Merging 'master' into 'wrap'

release/4.3a0
Varun Agrawal 2023-05-24 12:12:22 -04:00
commit 60fe7e3579
10 changed files with 190 additions and 99 deletions

View File

@ -10,9 +10,10 @@ All the token definitions.
Author: Duy Nguyen Ta, Fan Jiang, Matthew Sklar, Varun Agrawal, and Frank Dellaert
"""
from pyparsing import (Keyword, Literal, OneOrMore, Or, # type: ignore
QuotedString, Suppress, Word, alphanums, alphas,
nestedExpr, nums, originalTextFor, printables)
from pyparsing import Or # type: ignore
from pyparsing import (Keyword, Literal, OneOrMore, QuotedString, Suppress,
Word, alphanums, alphas, nestedExpr, nums,
originalTextFor, printables)
# rule for identifiers (e.g. variable names)
IDENT = Word(alphas + '_', alphanums + '_') ^ Word(nums)
@ -52,7 +53,7 @@ CONST, VIRTUAL, CLASS, STATIC, PAIR, TEMPLATE, TYPEDEF, INCLUDE = map(
)
ENUM = Keyword("enum") ^ Keyword("enum class") ^ Keyword("enum struct")
NAMESPACE = Keyword("namespace")
BASIS_TYPES = map(
BASIC_TYPES = map(
Keyword,
[
"void",

View File

@ -17,15 +17,13 @@ from typing import List, Sequence, Union
from pyparsing import ParseResults # type: ignore
from pyparsing import Forward, Optional, Or, delimitedList
from .tokens import (BASIS_TYPES, CONST, IDENT, LOPBRACK, RAW_POINTER, REF,
from .tokens import (BASIC_TYPES, CONST, IDENT, LOPBRACK, RAW_POINTER, REF,
ROPBRACK, SHARED_POINTER)
class Typename:
"""
Generic type which can be either a basic type or a class type,
similar to C++'s `typename` aka a qualified dependent type.
Contains type name with full namespace and template arguments.
Class which holds a type's name, full namespace, and template arguments.
E.g.
```
@ -89,7 +87,6 @@ class Typename:
def to_cpp(self) -> str:
"""Generate the C++ code for wrapping."""
idx = 1 if self.namespaces and not self.namespaces[0] else 0
if self.instantiations:
cpp_name = self.name + "<{}>".format(", ".join(
[inst.to_cpp() for inst in self.instantiations]))
@ -116,7 +113,7 @@ class BasicType:
"""
Basic types are the fundamental built-in types in C++ such as double, int, char, etc.
When using templates, the basis type will take on the same form as the template.
When using templates, the basic type will take on the same form as the template.
E.g.
```
@ -127,16 +124,16 @@ class BasicType:
will give
```
m_.def("CoolFunctionDoubleDouble",[](const double& s) {
return wrap_example::CoolFunction<double,double>(s);
}, py::arg("s"));
m_.def("funcDouble",[](const double& x){
::func<double>(x);
}, py::arg("x"));
```
"""
rule = (Or(BASIS_TYPES)("typename")).setParseAction(lambda t: BasicType(t))
rule = (Or(BASIC_TYPES)("typename")).setParseAction(lambda t: BasicType(t))
def __init__(self, t: ParseResults):
self.typename = Typename(t.asList())
self.typename = Typename(t)
class CustomType:
@ -160,7 +157,7 @@ class CustomType:
class Type:
"""
Parsed datatype, can be either a fundamental type or a custom datatype.
Parsed datatype, can be either a fundamental/basic type or a custom datatype.
E.g. void, double, size_t, Matrix.
Think of this as a high-level type which encodes the typename and other
characteristics of the type.
@ -170,7 +167,7 @@ class Type:
"""
rule = (
Optional(CONST("is_const")) #
+ (BasicType.rule("basis") | CustomType.rule("qualified")) # BR
+ (BasicType.rule("basic") | CustomType.rule("qualified")) # BR
+ Optional(
SHARED_POINTER("is_shared_ptr") | RAW_POINTER("is_ptr")
| REF("is_ref")) #
@ -188,9 +185,10 @@ class Type:
@staticmethod
def from_parse_result(t: ParseResults):
"""Return the resulting Type from parsing the source."""
if t.basis:
# If the type is a basic/fundamental c++ type (e.g int, bool)
if t.basic:
return Type(
typename=t.basis.typename,
typename=t.basic.typename,
is_const=t.is_const,
is_shared_ptr=t.is_shared_ptr,
is_ptr=t.is_ptr,

View File

@ -61,9 +61,29 @@ class CheckMixin:
arg_type.is_ref
def is_class_enum(self, arg_type: parser.Type, class_: parser.Class):
"""Check if `arg_type` is an enum in the class `class_`."""
enums = (enum.name for enum in class_.enums)
return arg_type.ctype.typename.name in enums
"""Check if arg_type is an enum in the class `class_`."""
if class_:
class_enums = [enum.name for enum in class_.enums]
return arg_type.typename.name in class_enums
else:
return False
def is_global_enum(self, arg_type: parser.Type, class_: parser.Class):
"""Check if arg_type is a global enum."""
if class_:
# Get the enums in the class' namespace
global_enums = [
member.name for member in class_.parent.content
if isinstance(member, parser.Enum)
]
return arg_type.typename.name in global_enums
else:
return False
def is_enum(self, arg_type: parser.Type, class_: parser.Class):
"""Check if `arg_type` is an enum."""
return self.is_class_enum(arg_type, class_) or self.is_global_enum(
arg_type, class_)
class FormatMixin:

View File

@ -341,23 +341,14 @@ class MatlabWrapper(CheckMixin, FormatMixin):
return check_statement
def _unwrap_argument(self,
arg,
arg_id=0,
constructor=False,
instantiated_class=None):
def _unwrap_argument(self, arg, arg_id=0, instantiated_class=None):
ctype_camel = self._format_type_name(arg.ctype.typename, separator='')
ctype_sep = self._format_type_name(arg.ctype.typename)
if instantiated_class and \
self.is_class_enum(arg, instantiated_class):
if instantiated_class.original.template:
enum_type = f"{arg.ctype.typename}"
else:
enum_type = f"{instantiated_class.name}::{arg.ctype}"
arg_type = f"std::shared_ptr<{enum_type}>"
self.is_enum(arg.ctype, instantiated_class):
enum_type = f"{arg.ctype.typename}"
arg_type = f"{enum_type}"
unwrap = f'unwrap_enum<{enum_type}>(in[{arg_id}]);'
elif self.is_ref(arg.ctype): # and not constructor:
@ -390,7 +381,6 @@ class MatlabWrapper(CheckMixin, FormatMixin):
def _wrapper_unwrap_arguments(self,
args,
arg_id=0,
constructor=False,
instantiated_class=None):
"""Format the interface_parser.Arguments.
@ -403,10 +393,7 @@ class MatlabWrapper(CheckMixin, FormatMixin):
for arg in args.list():
arg_type, unwrap = self._unwrap_argument(
arg,
arg_id,
constructor,
instantiated_class=instantiated_class)
arg, arg_id, instantiated_class=instantiated_class)
body_args += textwrap.indent(textwrap.dedent('''\
{arg_type} {name} = {unwrap}
@ -428,7 +415,8 @@ class MatlabWrapper(CheckMixin, FormatMixin):
continue
if not self.is_ref(arg.ctype) and (self.is_shared_ptr(arg.ctype) or \
self.is_ptr(arg.ctype) or self.can_be_pointer(arg.ctype))and \
self.is_ptr(arg.ctype) or self.can_be_pointer(arg.ctype)) and \
not self.is_enum(arg.ctype, instantiated_class) and \
arg.ctype.typename.name not in self.ignore_namespace:
if arg.ctype.is_shared_ptr:
call_type = arg.ctype.is_shared_ptr
@ -1147,7 +1135,7 @@ class MatlabWrapper(CheckMixin, FormatMixin):
def wrap_enum(self, enum):
"""
Wrap an enum definition.
Wrap an enum definition as a Matlab class.
Args:
enum: The interface_parser.Enum instance
@ -1285,15 +1273,23 @@ class MatlabWrapper(CheckMixin, FormatMixin):
def _collector_return(self,
obj: str,
ctype: parser.Type,
class_property: parser.Variable = None,
