gtsam/wrap/tests/test_interface_parser.py

667 lines
26 KiB
Python

"""
GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Tests for interface_parser.
Author: Varun Agrawal
"""
# pylint: disable=import-error,wrong-import-position
import os
import sys
import unittest
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from gtwrap.interface_parser import (ArgumentList, Class, Constructor, Enum,
Enumerator, ForwardDeclaration,
GlobalFunction, Include, Method, Module,
Namespace, Operator, ReturnType,
StaticMethod, TemplatedType, Type,
TypedefTemplateInstantiation, Typename,
Variable)
from gtwrap.template_instantiator.classes import InstantiatedClass
class TestInterfaceParser(unittest.TestCase):
"""Test driver for all classes in interface_parser.py."""
def test_typename(self):
"""Test parsing of Typename."""
typename = Typename.rule.parseString("size_t")[0]
self.assertEqual("size_t", typename.name)
def test_basic_type(self):
"""Tests for BasicType."""
# Check basic type
t = Type.rule.parseString("int x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_basic)
# Check const
t = Type.rule.parseString("const int x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_basic)
self.assertTrue(t.is_const)
# Check shared pointer
t = Type.rule.parseString("int* x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_shared_ptr)
# Check raw pointer
t = Type.rule.parseString("int@ x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_ptr)
# Check reference
t = Type.rule.parseString("int& x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_ref)
# Check const reference
t = Type.rule.parseString("const int& x")[0]
self.assertEqual("int", t.typename.name)
self.assertTrue(t.is_const)
self.assertTrue(t.is_ref)
def test_custom_type(self):
"""Tests for CustomType."""
# Check qualified type
t = Type.rule.parseString("gtsam::Pose3 x")[0]
self.assertEqual("Pose3", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertTrue(not t.is_basic)
# Check const
t = Type.rule.parseString("const gtsam::Pose3 x")[0]
self.assertEqual("Pose3", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertTrue(t.is_const)
# Check shared pointer
t = Type.rule.parseString("gtsam::Pose3* x")[0]
self.assertEqual("Pose3", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertTrue(t.is_shared_ptr)
self.assertEqual("std::shared_ptr<gtsam::Pose3>", t.to_cpp())
# Check raw pointer
t = Type.rule.parseString("gtsam::Pose3@ x")[0]
self.assertEqual("Pose3", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertTrue(t.is_ptr)
# Check reference
t = Type.rule.parseString("gtsam::Pose3& x")[0]
self.assertEqual("Pose3", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertTrue(t.is_ref)
# Check const reference
t = Type.rule.parseString("const gtsam::Pose3& x")[0]
self.assertEqual("Pose3", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertTrue(t.is_const)
self.assertTrue(t.is_ref)
def test_templated_type(self):
"""Test a templated type."""
t = TemplatedType.rule.parseString("Eigen::Matrix<double, 3, 4>")[0]
self.assertEqual("Matrix", t.typename.name)
self.assertEqual(["Eigen"], t.typename.namespaces)
self.assertEqual("double", t.typename.instantiations[0].name)
self.assertEqual("3", t.typename.instantiations[1].name)
self.assertEqual("4", t.typename.instantiations[2].name)
t = TemplatedType.rule.parseString(
"gtsam::PinholeCamera<gtsam::Cal3S2>")[0]
self.assertEqual("PinholeCamera", t.typename.name)
self.assertEqual(["gtsam"], t.typename.namespaces)
self.assertEqual("Cal3S2", t.typename.instantiations[0].name)
self.assertEqual(["gtsam"], t.typename.instantiations[0].namespaces)
t = TemplatedType.rule.parseString("PinholeCamera<Cal3S2*>")[0]
self.assertEqual("PinholeCamera", t.typename.name)
self.assertEqual("Cal3S2", t.typename.instantiations[0].name)
self.assertTrue(t.template_params[0].is_shared_ptr)
def test_empty_arguments(self):
"""Test no arguments."""
empty_args = ArgumentList.rule.parseString("")[0]
self.assertEqual(0, len(empty_args))
def test_argument_list(self):
"""Test arguments list for a method/function."""
arg_string = "int a, C1 c1, C2& c2, C3* c3, "\
"const C4 c4, const C5& c5,"\
"const C6* c6"
args = ArgumentList.rule.parseString(arg_string)[0]
self.assertEqual(7, len(args.list()))
self.assertEqual(['a', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6'],
args.names())
def test_argument_list_qualifiers(self):
"""
Test arguments list where the arguments are qualified with `const`
and can be either raw pointers, shared pointers or references.
"""
arg_string = "double x1, double* x2, double& x3, double@ x4, " \
"const double x5, const double* x6, const double& x7, const double@ x8"
args = ArgumentList.rule.parseString(arg_string)[0].list()
self.assertEqual(8, len(args))
self.assertFalse(args[1].ctype.is_ptr and args[1].ctype.is_shared_ptr
and args[1].ctype.is_ref)
self.assertTrue(args[1].ctype.is_shared_ptr)
self.assertTrue(args[2].ctype.is_ref)
self.assertTrue(args[3].ctype.is_ptr)
self.assertTrue(args[4].ctype.is_const)
self.assertTrue(args[5].ctype.is_shared_ptr and args[5].ctype.is_const)
self.assertTrue(args[6].ctype.is_ref and args[6].ctype.is_const)
self.assertTrue(args[7].ctype.is_ptr and args[7].ctype.is_const)
def test_argument_list_templated(self):
"""Test arguments list where the arguments can be templated."""
arg_string = "std::pair<string, double> steps, vector<T*> vector_of_pointers"
args = ArgumentList.rule.parseString(arg_string)[0]
args_list = args.list()
self.assertEqual(2, len(args_list))
self.assertEqual("std::pair<string, double>",
args_list[0].ctype.to_cpp())
self.assertEqual("vector<std::shared_ptr<T>>",
args_list[1].ctype.to_cpp())
def test_default_arguments(self):
"""Tests any expression that is a valid default argument"""
args = ArgumentList.rule.parseString("""
string c = "", int z = 0, double z2 = 0.0, bool f = false,
string s="hello"+"goodbye", char c='a', int a=3,
int b, double pi = 3.1415""")[0].list()
# Test for basic types
self.assertEqual(args[0].default, '""')
self.assertEqual(args[1].default, '0')
self.assertEqual(args[2].default, '0.0')
self.assertEqual(args[3].default, "false")
self.assertEqual(args[4].default, '"hello"+"goodbye"')
self.assertEqual(args[5].default, "'a'")
self.assertEqual(args[6].default, '3')
# No default argument should set `default` to None
self.assertIsNone(args[7].default)
self.assertEqual(args[8].default, '3.1415')
arg0 = 'gtsam::DefaultKeyFormatter'
arg1 = 'std::vector<size_t>()'
arg2 = '{1, 2}'
arg3 = '[&c1, &c2](string s=5, int a){return s+"hello"+a+c1+c2;}'
arg4 = 'gtsam::Pose3()'
arg5 = 'Factor<gtsam::Pose3, gtsam::Point3>()'
arg6 = 'gtsam::Point3(1, 2, 3)'
arg7 = 'ns::Class<T, U>(3, 2, 1, "name")'
argument_list = """
gtsam::KeyFormatter kf = {arg0},
std::vector<size_t> v = {arg1},
std::vector<size_t> l = {arg2},
gtsam::KeyFormatter lambda = {arg3},
gtsam::Pose3 p = {arg4},
Factor<gtsam::Pose3, gtsam::Point3> x = {arg5},
gtsam::Point3 x = {arg6},
ns::Class<T, U> obj = {arg7}
""".format(arg0=arg0,
arg1=arg1,
arg2=arg2,
arg3=arg3,
arg4=arg4,
arg5=arg5,
arg6=arg6,
arg7=arg7)
args = ArgumentList.rule.parseString(argument_list)[0].list()
# Test non-basic type
self.assertEqual(args[0].default, arg0)
# Test templated type
self.assertEqual(args[1].default, arg1)
self.assertEqual(args[2].default, arg2)
self.assertEqual(args[3].default, arg3)
self.assertEqual(args[4].default, arg4)
self.assertEqual(args[5].default, arg5)
self.assertEqual(args[6].default, arg6)
# Test for default argument with multiple templates and params
self.assertEqual(args[7].default, arg7)
def test_return_type(self):
"""Test ReturnType"""
# Test void
return_type = ReturnType.rule.parseString("void")[0]
self.assertEqual("void", return_type.type1.typename.name)
self.assertTrue(return_type.type1.is_basic)
# Test basic type
return_type = ReturnType.rule.parseString("size_t")[0]
