fix print tests
parent
588f56ef3e
commit
60c88e338b
|
|
@ -74,7 +74,7 @@ TEST(GaussianMixtureFactor, Sum) {
|
|||
// Check that number of keys is 3
|
||||
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
|
||||
|
||||
// Check that number of discrete keys is 1 // TODO(Frank): should not exist?
|
||||
// Check that number of discrete keys is 1
|
||||
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
|
||||
|
||||
// Create sum of two mixture factors: it will be a decision tree now on both
|
||||
|
|
@ -104,7 +104,7 @@ TEST(GaussianMixtureFactor, Printing) {
|
|||
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||
|
||||
std::string expected =
|
||||
R"(Hybrid x1 x2; 1 ]{
|
||||
R"(Hybrid [x1 x2; 1]{
|
||||
Choice(1)
|
||||
0 Leaf :
|
||||
A[x1] = [
|
||||
|
|
|
|||
|
|
@ -175,9 +175,8 @@ TEST(HybridFactorGraph, PushBack) {
|
|||
TEST(HybridFactorGraph, Switching) {
|
||||
Switching self(3);
|
||||
|
||||
EXPECT_LONGS_EQUAL(8, self.nonlinearFactorGraph.size());
|
||||
|
||||
EXPECT_LONGS_EQUAL(8, self.linearizedFactorGraph.size());
|
||||
EXPECT_LONGS_EQUAL(7, self.nonlinearFactorGraph.size());
|
||||
EXPECT_LONGS_EQUAL(7, self.linearizedFactorGraph.size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
|
|
@ -190,7 +189,7 @@ TEST(HybridFactorGraph, Linearization) {
|
|||
HybridGaussianFactorGraph actualLinearized =
|
||||
self.nonlinearFactorGraph.linearize(self.linearizationPoint);
|
||||
|
||||
EXPECT_LONGS_EQUAL(8, actualLinearized.size());
|
||||
EXPECT_LONGS_EQUAL(7, actualLinearized.size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
|
|
@ -495,15 +494,15 @@ TEST(HybridFactorGraph, Printing) {
|
|||
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
string expected_hybridFactorGraph = R"(
|
||||
size: 8
|
||||
factor 0: Continuous x1;
|
||||
size: 7
|
||||
factor 0: Continuous [x1]
|
||||
|
||||
A[x1] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 1: Hybrid x1 x2 m1; m1 ]{
|
||||
factor 1: Hybrid [x1 x2; m1]{
|
||||
Choice(m1)
|
||||
0 Leaf :
|
||||
A[x1] = [
|
||||
|
|
@ -526,7 +525,7 @@ factor 1: Hybrid x1 x2 m1; m1 ]{
|
|||
No noise model
|
||||
|
||||
}
|
||||
factor 2: Hybrid x2 x3 m2; m2 ]{
|
||||
factor 2: Hybrid [x2 x3; m2]{
|
||||
Choice(m2)
|
||||
0 Leaf :
|
||||
A[x2] = [
|
||||
|
|
@ -549,32 +548,25 @@ factor 2: Hybrid x2 x3 m2; m2 ]{
|
|||
No noise model
|
||||
|
||||
}
|
||||
factor 3: Continuous x1;
|
||||
|
||||
A[x1] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 4: Continuous x2;
|
||||
factor 3: Continuous [x2]
|
||||
|
||||
A[x2] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 5: Continuous x3;
|
||||
factor 4: Continuous [x3]
|
||||
|
||||
A[x3] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 6: Discrete m1
|
||||
factor 5: Discrete [m1]
|
||||
P( m1 ):
|
||||
Leaf 0.5
|
||||
|
||||
factor 7: Discrete m2 m1
|
||||
factor 6: Discrete [m2 m1]
|
||||
P( m2 | m1 ):
|
||||
Choice(m2)
|
||||
0 Choice(m1)
|
||||
|
|
@ -594,15 +586,15 @@ factor 0: Hybrid P( x1 | x2 m1)
|
|||
Discrete Keys = (m1, 2),
|
||||
Choice(m1)
|
||||
0 Leaf p(x1 | x2)
|
||||
R = [ 14.1774 ]
|
||||
S[x2] = [ -0.0705346 ]
|
||||
d = [ -14.0364 ]
|
||||
R = [ 10.0499 ]
|
||||
S[x2] = [ -0.0995037 ]
|
||||
d = [ -9.85087 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf p(x1 | x2)
|
||||
R = [ 14.1774 ]
|
||||
S[x2] = [ -0.0705346 ]
|
||||
d = [ -14.1069 ]
|
||||
R = [ 10.0499 ]
|
||||
S[x2] = [ -0.0995037 ]
|
||||
d = [ -9.95037 ]
|
||||
No noise model
|
||||
|
||||
factor 1: Hybrid P( x2 | x3 m1 m2)
|
||||
|
|
@ -610,28 +602,28 @@ factor 1: Hybrid P( x2 | x3 m1 m2)
|
|||
Choice(m2)
|
||||
0 Choice(m1)
|
||||
0 0 Leaf p(x2 | x3)
|
||||
R = [ 10.0993 ]
|
||||
S[x3] = [ -0.0990172 ]
|
||||
d = [ -9.99975 ]
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -9.99901 ]
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x2 | x3)
|
||||
R = [ 10.0993 ]
|
||||
S[x3] = [ -0.0990172 ]
|
||||
d = [ -9.90122 ]
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -9.90098 ]
|
||||
No noise model
|
||||
|
||||
1 Choice(m1)
|
||||
1 0 Leaf p(x2 | x3)
|
||||
R = [ 10.0993 ]
|
||||
S[x3] = [ -0.0990172 ]
|
||||
d = [ -10.0988 ]
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -10.098 ]
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x2 | x3)
|
||||
R = [ 10.0993 ]
|
||||
S[x3] = [ -0.0990172 ]
|
||||
d = [ -10.0002 ]
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -10 ]
|
||||
No noise model
|
||||
|
||||
factor 2: Hybrid P( x3 | m1 m2)
|
||||
|
|
|
|||
Loading…
Reference in New Issue