add unit test for NonlinearFactor weight with different noise models
							parent
							
								
									a5ff7505ac
								
							
						
					
					
						commit
						6e46b72742
					
				| 
						 | 
				
			
			@ -101,6 +101,82 @@ TEST( NonlinearFactor, NonlinearFactor )
 | 
			
		|||
  DOUBLES_EQUAL(expected,actual,0.00000001);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(NonlinearFactor, Weight) {
 | 
			
		||||
  // create a values structure for the non linear factor graph
 | 
			
		||||
  Values values;
 | 
			
		||||
 | 
			
		||||
  // Instantiate a concrete class version of a NoiseModelFactor
 | 
			
		||||
  PriorFactor<Point2> factor1(X(1), Point2(0, 0));
 | 
			
		||||
  values.insert(X(1), Point2(0.1, 0.1));
 | 
			
		||||
 | 
			
		||||
  CHECK(assert_equal(1.0, factor1.weight(values)));
 | 
			
		||||
 | 
			
		||||
  // Factor with noise model
 | 
			
		||||
  auto noise = noiseModel::Isotropic::Sigma(2, 0.2);
 | 
			
		||||
  PriorFactor<Point2> factor2(X(2), Point2(1, 1), noise);
 | 
			
		||||
  values.insert(X(2), Point2(1.1, 1.1));
 | 
			
		||||
 | 
			
		||||
  CHECK(assert_equal(1.0, factor2.weight(values)));
 | 
			
		||||
 | 
			
		||||
  Point2 estimate(3, 3), prior(1, 1);
 | 
			
		||||
  double distance = (estimate - prior).norm();
 | 
			
		||||
 | 
			
		||||
  auto gaussian = noiseModel::Isotropic::Sigma(2, 0.2);
 | 
			
		||||
 | 
			
		||||
  PriorFactor<Point2> factor;
 | 
			
		||||
 | 
			
		||||
  // vector to store all the robust models in so we can test iteratively.
 | 
			
		||||
  vector<noiseModel::Robust::shared_ptr> robust_models;
 | 
			
		||||
 | 
			
		||||
  // Fair noise model
 | 
			
		||||
  auto fair = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::Fair::Create(1.3998), gaussian);
 | 
			
		||||
  robust_models.push_back(fair);
 | 
			
		||||
 | 
			
		||||
  // Huber noise model
 | 
			
		||||
  auto huber = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::Huber::Create(1.345), gaussian);
 | 
			
		||||
  robust_models.push_back(huber);
 | 
			
		||||
 | 
			
		||||
  // Cauchy noise model
 | 
			
		||||
  auto cauchy = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::Cauchy::Create(0.1), gaussian);
 | 
			
		||||
  robust_models.push_back(cauchy);
 | 
			
		||||
 | 
			
		||||
  // Tukey noise model
 | 
			
		||||
  auto tukey = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::Tukey::Create(4.6851), gaussian);
 | 
			
		||||
  robust_models.push_back(tukey);
 | 
			
		||||
 | 
			
		||||
  // Welsch noise model
 | 
			
		||||
  auto welsch = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::Welsch::Create(2.9846), gaussian);
 | 
			
		||||
  robust_models.push_back(welsch);
 | 
			
		||||
 | 
			
		||||
  // Geman-McClure noise model
 | 
			
		||||
  auto gm = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::GemanMcClure::Create(1.0), gaussian);
 | 
			
		||||
  robust_models.push_back(gm);
 | 
			
		||||
 | 
			
		||||
  // DCS noise model
 | 
			
		||||
  auto dcs = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::DCS::Create(1.0), gaussian);
 | 
			
		||||
  robust_models.push_back(dcs);
 | 
			
		||||
 | 
			
		||||
  // L2WithDeadZone noise model
 | 
			
		||||
  auto l2 = noiseModel::Robust::Create(
 | 
			
		||||
      noiseModel::mEstimator::L2WithDeadZone::Create(1.0), gaussian);
 | 
			
		||||
  robust_models.push_back(l2);
 | 
			
		||||
 | 
			
		||||
  for(auto&& model: robust_models) {
 | 
			
		||||
    factor = PriorFactor<Point2>(X(3), prior, model);
 | 
			
		||||
    values.clear();
 | 
			
		||||
    values.insert(X(3), estimate);
 | 
			
		||||
    CHECK(assert_equal(model->robust()->weight(distance), factor.weight(values)));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST( NonlinearFactor, linearize_f1 )
 | 
			
		||||
{
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue