gtsam/matlab/examples/Pose2SLAMExample_graph.m

48 lines
1.6 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Read graph from file and perform GraphSLAM
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Find data file
datafile = findExampleDataFile('w100-odom.graph');
%% Initialize graph, initial estimate, and odometry noise
import gtsam.*
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
[graph,initial] = load2D(datafile, model);
initial.print(sprintf('Initial estimate:\n'));
%% Add a Gaussian prior on pose x_1
import gtsam.*
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
graph.add(PriorFactorPose2(0, priorMean, priorNoise)); % add directly to graph
%% Plot Initial Estimate
cla
plot2DTrajectory(initial, 'g-*'); axis equal
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
optimizer = LevenbergMarquardtOptimizer(graph, initial);
result = optimizer.optimizeSafely;
hold on; plot2DTrajectory(result, 'b-*');
result.print(sprintf('\nFinal result:\n'));
%% Plot Covariance Ellipses
marginals = Marginals(graph, result);
P={};
for i=1:result.size()-1
pose_i = result.at(i);
P{i}=marginals.marginalCovariance(i);
plotPose2(pose_i,'b',P{i})
end
view(2)
axis([-15 10 -15 10]); axis equal;
fprintf(1,'%.5f %.5f %.5f\n',P{99})