add unit test for NonlinearFactor weight with different noise models
parent
a5ff7505ac
commit
6e46b72742
|
@ -101,6 +101,82 @@ TEST( NonlinearFactor, NonlinearFactor )
|
|||
DOUBLES_EQUAL(expected,actual,0.00000001);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(NonlinearFactor, Weight) {
|
||||
// create a values structure for the non linear factor graph
|
||||
Values values;
|
||||
|
||||
// Instantiate a concrete class version of a NoiseModelFactor
|
||||
PriorFactor<Point2> factor1(X(1), Point2(0, 0));
|
||||
values.insert(X(1), Point2(0.1, 0.1));
|
||||
|
||||
CHECK(assert_equal(1.0, factor1.weight(values)));
|
||||
|
||||
// Factor with noise model
|
||||
auto noise = noiseModel::Isotropic::Sigma(2, 0.2);
|
||||
PriorFactor<Point2> factor2(X(2), Point2(1, 1), noise);
|
||||
values.insert(X(2), Point2(1.1, 1.1));
|
||||
|
||||
CHECK(assert_equal(1.0, factor2.weight(values)));
|
||||
|
||||
Point2 estimate(3, 3), prior(1, 1);
|
||||
double distance = (estimate - prior).norm();
|
||||
|
||||
auto gaussian = noiseModel::Isotropic::Sigma(2, 0.2);
|
||||
|
||||
PriorFactor<Point2> factor;
|
||||
|
||||
// vector to store all the robust models in so we can test iteratively.
|
||||
vector<noiseModel::Robust::shared_ptr> robust_models;
|
||||
|
||||
// Fair noise model
|
||||
auto fair = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Fair::Create(1.3998), gaussian);
|
||||
robust_models.push_back(fair);
|
||||
|
||||
// Huber noise model
|
||||
auto huber = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), gaussian);
|
||||
robust_models.push_back(huber);
|
||||
|
||||
// Cauchy noise model
|
||||
auto cauchy = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Cauchy::Create(0.1), gaussian);
|
||||
robust_models.push_back(cauchy);
|
||||
|
||||
// Tukey noise model
|
||||
auto tukey = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Tukey::Create(4.6851), gaussian);
|
||||
robust_models.push_back(tukey);
|
||||
|
||||
// Welsch noise model
|
||||
auto welsch = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Welsch::Create(2.9846), gaussian);
|
||||
robust_models.push_back(welsch);
|
||||
|
||||
// Geman-McClure noise model
|
||||
auto gm = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::GemanMcClure::Create(1.0), gaussian);
|
||||
robust_models.push_back(gm);
|
||||
|
||||
// DCS noise model
|
||||
auto dcs = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::DCS::Create(1.0), gaussian);
|
||||
robust_models.push_back(dcs);
|
||||
|
||||
// L2WithDeadZone noise model
|
||||
auto l2 = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::L2WithDeadZone::Create(1.0), gaussian);
|
||||
robust_models.push_back(l2);
|
||||
|
||||
for(auto&& model: robust_models) {
|
||||
factor = PriorFactor<Point2>(X(3), prior, model);
|
||||
values.clear();
|
||||
values.insert(X(3), estimate);
|
||||
CHECK(assert_equal(model->robust()->weight(distance), factor.weight(values)));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearFactor, linearize_f1 )
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue