||
plotPose2(pose{i},'g',P{i})
|
||||
end
|
||||
cla;hold on
|
||||
marginals = Marginals(graph, sample);
|
||||
|
||||
plot2DTrajectory(sample, [], marginals);
|
||||
plot2DPoints(sample, marginals);
|
||||
|
||||
for j=1:2
|
||||
key = symbol('l',j);
|
||||
point{j} = sample.point(key);
|
||||
point{j} = sample.at(key);
|
||||
Q{j}=marginals.marginalCovariance(key);
|
||||
S{j}=chol(Q{j}); % for sampling
|
||||
plotPoint2(point{j},'b',Q{j})
|
||||
end
|
||||
plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
|
||||
plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
|
||||
plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
|
||||
axis equal
|
||||
|
||||
plot([sample.at(i1).x; sample.at(j1).x],[sample.at(i1).y; sample.at(j1).y], 'c-');
|
||||
plot([sample.at(i2).x; sample.at(j1).x],[sample.at(i2).y; sample.at(j1).y], 'c-');
|
||||
plot([sample.at(i3).x; sample.at(j2).x],[sample.at(i3).y; sample.at(j2).y], 'c-');
|
||||
view(2); axis auto; axis equal
|
||||
|
||||
%% Do Sampling on point 2
|
||||
N=1000;
|
||||
|
|
|
@ -19,58 +19,55 @@
|
|||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create graph container and add factors to it
|
||||
graph = pose2SLAM.Graph;
|
||||
graph = NonlinearFactorGraph;
|
||||
|
||||
%% Add prior
|
||||
import gtsam.*
|
||||
% gaussian for prior
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
import gtsam.*
|
||||
% general noisemodel for odometry
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.addRelativePose(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise);
|
||||
graph.addRelativePose(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise);
|
||||
graph.addRelativePose(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise);
|
||||
graph.addRelativePose(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise);
|
||||
graph.add(BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
|
||||
%% Add pose constraint
|
||||
import gtsam.*
|
||||
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.addRelativePose(5, 2, Pose2(2.0, 0.0, pi/2), model);
|
||||
graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi/2), model));
|
||||
|
||||
% print
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
import gtsam.*
|
||||
initialEstimate = pose2SLAM.Values;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2 ));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2 ));
|
||||
initialEstimate.insertPose(3, Pose2(4.1, 0.1, pi/2));
|
||||
initialEstimate.insertPose(4, Pose2(4.0, 2.0, pi ));
|
||||
initialEstimate.insertPose(5, Pose2(2.1, 2.1,-pi/2));
|
||||
initialEstimate = Values;
|
||||
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
|
||||
initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2 ));
|
||||
initialEstimate.insert(3, Pose2(4.1, 0.1, pi/2));
|
||||
initialEstimate.insert(4, Pose2(4.0, 2.0, pi ));
|
||||
initialEstimate.insert(5, Pose2(2.1, 2.1,-pi/2));
|
||||
initialEstimate.print(sprintf('\nInitial estimate:\n'));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initialEstimate,1);
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print(sprintf('\nFinal result:\n'));
|
||||
|
||||
%% Plot Covariance Ellipses
|
||||
cla;
|
||||
X=result.poses();
|
||||
plot(X(:,1),X(:,2),'k*-'); hold on
|
||||
plot([result.pose(5).x;result.pose(2).x],[result.pose(5).y;result.pose(2).y],'r-');
|
||||
marginals = graph.marginals(result);
|
||||
hold on
|
||||
plot([result.at(5).x;result.at(2).x],[result.at(5).y;result.at(2).y],'r-','LineWidth',2);
|
||||
marginals = Marginals(graph, result);
|
||||
|
||||
plot2DTrajectory(result, [], marginals);
|
||||
|
||||
for i=1:result.size()
|
||||
pose_i = result.pose(i);
|
||||
P = marginals.marginalCovariance(i)
|
||||
plotPose2(pose_i,'g',P);
|
||||
end
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
view(2)
|
||||
|
|
|
@ -21,22 +21,22 @@
|
|||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create graph container and add factors to it
|
||||
graph = pose2SLAM.Graph;
|
||||
graph = NonlinearFactorGraph;
|
||||
|
||||
%% Add prior
|
||||
import gtsam.*
|
||||
% gaussian for prior
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
import gtsam.*
|
||||
% general noisemodel for odometry
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
graph.addRelativePose(1, 2, odometry, odometryNoise);
|
||||
graph.addRelativePose(2, 3, odometry, odometryNoise);
|
||||
graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise));
|
||||
|
||||
%% Add measurements
|
||||
import gtsam.*
|
||||
|
@ -48,23 +48,23 @@ graph.print('full graph');
|
|||
|
||||
%% Initialize to noisy points
|
||||
import gtsam.*
|
||||
initialEstimate = pose2SLAM.Values;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate = Values;
|
||||
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
|
||||
|
||||
initialEstimate.print('initial estimate');
|
||||
|
||||
%% set up solver, choose ordering and optimize
|
||||
%params = NonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15);
|
||||
%
|
||||
%ord = graph.orderingCOLAMD(initialEstimate);
|
||||
%
|
||||
%result = pose2SLAMOptimizer(graph,initialEstimate,ord,params);
|
||||
%result.print('final result');
|
||||
params = DoglegParams;
|
||||
params.setAbsoluteErrorTol(1e-15);
|
||||
params.setRelativeErrorTol(1e-15);
|
||||
params.setVerbosity('ERROR');
|
||||
params.setVerbosityDL('VERBOSE');
|
||||
params.setOrdering(graph.orderingCOLAMD(initialEstimate));
|
||||
optimizer = DoglegOptimizer(graph, initialEstimate, params);
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initialEstimate,1);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print('final result');
|
||||
|
||||
%% Get the corresponding dense matrix
|
||||
|
@ -78,3 +78,4 @@ Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:));
|
|||
A = Ab(:,1:end-1);
|
||||
b = full(Ab(:,end));
|
||||
spy(A);
|
||||
title('Non-zero entries in measurement Jacobian');
|
||||
|
|
|
@ -16,33 +16,37 @@ p0 = hexagon.pose(0);
|
|||
p1 = hexagon.pose(1);
|
||||
|
||||
%% create a Pose graph with one equality constraint and one measurement
|
||||
fg = pose2SLAM.Graph;
|
||||
fg.addPoseConstraint(0, p0);
|
||||
import gtsam.*
|
||||
fg = NonlinearFactorGraph;
|
||||
fg.add(NonlinearEqualityPose2(0, p0));
|
||||
delta = p0.between(p1);
|
||||
covariance = gtsam.noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
||||
fg.addRelativePose(0,1, delta, covariance);
|
||||
fg.addRelativePose(1,2, delta, covariance);
|
||||
fg.addRelativePose(2,3, delta, covariance);
|
||||
fg.addRelativePose(3,4, delta, covariance);
|
||||
fg.addRelativePose(4,5, delta, covariance);
|
||||
fg.addRelativePose(5,0, delta, covariance);
|
||||
covariance = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
||||
fg.add(BetweenFactorPose2(0,1, delta, covariance));
|
||||
fg.add(BetweenFactorPose2(1,2, delta, covariance));
|
||||
fg.add(BetweenFactorPose2(2,3, delta, covariance));
|
||||
fg.add(BetweenFactorPose2(3,4, delta, covariance));
|
||||
fg.add(BetweenFactorPose2(4,5, delta, covariance));
|
||||
fg.add(BetweenFactorPose2(5,0, delta, covariance));
|
||||
|
||||
%% Create initial config
|
||||
initial = pose2SLAM.Values;
|
||||
initial.insertPose(0, p0);
|
||||
initial.insertPose(1, hexagon.pose(1).retract([-0.1, 0.1,-0.1]'));
|
||||
initial.insertPose(2, hexagon.pose(2).retract([ 0.1,-0.1, 0.1]'));
|
||||
initial.insertPose(3, hexagon.pose(3).retract([-0.1, 0.1,-0.1]'));
|
||||
initial.insertPose(4, hexagon.pose(4).retract([ 0.1,-0.1, 0.1]'));