self.assertEqual("size_t", return_type.type1.typename.name)
self.assertTrue(not return_type.type2)
self.assertTrue(return_type.type1.is_basic)
# Test with qualifiers
return_type = ReturnType.rule.parseString("int&")[0]
self.assertEqual("int", return_type.type1.typename.name)
self.assertTrue(return_type.type1.is_basic
and return_type.type1.is_ref)
return_type = ReturnType.rule.parseString("const int")[0]
self.assertEqual("int", return_type.type1.typename.name)
self.assertTrue(return_type.type1.is_basic
and return_type.type1.is_const)
# Test pair return
return_type = ReturnType.rule.parseString("pair<char, int>")[0]
self.assertEqual("char", return_type.type1.typename.name)
self.assertEqual("int", return_type.type2.typename.name)
return_type = ReturnType.rule.parseString("pair<Test ,Test*>")[0]
self.assertEqual("Test", return_type.type1.typename.name)
self.assertEqual("Test", return_type.type2.typename.name)
self.assertTrue(return_type.type2.is_shared_ptr)
def test_method(self):
"""Test for a class method."""
ret = Method.rule.parseString("int f();")[0]
self.assertEqual("f", ret.name)
self.assertEqual(0, len(ret.args))
self.assertTrue(not ret.is_const)
ret = Method.rule.parseString("int f() const;")[0]
self.assertEqual("f", ret.name)
self.assertEqual(0, len(ret.args))
self.assertTrue(ret.is_const)
ret = Method.rule.parseString(
"int f(const int x, const Class& c, Class* t) const;")[0]
self.assertEqual("f", ret.name)
self.assertEqual(3, len(ret.args))
ret = Method.rule.parseString(
"pair<First ,Second*> create_MixedPtrs();")[0]
self.assertEqual("create_MixedPtrs", ret.name)
self.assertEqual(0, len(ret.args))
self.assertEqual("First", ret.return_type.type1.typename.name)
self.assertEqual("Second", ret.return_type.type2.typename.name)
def test_static_method(self):
"""Test for static methods."""
ret = StaticMethod.rule.parseString("static int f();")[0]
self.assertEqual("f", ret.name)
self.assertEqual(0, len(ret.args))
ret = StaticMethod.rule.parseString(
"static int f(const int x, const Class& c, Class* t);")[0]
self.assertEqual("f", ret.name)
self.assertEqual(3, len(ret.args))
def test_constructor(self):
"""Test for class constructor."""
ret = Constructor.rule.parseString("f();")[0]
self.assertEqual("f", ret.name)
self.assertEqual(0, len(ret.args))
ret = Constructor.rule.parseString(
"f(const int x, const Class& c, Class* t);")[0]
self.assertEqual("f", ret.name)
self.assertEqual(3, len(ret.args))
ret = Constructor.rule.parseString(
"""ForwardKinematics(const gtdynamics::Robot& robot,
const string& start_link_name, const string& end_link_name,
const gtsam::Values& joint_angles,
const gtsam::Pose3& l2Tp = gtsam::Pose3());""")[0]
self.assertEqual("ForwardKinematics", ret.name)
self.assertEqual(5, len(ret.args))
self.assertEqual("gtsam::Pose3()", ret.args.list()[4].default)
def test_constructor_templated(self):
"""Test for templated class constructor."""
f = """
template<T = {double, int}>
Class();
"""
ret = Constructor.rule.parseString(f)[0]
self.assertEqual("Class", ret.name)
self.assertEqual(0, len(ret.args))
f = """
template<T = {double, int}>
Class(const T& name);
"""
ret = Constructor.rule.parseString(f)[0]
self.assertEqual("Class", ret.name)
self.assertEqual(1, len(ret.args))
self.assertEqual("const T & name", ret.args.args_list[0].to_cpp())
def test_operator_overload(self):
"""Test for operator overloading."""
# Unary operator
wrap_string = "gtsam::Vector2 operator-() const;"
ret = Operator.rule.parseString(wrap_string)[0]
self.assertEqual("operator", ret.name)
self.assertEqual("-", ret.operator)
self.assertEqual("Vector2", ret.return_type.type1.typename.name)
self.assertEqual("gtsam::Vector2",
ret.return_type.type1.typename.to_cpp())
self.assertTrue(len(ret.args) == 0)
self.assertTrue(ret.is_unary)
# Binary operator
wrap_string = "gtsam::Vector2 operator*(const gtsam::Vector2 &v) const;"
ret = Operator.rule.parseString(wrap_string)[0]
self.assertEqual("operator", ret.name)
self.assertEqual("*", ret.operator)
self.assertEqual("Vector2", ret.return_type.type1.typename.name)
self.assertEqual("gtsam::Vector2",
ret.return_type.type1.typename.to_cpp())
self.assertTrue(len(ret.args) == 1)
self.assertEqual("const gtsam::Vector2 &",
repr(ret.args.list()[0].ctype))
self.assertTrue(not ret.is_unary)
def test_typedef_template_instantiation(self):
"""Test for typedef'd instantiation of a template."""
typedef = TypedefTemplateInstantiation.rule.parseString("""
typedef gtsam::BearingFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2>
BearingFactor2D;
""")[0]
self.assertEqual("BearingFactor2D", typedef.new_name)
self.assertEqual("BearingFactor", typedef.typename.name)
self.assertEqual(["gtsam"], typedef.typename.namespaces)
self.assertEqual(3, len(typedef.typename.instantiations))
def test_base_class(self):
"""Test a base class."""
ret = Class.rule.parseString("""
virtual class Base {
};
""")[0]
self.assertEqual("Base", ret.name)
self.assertEqual(0, len(ret.ctors))
self.assertEqual(0, len(ret.methods))
self.assertEqual(0, len(ret.static_methods))
self.assertEqual(0, len(ret.properties))
self.assertTrue(ret.is_virtual)
def test_empty_class(self):
"""Test an empty class declaration."""
ret = Class.rule.parseString("""
class FactorIndices {};
""")[0]
self.assertEqual("FactorIndices", ret.name)
self.assertEqual(0, len(ret.ctors))
self.assertEqual(0, len(ret.methods))
self.assertEqual(0, len(ret.static_methods))
self.assertEqual(0, len(ret.properties))
self.assertTrue(not ret.is_virtual)
def test_class(self):
"""Test a non-trivial class."""
