From 60c88e338bd3d73c80753185a2710f83a0c9b353 Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Wed, 10 Aug 2022 04:37:26 -0400 Subject: [PATCH] fix print tests --- .../tests/testGaussianMixtureFactor.cpp | 4 +- .../tests/testHybridNonlinearFactorGraph.cpp | 66 ++++++++----------- 2 files changed, 31 insertions(+), 39 deletions(-) diff --git a/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp b/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp index 36477218b..cb9068c30 100644 --- a/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp +++ b/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp @@ -74,7 +74,7 @@ TEST(GaussianMixtureFactor, Sum) { // Check that number of keys is 3 EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size()); - // Check that number of discrete keys is 1 // TODO(Frank): should not exist? + // Check that number of discrete keys is 1 EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size()); // Create sum of two mixture factors: it will be a decision tree now on both @@ -104,7 +104,7 @@ TEST(GaussianMixtureFactor, Printing) { GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors); std::string expected = - R"(Hybrid x1 x2; 1 ]{ + R"(Hybrid [x1 x2; 1]{ Choice(1) 0 Leaf : A[x1] = [ diff --git a/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp b/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp index c732ec6c5..b471079b0 100644 --- a/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp +++ b/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp @@ -175,9 +175,8 @@ TEST(HybridFactorGraph, PushBack) { TEST(HybridFactorGraph, Switching) { Switching self(3); - EXPECT_LONGS_EQUAL(8, self.nonlinearFactorGraph.size()); - - EXPECT_LONGS_EQUAL(8, self.linearizedFactorGraph.size()); + EXPECT_LONGS_EQUAL(7, self.nonlinearFactorGraph.size()); + EXPECT_LONGS_EQUAL(7, self.linearizedFactorGraph.size()); } /**************************************************************************** @@ -190,7 +189,7 @@ TEST(HybridFactorGraph, Linearization) { HybridGaussianFactorGraph actualLinearized = self.nonlinearFactorGraph.linearize(self.linearizationPoint); - EXPECT_LONGS_EQUAL(8, actualLinearized.size()); + EXPECT_LONGS_EQUAL(7, actualLinearized.size()); } /**************************************************************************** @@ -495,15 +494,15 @@ TEST(HybridFactorGraph, Printing) { linearizedFactorGraph.eliminatePartialSequential(ordering); string expected_hybridFactorGraph = R"( -size: 8 -factor 0: Continuous x1; +size: 7 +factor 0: Continuous [x1] A[x1] = [ 10 ] b = [ -10 ] No noise model -factor 1: Hybrid x1 x2 m1; m1 ]{ +factor 1: Hybrid [x1 x2; m1]{ Choice(m1) 0 Leaf : A[x1] = [ @@ -526,7 +525,7 @@ factor 1: Hybrid x1 x2 m1; m1 ]{ No noise model } -factor 2: Hybrid x2 x3 m2; m2 ]{ +factor 2: Hybrid [x2 x3; m2]{ Choice(m2) 0 Leaf : A[x2] = [ @@ -549,32 +548,25 @@ factor 2: Hybrid x2 x3 m2; m2 ]{ No noise model } -factor 3: Continuous x1; - - A[x1] = [ - 10 -] - b = [ -10 ] - No noise model -factor 4: Continuous x2; +factor 3: Continuous [x2] A[x2] = [ 10 ] b = [ -10 ] No noise model -factor 5: Continuous x3; +factor 4: Continuous [x3] A[x3] = [ 10 ] b = [ -10 ] No noise model -factor 6: Discrete m1 +factor 5: Discrete [m1] P( m1 ): Leaf 0.5 -factor 7: Discrete m2 m1 +factor 6: Discrete [m2 m1] P( m2 | m1 ): Choice(m2) 0 Choice(m1) @@ -594,15 +586,15 @@ factor 0: Hybrid P( x1 | x2 m1) Discrete Keys = (m1, 2), Choice(m1) 0 Leaf p(x1 | x2) - R = [ 14.1774 ] - S[x2] = [ -0.0705346 ] - d = [ -14.0364 ] + R = [ 10.0499 ] + S[x2] = [ -0.0995037 ] + d = [ -9.85087 ] No noise model 1 Leaf p(x1 | x2) - R = [ 14.1774 ] - S[x2] = [ -0.0705346 ] - d = [ -14.1069 ] + R = [ 10.0499 ] + S[x2] = [ -0.0995037 ] + d = [ -9.95037 ] No noise model factor 1: Hybrid P( x2 | x3 m1 m2) @@ -610,28 +602,28 @@ factor 1: Hybrid P( x2 | x3 m1 m2) Choice(m2) 0 Choice(m1) 0 0 Leaf p(x2 | x3) - R = [ 10.0993 ] - S[x3] = [ -0.0990172 ] - d = [ -9.99975 ] + R = [ 10.099 ] + S[x3] = [ -0.0990196 ] + d = [ -9.99901 ] No noise model 0 1 Leaf p(x2 | x3) - R = [ 10.0993 ] - S[x3] = [ -0.0990172 ] - d = [ -9.90122 ] + R = [ 10.099 ] + S[x3] = [ -0.0990196 ] + d = [ -9.90098 ] No noise model 1 Choice(m1) 1 0 Leaf p(x2 | x3) - R = [ 10.0993 ] - S[x3] = [ -0.0990172 ] - d = [ -10.0988 ] + R = [ 10.099 ] + S[x3] = [ -0.0990196 ] + d = [ -10.098 ] No noise model 1 1 Leaf p(x2 | x3) - R = [ 10.0993 ] - S[x3] = [ -0.0990172 ] - d = [ -10.0002 ] + R = [ 10.099 ] + S[x3] = [ -0.0990196 ] + d = [ -10 ] No noise model factor 2: Hybrid P( x3 | m1 m2)