|
||||
initial.insertPose(5, hexagon.pose(5).retract([-0.1, 0.1,-0.1]'));
|
||||
initial = Values;
|
||||
initial.insert(0, p0);
|
||||
initial.insert(1, hexagon.pose(1).retract([-0.1, 0.1,-0.1]'));
|
||||
initial.insert(2, hexagon.pose(2).retract([ 0.1,-0.1, 0.1]'));
|
||||
initial.insert(3, hexagon.pose(3).retract([-0.1, 0.1,-0.1]'));
|
||||
initial.insert(4, hexagon.pose(4).retract([ 0.1,-0.1, 0.1]'));
|
||||
initial.insert(5, hexagon.pose(5).retract([-0.1, 0.1,-0.1]'));
|
||||
|
||||
%% Plot Initial Estimate
|
||||
figure(1);clf
|
||||
plot(initial.xs(),initial.ys(),'g-*'); axis equal
|
||||
cla
|
||||
plot2DTrajectory(initial, 'g*-'); axis equal
|
||||
|
||||
%% optimize
|
||||
result = fg.optimize(initial);
|
||||
optimizer = DoglegOptimizer(fg, initial);
|
||||
result = optimizer.optimizeSafely;
|
||||
|
||||
%% Show Result
|
||||
hold on; plot(result.xs(),result.ys(),'b-*')
|
||||
hold on; plot2DTrajectory(result, 'b*-');
|
||||
view(2);
|
||||
axis([-1.5 1.5 -1.5 1.5]);
|
||||
result.print(sprintf('\nFinal result:\n'));
|
||||
|
|
|
@ -10,33 +10,39 @@
|
|||
% @author Frank Dellaert
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Find data file
|
||||
datafile = findExampleDataFile('w100-odom.graph');
|
||||
|
||||
%% Initialize graph, initial estimate, and odometry noise
|
||||
import gtsam.*
|
||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
||||
[graph,initial]=load2D('../../examples/Data/w100-odom.graph',model);
|
||||
[graph,initial] = load2D(datafile, model);
|
||||
initial.print(sprintf('Initial estimate:\n'));
|
||||
|
||||
%% Add a Gaussian prior on pose x_1
|
||||
import gtsam.*
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
||||
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(0, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Plot Initial Estimate
|
||||
figure(1);clf
|
||||
plot(initial.xs(),initial.ys(),'g-*'); axis equal
|
||||
cla
|
||||
plot2DTrajectory(initial, 'g-*'); axis equal
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initial);
|
||||
hold on; plot(result.xs(),result.ys(),'b-*')
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initial);
|
||||
result = optimizer.optimizeSafely;
|
||||
hold on; plot2DTrajectory(result, 'b-*');
|
||||
result.print(sprintf('\nFinal result:\n'));
|
||||
|
||||
%% Plot Covariance Ellipses
|
||||
marginals = graph.marginals(result);
|
||||
marginals = Marginals(graph, result);
|
||||
P={};
|
||||
for i=1:result.size()-1
|
||||
pose_i = result.pose(i);
|
||||
pose_i = result.at(i);
|
||||
P{i}=marginals.marginalCovariance(i);
|
||||
plotPose2(pose_i,'b',P{i})
|
||||
end
|
||||
view(2)
|
||||
axis([-15 10 -15 10]); axis equal;
|
||||
fprintf(1,'%.5f %.5f %.5f\n',P{99})
|
|
@ -17,41 +17,42 @@
|
|||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create graph container and add factors to it
|
||||
graph = pose2SLAM.Graph;
|
||||
graph = NonlinearFactorGraph;
|
||||
|
||||
%% Add prior
|
||||
import gtsam.*
|
||||
% gaussian for prior
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
import gtsam.*
|
||||
% general noisemodel for odometry
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.addRelativePose(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise);
|
||||
graph.addRelativePose(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise);
|
||||
graph.addRelativePose(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise);
|
||||
graph.addRelativePose(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise);
|
||||
graph.add(BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
|
||||
%% Add pose constraint
|
||||
import gtsam.*
|
||||
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.addRelativePose(5, 2, Pose2(2.0, 0.0, pi/2), model);
