Merge pull request #188 from michaelbosse/fix_bug_robust_residuals
commit
613b161fd2
|
@ -460,6 +460,11 @@ namespace gtsam {
|
|||
return MixedVariances(precisions.array().inverse());
|
||||
}
|
||||
|
||||
/**
|
||||
* The squaredMahalanobisDistance function for a constrained noisemodel,
|
||||
* for non-constrained versions, uses sigmas, otherwise
|
||||
* uses the penalty function with mu
|
||||
*/
|
||||
double squaredMahalanobisDistance(const Vector& v) const override;
|
||||
|
||||
/** Fully constrained variations */
|
||||
|
@ -680,19 +685,19 @@ namespace gtsam {
|
|||
/// Return the contained noise model
|
||||
const NoiseModel::shared_ptr& noise() const { return noise_; }
|
||||
|
||||
// TODO: functions below are dummy but necessary for the noiseModel::Base
|
||||
// Functions below are dummy but necessary for the noiseModel::Base
|
||||
inline Vector whiten(const Vector& v) const override
|
||||
{ Vector r = v; this->WhitenSystem(r); return r; }
|
||||
inline Matrix Whiten(const Matrix& A) const override
|
||||
{ Vector b; Matrix B=A; this->WhitenSystem(B,b); return B; }
|
||||
inline Vector unwhiten(const Vector& /*v*/) const override
|
||||
{ throw std::invalid_argument("unwhiten is not currently supported for robust noise models."); }
|
||||
|
||||
/// Compute loss from the m-estimator using the Mahalanobis distance.
|
||||
double loss(const double squared_distance) const override {
|
||||
return robust_->loss(std::sqrt(squared_distance));
|
||||
}
|
||||
|
||||
// TODO: these are really robust iterated re-weighting support functions
|
||||
// These are really robust iterated re-weighting support functions
|
||||
virtual void WhitenSystem(Vector& b) const;
|
||||
void WhitenSystem(std::vector<Matrix>& A, Vector& b) const override;
|
||||
void WhitenSystem(Matrix& A, Vector& b) const override;
|
||||
|
@ -703,7 +708,6 @@ namespace gtsam {
|
|||
return noise_->unweightedWhiten(v);
|
||||
}
|
||||
double weight(const Vector& v) const override {
|
||||
// Todo(mikebosse): make the robust weight function input a vector.
|
||||
return robust_->weight(v.norm());
|
||||
}
|
||||
|
||||
|
|
|
@ -662,25 +662,14 @@ TEST(NoiseModel, robustNoiseL2WithDeadZone)
|
|||
{
|
||||
double dead_zone_size = 1.0;
|
||||
SharedNoiseModel robust = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::L2WithDeadZone::Create(dead_zone_size),
|
||||
Unit::Create(3));
|
||||
|
||||
/*
|
||||
* TODO(mike): There is currently a bug in GTSAM, where none of the mEstimator classes
|
||||
* implement a loss function, and GTSAM calls the weight function to evaluate the
|
||||
* total penalty, rather than calling the loss function. The weight function should be
|
||||
* used during iteratively reweighted least squares optimization, but should not be used to
|
||||
* evaluate the total penalty. The long-term solution is for all mEstimators to implement
|
||||
* both a weight and a loss function, and for GTSAM to call the loss function when
|
||||
* evaluating the total penalty. This bug causes the test below to fail, so I'm leaving it
|
||||
* commented out until the underlying bug in GTSAM is fixed.