ret = Class.rule.parseString("""
class SymbolicFactorGraph {
SymbolicFactorGraph();
SymbolicFactorGraph(const gtsam::SymbolicBayesNet& bayesNet);
SymbolicFactorGraph(const gtsam::SymbolicBayesTree& bayesTree);
// Dummy static method
static gtsam::SymbolidFactorGraph CreateGraph();
void push_back(gtsam::SymbolicFactor* factor);
void print(string s) const;
bool equals(const gtsam::SymbolicFactorGraph& rhs, double tol) const;
size_t size() const;
bool exists(size_t idx) const;
// Standard interface
gtsam::KeySet keys() const;
void push_back(const gtsam::SymbolicFactorGraph& graph);
void push_back(const gtsam::SymbolicBayesNet& bayesNet);
void push_back(const gtsam::SymbolicBayesTree& bayesTree);
/* Advanced interface */
void push_factor(size_t key);
void push_factor(size_t key1, size_t key2);
void push_factor(size_t key1, size_t key2, size_t key3);
void push_factor(size_t key1, size_t key2, size_t key3, size_t key4);
gtsam::SymbolicBayesNet* eliminateSequential();
gtsam::SymbolicBayesNet* eliminateSequential(
const gtsam::Ordering& ordering);
gtsam::SymbolicBayesTree* eliminateMultifrontal();
gtsam::SymbolicBayesTree* eliminateMultifrontal(
const gtsam::Ordering& ordering);
pair<gtsam::SymbolicBayesNet*, gtsam::SymbolicFactorGraph*>
eliminatePartialSequential(const gtsam::Ordering& ordering);
pair<gtsam::SymbolicBayesNet*, gtsam::SymbolicFactorGraph*>
eliminatePartialSequential(const gtsam::KeyVector& keys);
pair<gtsam::SymbolicBayesTree*, gtsam::SymbolicFactorGraph*>
eliminatePartialMultifrontal(const gtsam::Ordering& ordering);
gtsam::SymbolicBayesNet* marginalMultifrontalBayesNet(
const gtsam::Ordering& ordering);
gtsam::SymbolicBayesNet* marginalMultifrontalBayesNet(
const gtsam::KeyVector& key_vector,
const gtsam::Ordering& marginalizedVariableOrdering);
gtsam::SymbolicFactorGraph* marginal(const gtsam::KeyVector& key_vector);
};
""")[0]
self.assertEqual("SymbolicFactorGraph", ret.name)
self.assertEqual(3, len(ret.ctors))
self.assertEqual(23, len(ret.methods))
self.assertEqual(1, len(ret.static_methods))
self.assertEqual(0, len(ret.properties))
self.assertTrue(not ret.is_virtual)
def test_templated_class(self):
"""Test a templated class."""
ret = Class.rule.parseString("""
template<POSE, POINT>
class MyFactor {};
""")[0]
self.assertEqual("MyFactor", ret.name)
self.assertEqual("<POSE, POINT>", repr(ret.template))
def test_class_inheritance(self):
"""Test for class inheritance."""
ret = Class.rule.parseString("""
virtual class Null: gtsam::noiseModel::mEstimator::Base {
Null();
void print(string s) const;
static gtsam::noiseModel::mEstimator::Null* Create();
// enabling serialization functionality
void serializable() const;
};
""")[0]
self.assertEqual("Null", ret.name)
self.assertEqual(1, len(ret.ctors))
self.assertEqual(2, len(ret.methods))
self.assertEqual(1, len(ret.static_methods))
self.assertEqual(0, len(ret.properties))
self.assertEqual("Base", ret.parent_class.name)
self.assertEqual(["gtsam", "noiseModel", "mEstimator"],
ret.parent_class.namespaces)
self.assertTrue(ret.is_virtual)
ret = Class.rule.parseString(
"class ForwardKinematicsFactor : gtsam::BetweenFactor<gtsam::Pose3> {};"
)[0]
ret = InstantiatedClass(ret,
[]) # Needed to correctly parse parent class
self.assertEqual("ForwardKinematicsFactor", ret.name)
self.assertEqual("BetweenFactor", ret.parent_class.name)
self.assertEqual(["gtsam"], ret.parent_class.namespaces)
self.assertEqual("Pose3", ret.parent_class.instantiations[0].name)
self.assertEqual(["gtsam"],
ret.parent_class.instantiations[0].namespaces)
def test_class_with_enum(self):
"""Test for class with nested enum."""
ret = Class.rule.parseString("""
class Pet {
Pet(const string &name, Kind type);
enum Kind { Dog, Cat };
};
""")[0]
self.assertEqual(ret.name, "Pet")
self.assertEqual(ret.enums[0].name, "Kind")
def test_include(self):
"""Test for include statements."""
include = Include.rule.parseString(
"#include <gtsam/slam/PriorFactor.h>")[0]
self.assertEqual("gtsam/slam/PriorFactor.h", include.header)
def test_forward_declaration(self):
"""Test for forward declarations."""