|
||||
graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi/2), model));
|
||||
|
||||
% print
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
initialEstimate = pose2SLAM.Values;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2 ));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2 ));
|
||||
initialEstimate.insertPose(3, Pose2(4.1, 0.1, pi/2));
|
||||
initialEstimate.insertPose(4, Pose2(4.0, 2.0, pi ));
|
||||
initialEstimate.insertPose(5, Pose2(2.1, 2.1,-pi/2));
|
||||
initialEstimate = Values;
|
||||
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
|
||||
initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2 ));
|
||||
initialEstimate.insert(3, Pose2(4.1, 0.1, pi/2));
|
||||
initialEstimate.insert(4, Pose2(4.0, 2.0, pi ));
|
||||
initialEstimate.insert(5, Pose2(2.1, 2.1,-pi/2));
|
||||
initialEstimate.print(sprintf('\nInitial estimate:\n'));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimizeSPCG(initialEstimate);
|
||||
optimizer = DoglegOptimizer(graph, initialEstimate);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print(sprintf('\nFinal result:\n'));
|
|
@ -16,37 +16,38 @@ p0 = hexagon.pose(0);
|
|||
p1 = hexagon.pose(1);
|
||||
|
||||
%% create a Pose graph with one equality constraint and one measurement
|
||||
fg = pose3SLAM.Graph;
|
||||
fg.addPoseConstraint(0, p0);
|
||||
import gtsam.*
|
||||
fg = NonlinearFactorGraph;
|
||||
fg.add(NonlinearEqualityPose3(0, p0));
|
||||
delta = p0.between(p1);
|
||||
covariance = gtsam.noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
|
||||
fg.addRelativePose(0,1, delta, covariance);
|
||||
fg.addRelativePose(1,2, delta, covariance);
|
||||
fg.addRelativePose(2,3, delta, covariance);
|
||||
fg.addRelativePose(3,4, delta, covariance);
|
||||
fg.addRelativePose(4,5, delta, covariance);
|
||||
fg.addRelativePose(5,0, delta, covariance);
|
||||
covariance = noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
|
||||
fg.add(BetweenFactorPose3(0,1, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(1,2, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(2,3, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(3,4, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(4,5, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(5,0, delta, covariance));
|
||||
|
||||
%% Create initial config
|
||||
initial = pose3SLAM.Values;
|
||||
initial = Values;
|
||||
s = 0.10;
|
||||
initial.insertPose(0, p0);
|
||||
initial.insertPose(1, hexagon.pose(1).retract(s*randn(6,1)));
|
||||
initial.insertPose(2, hexagon.pose(2).retract(s*randn(6,1)));
|
||||
initial.insertPose(3, hexagon.pose(3).retract(s*randn(6,1)));
|
||||
initial.insertPose(4, hexagon.pose(4).retract(s*randn(6,1)));
|
||||
initial.insertPose(5, hexagon.pose(5).retract(s*randn(6,1)));
|
||||
initial.insert(0, p0);
|
||||
initial.insert(1, hexagon.pose(1).retract(s*randn(6,1)));
|
||||
initial.insert(2, hexagon.pose(2).retract(s*randn(6,1)));
|
||||
initial.insert(3, hexagon.pose(3).retract(s*randn(6,1)));
|
||||
initial.insert(4, hexagon.pose(4).retract(s*randn(6,1)));
|
||||
initial.insert(5, hexagon.pose(5).retract(s*randn(6,1)));
|
||||
|
||||
%% Plot Initial Estimate
|
||||
cla
|
||||
T=initial.translations();
|
||||
plot3(T(:,1),T(:,2),T(:,3),'g-*');
|
||||
plot3DTrajectory(initial, 'g-*');
|
||||
|
||||
%% optimize
|
||||
result = fg.optimize(initial,1);
|
||||
optimizer = DoglegOptimizer(fg, initial);
|
||||
result = optimizer.optimizeSafely();
|
||||
|
||||
%% Show Result
|
||||
hold on; plot3DTrajectory(result,'b-*', true, 0.3);
|
||||
hold on; plot3DTrajectory(result, 'b-*', true, 0.3);
|
||||
axis([-2 2 -2 2 -1 1]);
|
||||
axis equal
|
||||
view(-37,40)
|
||||
|
|
|
@ -10,23 +10,31 @@
|
|||