|
||||
*
|
||||
* for (int i = 0; i < 5; i++) {
|
||||
* Vector3 error = Vector3(i, 0, 0);
|
||||
* DOUBLES_EQUAL(0.5*max(0,i-1)*max(0,i-1), robust->distance(error), 1e-8);
|
||||
* }
|
||||
*/
|
||||
noiseModel::mEstimator::L2WithDeadZone::Create(dead_zone_size),
|
||||
Unit::Create(3));
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
Vector3 error = Vector3(i, 0, 0);
|
||||
DOUBLES_EQUAL(std::fmax(0, i - dead_zone_size) * i,
|
||||
robust->squaredMahalanobisDistance(error), 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(NoiseModel, lossFunctionAtZero)
|
||||
|
@ -707,9 +696,9 @@ TEST(NoiseModel, lossFunctionAtZero)
|
|||
auto dcs = mEstimator::DCS::Create(k);
|
||||
DOUBLES_EQUAL(dcs->loss(0), 0, 1e-8);
|
||||
DOUBLES_EQUAL(dcs->weight(0), 1, 1e-8);
|
||||
// auto lsdz = mEstimator::L2WithDeadZone::Create(k);
|
||||
// DOUBLES_EQUAL(lsdz->loss(0), 0, 1e-8);
|
||||
// DOUBLES_EQUAL(lsdz->weight(0), 1, 1e-8);
|
||||
auto lsdz = mEstimator::L2WithDeadZone::Create(k);
|
||||
DOUBLES_EQUAL(lsdz->loss(0), 0, 1e-8);
|
||||
DOUBLES_EQUAL(lsdz->weight(0), 0, 1e-8);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -114,7 +114,7 @@ double NoiseModelFactor::weight(const Values& c) const {
|
|||
if (noiseModel_) {
|
||||
const Vector b = unwhitenedError(c);
|
||||
check(noiseModel_, b.size());
|
||||
return 0.5 * noiseModel_->weight(b);
|
||||
return noiseModel_->weight(b);
|
||||
}
|
||||
else
|
||||
return 1.0;
|
||||
|
|
|
@ -101,6 +101,82 @@ TEST( NonlinearFactor, NonlinearFactor )
|
|||
DOUBLES_EQUAL(expected,actual,0.00000001);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(NonlinearFactor, Weight) {
|
||||
// create a values structure for the non linear factor graph
|
||||
Values values;
|
||||
|
||||
// Instantiate a concrete class version of a NoiseModelFactor
|
||||
PriorFactor<Point2> factor1(X(1), Point2(0, 0));
|
||||
values.insert(X(1), Point2(0.1, 0.1));
|
||||
|
||||
CHECK(assert_equal(1.0, factor1.weight(values)));
|
||||
|
||||
// Factor with noise model
|
||||
auto noise = noiseModel::Isotropic::Sigma(2, 0.2);
|
||||
PriorFactor<Point2> factor2(X(2), Point2(1, 1), noise);
|
||||
values.insert(X(2), Point2(1.1, 1.1));
|
||||
|
||||
CHECK(assert_equal(1.0, factor2.weight(values)));
|
||||
|
||||
Point2 estimate(3, 3), prior(1, 1);
|
||||
double distance = (estimate - prior).norm();
|
||||
|
||||
auto gaussian = noiseModel::Isotropic::Sigma(2, 0.2);
|
||||
|
||||
PriorFactor<Point2> factor;
|
||||
|
||||
// vector to store all the robust models in so we can test iteratively.
|
||||
vector<noiseModel::Robust::shared_ptr> robust_models;
|
||||
|
||||
// Fair noise model
|
||||
auto fair = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Fair::Create(1.3998), gaussian);
|
||||
robust_models.push_back(fair);
|
||||
|
||||
// Huber noise model
|
||||
auto huber = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), gaussian);
|
||||
robust_models.push_back(huber);
|
||||
|
||||
// Cauchy noise model
|
||||
auto cauchy = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Cauchy::Create(0.1), gaussian);
|
||||
robust_models.push_back(cauchy);
|
||||
|
||||
// Tukey noise model
|
||||
auto tukey = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Tukey::Create(4.6851), gaussian);
|
||||
robust_models.push_back(tukey);
|
||||
|
||||
// Welsch noise model
|
||||
auto welsch = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Welsch::Create(2.9846), gaussian);
|
||||
robust_models.push_back(welsch);
|
||||
|
||||
// Geman-McClure noise model
|
||||
auto gm = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::GemanMcClure::Create(1.0), gaussian);
|
||||
robust_models.push_back(gm);
|
||||
|
||||
// DCS noise model
|
||||
auto dcs = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::DCS::Create(1.0), gaussian);
|
||||
robust_models.push_back(dcs);
|
||||
|
||||
// L2WithDeadZone noise model
|
||||
auto l2 = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::L2WithDeadZone::Create(1.0), gaussian);
|
||||
robust_models.push_back(l2);
|
||||
|
||||
for(auto&& model: robust_models) {
|
||||
factor = PriorFactor<Point2>(X(3), prior, model);
|
||||
values.clear();
|
||||
values.insert(X(3), estimate);
|
||||
CHECK(assert_equal(model->robust()->weight(distance), factor.weight(values)));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearFactor, linearize_f1 )
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue