add unit test for NonlinearFactor weight with different noise models

release/4.3a0
Varun Agrawal 2021-01-06 11:46:49 -05:00
parent a5ff7505ac
commit 6e46b72742
1 changed files with 76 additions and 0 deletions

View File

@ -101,6 +101,82 @@ TEST( NonlinearFactor, NonlinearFactor )
DOUBLES_EQUAL(expected,actual,0.00000001);
}
/* ************************************************************************* */
TEST(NonlinearFactor, Weight) {
// create a values structure for the non linear factor graph
Values values;
// Instantiate a concrete class version of a NoiseModelFactor
PriorFactor<Point2> factor1(X(1), Point2(0, 0));
values.insert(X(1), Point2(0.1, 0.1));
CHECK(assert_equal(1.0, factor1.weight(values)));
// Factor with noise model
auto noise = noiseModel::Isotropic::Sigma(2, 0.2);
PriorFactor<Point2> factor2(X(2), Point2(1, 1), noise);
values.insert(X(2), Point2(1.1, 1.1));
CHECK(assert_equal(1.0, factor2.weight(values)));
Point2 estimate(3, 3), prior(1, 1);
double distance = (estimate - prior).norm();
auto gaussian = noiseModel::Isotropic::Sigma(2, 0.2);
PriorFactor<Point2> factor;
// vector to store all the robust models in so we can test iteratively.
vector<noiseModel::Robust::shared_ptr> robust_models;
// Fair noise model
auto fair = noiseModel::Robust::Create(
noiseModel::mEstimator::Fair::Create(1.3998), gaussian);
robust_models.push_back(fair);
// Huber noise model
auto huber = noiseModel::Robust::Create(
noiseModel::mEstimator::Huber::Create(1.345), gaussian);
robust_models.push_back(huber);
// Cauchy noise model
auto cauchy = noiseModel::Robust::Create(
noiseModel::mEstimator::Cauchy::Create(0.1), gaussian);
robust_models.push_back(cauchy);
// Tukey noise model
auto tukey = noiseModel::Robust::Create(
noiseModel::mEstimator::Tukey::Create(4.6851), gaussian);
robust_models.push_back(tukey);
// Welsch noise model
auto welsch = noiseModel::Robust::Create(
noiseModel::mEstimator::Welsch::Create(2.9846), gaussian);
robust_models.push_back(welsch);
// Geman-McClure noise model
auto gm = noiseModel::Robust::Create(
noiseModel::mEstimator::GemanMcClure::Create(1.0), gaussian);
robust_models.push_back(gm);
// DCS noise model
auto dcs = noiseModel::Robust::Create(
noiseModel::mEstimator::DCS::Create(1.0), gaussian);
robust_models.push_back(dcs);
// L2WithDeadZone noise model
auto l2 = noiseModel::Robust::Create(
noiseModel::mEstimator::L2WithDeadZone::Create(1.0), gaussian);
robust_models.push_back(l2);
for(auto&& model: robust_models) {
factor = PriorFactor<Point2>(X(3), prior, model);
values.clear();
values.insert(X(3), estimate);
CHECK(assert_equal(model->robust()->weight(distance), factor.weight(values)));
}
}
/* ************************************************************************* */
TEST( NonlinearFactor, linearize_f1 )
{