% @author Frank Dellaert
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Find data file
|
||||
N = 2500;
|
||||
% filename = '../../examples/Data/sphere_smallnoise.graph';
|
||||
% filename = '../../examples/Data/sphere2500_groundtruth.txt';
|
||||
filename = '../../examples/Data/sphere2500.txt';
|
||||
% dataset = 'sphere_smallnoise.graph';
|
||||
% dataset = 'sphere2500_groundtruth.txt';
|
||||
dataset = 'sphere2500.txt';
|
||||
|
||||
datafile = findExampleDataFile(dataset);
|
||||
|
||||
%% Initialize graph, initial estimate, and odometry noise
|
||||
model = gtsam.noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
|
||||
[graph,initial]=load3D(filename,model,true,N);
|
||||
import gtsam.*
|
||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
|
||||
[graph,initial]=load3D(datafile,model,true,N);
|
||||
|
||||
%% Plot Initial Estimate
|
||||
figure(1);clf
|
||||
first = initial.pose(0);
|
||||
cla
|
||||
first = initial.at(0);
|
||||
plot3(first.x(),first.y(),first.z(),'r*'); hold on
|
||||
plot3DTrajectory(initial,'g-',false);
|
||||
|
||||
%% Read again, now with all constraints, and optimize
|
||||
graph = load3D(filename,model,false,N);
|
||||
graph.addPoseConstraint(0, first);
|
||||
result = graph.optimize(initial);
|
||||
plot3DTrajectory(result,'r-',false); axis equal;
|
||||
import gtsam.*
|
||||
graph = load3D(datafile, model, false, N);
|
||||
graph.add(NonlinearEqualityPose3(0, first));
|
||||
optimizer = DoglegOptimizer(graph, initial);
|
||||
result = optimizer.optimizeSafely();
|
||||
plot3DTrajectory(result, 'r-', false); axis equal;
|
||||
|
||||
view(0); axis equal;
|
Binary file not shown.
|
@ -22,7 +22,7 @@ function varargout = gtsamExamples(varargin)
|
|||
|
||||
% Edit the above text to modify the response to help gtsamExamples
|
||||
|
||||
% Last Modified by GUIDE v2.5 13-Jun-2012 08:13:23
|
||||
% Last Modified by GUIDE v2.5 23-Jul-2012 13:12:19
|
||||
|
||||
% Begin initialization code - DO NOT EDIT
|
||||
gui_Singleton = 1;
|
||||
|
@ -104,6 +104,20 @@ echo on
|
|||
Pose2SLAMExample
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in Pose2SLAMCircle.
|
||||
function Pose2SLAMCircle_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
echo on
|
||||
Pose2SLAMExample_circle
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in Pose2SLAMManhattan.
|
||||
function Pose2SLAMManhattan_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
echo on
|
||||
Pose2SLAMExample_graph
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in Pose3SLAM.
|
||||
function Pose3SLAM_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
|
@ -111,6 +125,13 @@ echo on
|
|||
Pose3SLAMExample
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in Pose3SLAMSphere.
|
||||
function Pose3SLAMSphere_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
echo on
|
||||
Pose3SLAMExample_graph
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in PlanarSLAM.
|
||||
function PlanarSLAM_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
|
@ -118,6 +139,13 @@ echo on
|
|||
PlanarSLAMExample
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in PlanarSLAMSampling.
|
||||
function PlanarSLAMSampling_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
echo on
|
||||
PlanarSLAMExample_sampling
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in SFM.
|
||||
function SFM_Callback(hObject, eventdata, handles)
|
||||
axes(handles.axes3);
|
||||
|
@ -138,7 +166,3 @@ axes(handles.axes3);
|
|||
echo on
|
||||
StereoVOExample
|
||||
echo off
|
||||
|
||||
% --- Executes on button press in Future.
|
||||
function Future_Callback(hObject, eventdata, handles)
|
||||
fprintf(1,'Future demo not implemented yet :-)\n');
|
||||
|
|
Loading…
Reference in New Issue