instantiated_class: InstantiatedClass = None):
"""Helper method to get the final statement before the return in the collector function."""
expanded = ''
if class_property and instantiated_class and \
self.is_class_enum(class_property, instantiated_class):
class_name = ".".join(instantiated_class.namespaces()[1:] + [instantiated_class.name])
enum_type = f"{class_name}.{ctype.typename.name}"
if instantiated_class and \
self.is_enum(ctype, instantiated_class):
if self.is_class_enum(ctype, instantiated_class):
class_name = ".".join(instantiated_class.namespaces()[1:] +
[instantiated_class.name])
else:
# Get the full namespace
class_name = ".".join(instantiated_class.parent.full_namespaces()[1:])
if class_name != "":
class_name += '.'
enum_type = f"{class_name}{ctype.typename.name}"
expanded = textwrap.indent(
f'out[0] = wrap_enum({obj},\"{enum_type}\");', prefix=' ')
@ -1340,13 +1336,14 @@ class MatlabWrapper(CheckMixin, FormatMixin):
return expanded
def wrap_collector_function_return(self, method):
def wrap_collector_function_return(self, method, instantiated_class=None):
"""
Wrap the complete return type of the function.
"""
expanded = ''
params = self._wrapper_unwrap_arguments(method.args, arg_id=1)[0]
params = self._wrapper_unwrap_arguments(
method.args, arg_id=1, instantiated_class=instantiated_class)[0]
return_1 = method.return_type.type1
return_count = self._return_count(method.return_type)
@ -1382,7 +1379,8 @@ class MatlabWrapper(CheckMixin, FormatMixin):
if return_1_name != 'void':
if return_count == 1:
expanded += self._collector_return(obj, return_1)
expanded += self._collector_return(
obj, return_1, instantiated_class=instantiated_class)
elif return_count == 2:
return_2 = method.return_type.type2
@ -1405,10 +1403,8 @@ class MatlabWrapper(CheckMixin, FormatMixin):
property_name = class_property.name
obj = 'obj->{}'.format(property_name)
ctype = class_property.ctype
return self._collector_return(obj,
ctype,
class_property=class_property,
class_property.ctype,
instantiated_class=instantiated_class)
def wrap_collector_function_upcast_from_void(self, class_name, func_id,
@ -1468,9 +1464,7 @@ class MatlabWrapper(CheckMixin, FormatMixin):
elif collector_func[2] == 'constructor':
base = ''
params, body_args = self._wrapper_unwrap_arguments(
extra.args,
constructor=True,
instantiated_class=collector_func[1])
extra.args, instantiated_class=collector_func[1])
if collector_func[1].parent_class:
base += textwrap.indent(textwrap.dedent('''
@ -1534,7 +1528,9 @@ class MatlabWrapper(CheckMixin, FormatMixin):
extra.args,
arg_id=1 if is_method else 0,
instantiated_class=collector_func[1])
return_body = self.wrap_collector_function_return(extra)
return_body = self.wrap_collector_function_return(
extra, collector_func[1])
shared_obj = ''
@ -1591,7 +1587,8 @@ class MatlabWrapper(CheckMixin, FormatMixin):
# Setter
if "_set_" in method_name:
is_ptr_type = self.can_be_pointer(extra.ctype)
is_ptr_type = self.can_be_pointer(extra.ctype) and \
not self.is_enum(extra.ctype, collector_func[1])
return_body = ' obj->{0} = {1}{0};'.format(
extra.name, '*' if is_ptr_type else '')
@ -1930,4 +1927,3 @@ class MatlabWrapper(CheckMixin, FormatMixin):
self.generate_content(self.content, path)
return self.content

View File

@ -118,10 +118,10 @@ void checkArguments(const string& name, int nargout, int nargin, int expected) {
}
//*****************************************************************************
// wrapping C++ basis types in MATLAB arrays
// wrapping C++ basic types in MATLAB arrays
//*****************************************************************************
// default wrapping throws an error: only basis types are allowed in wrap
// default wrapping throws an error: only basic types are allowed in wrap
template <typename Class>
mxArray* wrap(const Class& value) {
error("wrap internal error: attempted wrap of invalid type");
@ -228,6 +228,10 @@ mxArray* wrap<gtsam::Matrix >(const gtsam::Matrix& A) {
return wrap_Matrix(A);
}
/// @brief Wrap the C++ enum to Matlab mxArray
/// @tparam T The C++ enum type
/// @param x C++ enum
/// @param classname Matlab enum classdef used to call Matlab constructor
template <typename T>
mxArray* wrap_enum(const T x, const std::string& classname) {
// create double array to store value in
@ -254,11 +258,13 @@ T unwrap(const mxArray* array) {
return T();
}
/// @brief Unwrap from matlab array to C++ enum type
/// @tparam T The C++ enum type
/// @param array Matlab mxArray
template <typename T>
shared_ptr<T> unwrap_enum(const mxArray* array) {
T unwrap_enum(const mxArray* array) {
// Make duplicate to remove const-ness
mxArray* a = mxDuplicateArray(array);
std::cout << "unwrap enum type: " << typeid(array).name() << std::endl;
// convert void* to int32* array
mxArray* a_int32;
@ -267,7 +273,7 @@ shared_ptr<T> unwrap_enum(const mxArray* array) {
// Get the value in the input array
int32_T* value = (int32_T*)mxGetData(a_int32);
// cast int32 to enum type
return std::make_shared<T>(static_cast<T>(*value));
return static_cast<T>(*value);
}
// specialization to string

View File

@ -93,8 +93,8 @@ void Pet_constructor_1(int nargout, mxArray *out[], int nargin, const mxArray *i
typedef std::shared_ptr<Pet> Shared;
string& name = *unwrap_shared_ptr< string >(in[0], "ptr_string");
std::shared_ptr<Pet::Kind> type = unwrap_enum<Pet::Kind>(in[1]);
Shared *self = new Shared(new Pet(name,*type));
Pet::Kind type = unwrap_enum<Pet::Kind>(in[1]);
Shared *self = new Shared(new Pet(name,type));
collector_Pet.insert(self);
out[0] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);
*reinterpret_cast<Shared**> (mxGetData(out[0])) = self;
@ -113,14 +113,29 @@ void Pet_deconstructor_2(int nargout, mxArray *out[], int nargin, const mxArray
delete self;
}
void Pet_get_name_3(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void Pet_getColor_3(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("getColor",nargout,nargin-1,0);
auto obj = unwrap_shared_ptr<Pet>(in[0], "ptr_Pet");
out[0] = wrap_enum(obj->getColor(),"Color");
}
void Pet_setColor_4(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("setColor",nargout,nargin-1,1);
auto obj = unwrap_shared_ptr<Pet>(in[0], "ptr_Pet");
Color color = unwrap_enum<Color>(in[1]);
obj->setColor(color);
}
void Pet_get_name_5(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("name",nargout,nargin-1,0);
auto obj = unwrap_shared_ptr<Pet>(in[0], "ptr_Pet");
out[0] = wrap< string >(obj->name);
}
void Pet_set_name_4(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void Pet_set_name_6(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("name",nargout,nargin-1,1);
auto obj = unwrap_shared_ptr<Pet>(in[0], "ptr_Pet");
@ -128,22 +143,22 @@ void Pet_set_name_4(int nargout, mxArray *out[], int nargin, const mxArray *in[]
obj->name = name;
}
void Pet_get_type_5(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void Pet_get_type_7(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("type",nargout,nargin-1,0);
auto obj = unwrap_shared_ptr<Pet>(in[0], "ptr_Pet");
out[0] = wrap_enum(obj->type,"Pet.Kind");
}
void Pet_set_type_6(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void Pet_set_type_8(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("type",nargout,nargin-1,1);
auto obj = unwrap_shared_ptr<Pet>(in[0], "ptr_Pet");
std::shared_ptr<Pet::Kind> type = unwrap_enum<Pet::Kind>(in[1]);
obj->type = *type;
Pet::Kind type = unwrap_enum<Pet::Kind>(in[1]);
obj->type = type;
}
void gtsamMCU_collectorInsertAndMakeBase_7(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void gtsamMCU_collectorInsertAndMakeBase_9(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
mexAtExit(&_deleteAllObjects);
typedef std::shared_ptr<gtsam::MCU> Shared;
@ -152,7 +167,7 @@ void gtsamMCU_collectorInsertAndMakeBase_7(int nargout, mxArray *out[], int narg
collector_gtsamMCU.insert(self);
}
void gtsamMCU_constructor_8(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void gtsamMCU_constructor_10(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
mexAtExit(&_deleteAllObjects);
typedef std::shared_ptr<gtsam::MCU> Shared;
@ -163,7 +178,7 @@ void gtsamMCU_constructor_8(int nargout, mxArray *out[], int nargin, const mxArr
*reinterpret_cast<Shared**> (mxGetData(out[0])) = self;
}
void gtsamMCU_deconstructor_9(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void gtsamMCU_deconstructor_11(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
typedef std::shared_ptr<gtsam::MCU> Shared;
checkArguments("delete_gtsamMCU",nargout,nargin,1);
@ -176,7 +191,7 @@ void gtsamMCU_deconstructor_9(int nargout, mxArray *out[], int nargin, const mxA
delete self;
}
void gtsamOptimizerGaussNewtonParams_collectorInsertAndMakeBase_10(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void gtsamOptimizerGaussNewtonParams_collectorInsertAndMakeBase_12(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
mexAtExit(&_deleteAllObjects);
typedef std::shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>> Shared;
@ -185,7 +200,19 @@ void gtsamOptimizerGaussNewtonParams_collectorInsertAndMakeBase_10(int nargout,
collector_gtsamOptimizerGaussNewtonParams.insert(self);
}
void gtsamOptimizerGaussNewtonParams_deconstructor_11(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void gtsamOptimizerGaussNewtonParams_constructor_13(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
mexAtExit(&_deleteAllObjects);
typedef std::shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>> Shared;
Optimizer<gtsam::GaussNewtonParams>::Verbosity verbosity = unwrap_enum<Optimizer<gtsam::GaussNewtonParams>::Verbosity>(in[0]);
Shared *self = new Shared(new gtsam::Optimizer<gtsam::GaussNewtonParams>(verbosity));
collector_gtsamOptimizerGaussNewtonParams.insert(self);
out[0] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);
*reinterpret_cast<Shared**> (mxGetData(out[0])) = self;
}
void gtsamOptimizerGaussNewtonParams_deconstructor_14(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
typedef std::shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>> Shared;
checkArguments("delete_gtsamOptimizerGaussNewtonParams",nargout,nargin,1);
@ -198,12 +225,26 @@ void gtsamOptimizerGaussNewtonParams_deconstructor_11(int nargout, mxArray *out[
delete self;
}
void gtsamOptimizerGaussNewtonParams_setVerbosity_12(int nargout, mxArray *out[], int nargin, const mxArray *in[])
void gtsamOptimizerGaussNewtonParams_getVerbosity_15(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("getVerbosity",nargout,nargin-1,0);
auto obj = unwrap_shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>>(in[0], "ptr_gtsamOptimizerGaussNewtonParams");
out[0] = wrap_enum(obj->getVerbosity(),"gtsam.OptimizerGaussNewtonParams.Verbosity");
}
void gtsamOptimizerGaussNewtonParams_getVerbosity_16(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("getVerbosity",nargout,nargin-1,0);
auto obj = unwrap_shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>>(in[0], "ptr_gtsamOptimizerGaussNewtonParams");
out[0] = wrap_enum(obj->getVerbosity(),"gtsam.VerbosityLM");
}
void gtsamOptimizerGaussNewtonParams_setVerbosity_17(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("setVerbosity",nargout,nargin-1,1);
auto obj = unwrap_shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>>(in[0], "ptr_gtsamOptimizerGaussNewtonParams");
std::shared_ptr<Optimizer<gtsam::GaussNewtonParams>::Verbosity> value = unwrap_enum<Optimizer<gtsam::GaussNewtonParams>::Verbosity>(in[1]);
obj->setVerbosity(*value);
Optimizer<gtsam::GaussNewtonParams>::Verbosity value = unwrap_enum<Optimizer<gtsam::GaussNewtonParams>::Verbosity>(in[1]);
obj->setVerbosity(value);
}
@ -228,34 +269,49 @@ void mexFunction(int nargout, mxArray *out[], int nargin, const mxArray *in[])
Pet_deconstructor_2(nargout, out, nargin-1, in+1);
break;
case 3:
Pet_get_name_3(nargout, out, nargin-1, in+1);
Pet_getColor_3(nargout, out, nargin-1, in+1);
break;
case 4:
Pet_set_name_4(nargout, out, nargin-1, in+1);
Pet_setColor_4(nargout, out, nargin-1, in+1);
break;
case 5:
Pet_get_type_5(nargout, out, nargin-1, in+1);
Pet_get_name_5(nargout, out, nargin-1, in+1);
break;
case 6:
Pet_set_type_6(nargout, out, nargin-1, in+1);
Pet_set_name_6(nargout, out, nargin-1, in+1);
break;
case 7:
gtsamMCU_collectorInsertAndMakeBase_7(nargout, out, nargin-1, in+1);
Pet_get_type_7(nargout, out, nargin-1, in+1);
break;
case 8:
gtsamMCU_constructor_8(nargout, out, nargin-1, in+1);
Pet_set_type_8(nargout, out, nargin-1, in+1);
break;
case 9:
gtsamMCU_deconstructor_9(nargout, out, nargin-1, in+1);
gtsamMCU_collectorInsertAndMakeBase_9(nargout, out, nargin-1, in+1);
break;
case 10:
gtsamOptimizerGaussNewtonParams_collectorInsertAndMakeBase_10(nargout, out, nargin-1, in+1);
gtsamMCU_constructor_10(nargout, out, nargin-1, in+1);
break;
case 11:
gtsamOptimizerGaussNewtonParams_deconstructor_11(nargout, out, nargin-1, in+1);
gtsamMCU_deconstructor_11(nargout, out, nargin-1, in+1);
break;
case 12:
gtsamOptimizerGaussNewtonParams_setVerbosity_12(nargout, out, nargin-1, in+1);
gtsamOptimizerGaussNewtonParams_collectorInsertAndMakeBase_12(nargout, out, nargin-1, in+1);
break;
case 13:
gtsamOptimizerGaussNewtonParams_constructor_13(nargout, out, nargin-1, in+1);
break;
case 14:
gtsamOptimizerGaussNewtonParams_deconstructor_14(nargout, out, nargin-1, in+1);
break;
case 15:
gtsamOptimizerGaussNewtonParams_getVerbosity_15(nargout, out, nargin-1, in+1);
break;
case 16:
gtsamOptimizerGaussNewtonParams_getVerbosity_16(nargout, out, nargin-1, in+1);
break;
case 17:
gtsamOptimizerGaussNewtonParams_setVerbosity_17(nargout, out, nargin-1, in+1);
break;
}
} catch(const std::exception& e) {

View File

@ -211,8 +211,8 @@ void gtsamGeneralSFMFactorCal3Bundler_set_verbosity_12(int nargout, mxArray *out
{
checkArguments("verbosity",nargout,nargin-1,1);
auto obj = unwrap_shared_ptr<gtsam::GeneralSFMFactor<gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::Point3>>(in[0], "ptr_gtsamGeneralSFMFactorCal3Bundler");
std::shared_ptr<gtsam::GeneralSFMFactor<gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::Point3>::Verbosity> verbosity = unwrap_enum<gtsam::GeneralSFMFactor<gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::Point3>::Verbosity>(in[1]);
obj->verbosity = *verbosity;
gtsam::GeneralSFMFactor<gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::Point3>::Verbosity verbosity = unwrap_enum<gtsam::GeneralSFMFactor<gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::Point3>::Verbosity>(in[1]);
obj->verbosity = verbosity;
}

View File

@ -23,7 +23,9 @@ PYBIND11_MODULE(enum_py, m_) {
py::class_<Pet, std::shared_ptr<Pet>> pet(m_, "Pet");
pet
.def(py::init<const string&, Kind>(), py::arg("name"), py::arg("type"))
.def(py::init<const string&, Pet::Kind>(), py::arg("name"), py::arg("type"))
.def("setColor",[](Pet* self, const Color& color){ self->setColor(color);}, py::arg("color"))
.def("getColor",[](Pet* self){return self->getColor();})
.def_readwrite("name", &Pet::name)
.def_readwrite("type", &Pet::type);
@ -65,7 +67,10 @@ PYBIND11_MODULE(enum_py, m_) {
py::class_<gtsam::Optimizer<gtsam::GaussNewtonParams>, std::shared_ptr<gtsam::Optimizer<gtsam::GaussNewtonParams>>> optimizergaussnewtonparams(m_gtsam, "OptimizerGaussNewtonParams");
optimizergaussnewtonparams
.def("setVerbosity",[](gtsam::Optimizer<gtsam::GaussNewtonParams>* self, const Optimizer<gtsam::GaussNewtonParams>::Verbosity value){ self->setVerbosity(value);}, py::arg("value"));
.def(py::init<const Optimizer<gtsam::GaussNewtonParams>::Verbosity&>(), py::arg("verbosity"))
.def("setVerbosity",[](gtsam::Optimizer<gtsam::GaussNewtonParams>* self, const Optimizer<gtsam::GaussNewtonParams>::Verbosity value){ self->setVerbosity(value);}, py::arg("value"))
.def("getVerbosity",[](gtsam::Optimizer<gtsam::GaussNewtonParams>* self){return self->getVerbosity();})
.def("getVerbosity",[](gtsam::Optimizer<gtsam::GaussNewtonParams>* self){return self->getVerbosity();});
py::enum_<gtsam::Optimizer<gtsam::GaussNewtonParams>::Verbosity>(optimizergaussnewtonparams, "Verbosity", py::arithmetic())
.value("SILENT", gtsam::Optimizer<gtsam::GaussNewtonParams>::Verbosity::SILENT)

View File

@ -3,13 +3,16 @@ enum Color { Red, Green, Blue };
class Pet {
enum Kind { Dog, Cat };
Pet(const string &name, Kind type);
Pet(const string &name, Pet::Kind type);
void setColor(const Color& color);
Color getColor() const;
string name;
Kind type;
Pet::Kind type;
};
namespace gtsam {
// Test global enums
enum VerbosityLM {
SILENT,
SUMMARY,
@ -21,6 +24,7 @@ enum VerbosityLM {
TRYDELTA
};
// Test multiple enums in a classs
class MCU {
MCU();
@ -50,7 +54,12 @@ class Optimizer {
VERBOSE
};
Optimizer(const This::Verbosity& verbosity);
void setVerbosity(const This::Verbosity value);
gtsam::Optimizer::Verbosity getVerbosity() const;
gtsam::VerbosityLM getVerbosity() const;
};
typedef gtsam::Optimizer<gtsam::GaussNewtonParams> OptimizerGaussNewtonParams;

View File

@ -38,7 +38,7 @@ class TestInterfaceParser(unittest.TestCase):
def test_basic_type(self):
"""Tests for BasicType."""
# Check basis type
# Check basic type
t = Type.rule.parseString("int x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_basic)
@ -243,7 +243,7 @@ class TestInterfaceParser(unittest.TestCase):
self.assertEqual("void", return_type.type1.typename.name)
self.assertTrue(return_type.type1.is_basic)
# Test basis type
# Test basic type
return_type = ReturnType.rule.parseString("size_t")[0]
self.assertEqual("size_t", return_type.type1.typename.name)
self.assertTrue(not return_type.type2)