fwd = ForwardDeclaration.rule.parseString(
"virtual class Test:gtsam::Point3;")[0]
self.assertEqual("Test", fwd.name)
self.assertTrue(fwd.is_virtual)
def test_function(self):
"""Test for global/free function."""
func = GlobalFunction.rule.parseString("""
gtsam::Values localToWorld(const gtsam::Values& local,
const gtsam::Pose2& base, const gtsam::KeyVector& keys);
""")[0]
self.assertEqual("localToWorld", func.name)
self.assertEqual("Values", func.return_type.type1.typename.name)
self.assertEqual(3, len(func.args))
def test_global_variable(self):
"""Test for global variable."""
variable = Variable.rule.parseString("string kGravity;")[0]
self.assertEqual(variable.name, "kGravity")
self.assertEqual(variable.ctype.typename.name, "string")
variable = Variable.rule.parseString("string kGravity = 9.81;")[0]
self.assertEqual(variable.name, "kGravity")
self.assertEqual(variable.ctype.typename.name, "string")
self.assertEqual(variable.default, "9.81")
variable = Variable.rule.parseString(
"const string kGravity = 9.81;")[0]
self.assertEqual(variable.name, "kGravity")
self.assertEqual(variable.ctype.typename.name, "string")
self.assertTrue(variable.ctype.is_const)
self.assertEqual(variable.default, "9.81")
variable = Variable.rule.parseString(
"gtsam::Pose3 wTc = gtsam::Pose3();")[0]
self.assertEqual(variable.name, "wTc")
self.assertEqual(variable.ctype.typename.name, "Pose3")
self.assertEqual(variable.default, "gtsam::Pose3()")
variable = Variable.rule.parseString(
"gtsam::Pose3 wTc = gtsam::Pose3(1, 2, 0);")[0]
self.assertEqual(variable.name, "wTc")
self.assertEqual(variable.ctype.typename.name, "Pose3")
self.assertEqual(variable.default, "gtsam::Pose3(1, 2, 0)")
def test_enumerator(self):
"""Test for enumerator."""
enumerator = Enumerator.rule.parseString("Dog")[0]
self.assertEqual(enumerator.name, "Dog")
enumerator = Enumerator.rule.parseString("Cat")[0]
self.assertEqual(enumerator.name, "Cat")
def test_enum(self):
"""Test for enums."""
enum = Enum.rule.parseString("""
enum Kind {
Dog,
Cat
};
""")[0]
self.assertEqual(enum.name, "Kind")
self.assertEqual(enum.enumerators[0].name, "Dog")
self.assertEqual(enum.enumerators[1].name, "Cat")
def test_namespace(self):
"""Test for namespace parsing."""
namespace = Namespace.rule.parseString("""
namespace gtsam {
#include <gtsam/geometry/Point2.h>
class Point2 {
Point2();
Point2(double x, double y);
double x() const;
double y() const;
int dim() const;
char returnChar() const;
void argChar(char a) const;
void argUChar(unsigned char a) const;
};
#include <gtsam/geometry/Point3.h>
class Point3 {
Point3(double x, double y, double z);
double norm() const;
// static functions - use static keyword and uppercase
static double staticFunction();
static gtsam::Point3 StaticFunctionRet(double z);
// enabling serialization functionality
void serialize() const; // Just triggers a flag internally
};
}""")[0]
self.assertEqual("gtsam", namespace.name)
def test_module(self):
"""Test module parsing."""
module = Module.parseString("""
namespace one {
namespace two {
namespace three {
class Class123 {
};
}
class Class12a {
};
}
namespace two_dummy {
namespace three_dummy{
}
namespace fourth_dummy{
}
}
namespace two {
class Class12b {
};
}
int oneVar;
}
class Global{
};
int globalVar;
""")
self.assertEqual(["one", "Global", "globalVar"],
[x.name for x in module.content])
self.assertEqual(["two", "two_dummy", "two", "oneVar"],
[x.name for x in module.content[0].content])
if __name__ == '__main__':
unittest.main()