test and fix for issue 301
parent
6b098c70d5
commit
5cdbacfd44
|
@ -424,6 +424,11 @@ ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
|
|||
ISAM2Result result(params_.enableDetailedResults);
|
||||
UpdateImpl update(params_, updateParams);
|
||||
|
||||
// Initialize any new variables \Theta_{new} and add
|
||||
// \Theta:=\Theta\cup\Theta_{new}.
|
||||
// Needed before delta update if using Dogleg optimizer.
|
||||
addVariables(newTheta, result.details());
|
||||
|
||||
// Update delta if we need it to check relinearization later
|
||||
if (update.relinarizationNeeded(update_count_))
|
||||
updateDelta(updateParams.forceFullSolve);
|
||||
|
@ -435,9 +440,7 @@ ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
|
|||
update.computeUnusedKeys(newFactors, variableIndex_,
|
||||
result.keysWithRemovedFactors, &result.unusedKeys);
|
||||
|
||||
// 2. Initialize any new variables \Theta_{new} and add
|
||||
// \Theta:=\Theta\cup\Theta_{new}.
|
||||
addVariables(newTheta, result.details());
|
||||
// 2. Compute new error to check for relinearization
|
||||
if (params_.evaluateNonlinearError)
|
||||
update.error(nonlinearFactors_, calculateEstimate(), &result.errorBefore);
|
||||
|
||||
|
@ -731,6 +734,7 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
|
|||
effectiveWildfireThreshold, &delta_);
|
||||
deltaReplacedMask_.clear();
|
||||
gttoc(Wildfire_update);
|
||||
|
||||
} else if (std::holds_alternative<ISAM2DoglegParams>(params_.optimizationParams)) {
|
||||
// If using Dogleg, do a Dogleg step
|
||||
const ISAM2DoglegParams& doglegParams =
|
||||
|
@ -769,9 +773,8 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
|
|||
gttic(Copy_dx_d);
|
||||
// Update Delta and linear step
|
||||
doglegDelta_ = doglegResult.delta;
|
||||
delta_ =
|
||||
doglegResult
|
||||
.dx_d; // Copy the VectorValues containing with the linear solution
|
||||
// Copy the VectorValues containing with the linear solution
|
||||
delta_ = doglegResult.dx_d;
|
||||
gttoc(Copy_dx_d);
|
||||
} else {
|
||||
throw std::runtime_error("iSAM2: unknown ISAM2Params type");
|
||||
|
|
|
@ -24,10 +24,9 @@
|
|||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
#include "examples/SFMdata.h"
|
||||
|
||||
#include <functional>
|
||||
|
||||
|
@ -36,7 +35,6 @@ using namespace gtsam;
|
|||
|
||||
// Convenience for named keys
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::L;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DoglegOptimizer, ComputeBlend) {
|
||||
|
@ -185,6 +183,120 @@ TEST(DoglegOptimizer, Constraint) {
|
|||
#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DogLegOptimizer, VariableUpdate) {
|
||||
// Make the typename short so it looks much cleaner
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
// create a typedef to the camera type
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
// Define the camera calibration parameters
|
||||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
// Define the camera observation noise model
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise =
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Create the set of ground-truth landmarks and poses
|
||||
vector<Point3> points = createPoints();
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
ISAM2DoglegParams doglegparams = ISAM2DoglegParams();
|
||||
doglegparams.verbose = false;
|
||||
ISAM2Params isam2_params;
|
||||
isam2_params.evaluateNonlinearError = true;
|
||||
isam2_params.relinearizeThreshold = 0.0;
|
||||
isam2_params.enableRelinearization = true;
|
||||
isam2_params.optimizationParams = doglegparams;
|
||||
isam2_params.relinearizeSkip = 1;
|
||||
ISAM2 isam2(isam2_params);
|
||||
|
||||
// Simulated measurements from each camera pose, adding them to the factor
|
||||
// graph
|
||||
unordered_map<int, SmartFactor::shared_ptr> smart_factors;
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// every landmark represent a single landmark, we use shared pointer to init
|
||||
// the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
||||
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
// generate the 2D measurement
|
||||
Camera camera(poses[i], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
|
||||
// call add() function to add measurement into a single factor, here we
|
||||
// need to add:
|
||||
// 1. the 2D measurement
|
||||
// 2. the corresponding camera's key
|
||||
// 3. camera noise model
|
||||
// 4. camera calibration
|
||||
|
||||
// add only first 3 measurements and update the later measurements
|
||||
// incrementally
|
||||
if (i < 3) smartfactor->add(measurement, i);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
smart_factors[j] = smartfactor;
|
||||
graph.push_back(smartfactor);
|
||||
}
|
||||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
||||
graph.emplace_shared<PriorFactor<Pose3> >(0, poses[0], noise);
|
||||
|
||||
// Because the structure-from-motion problem has a scale ambiguity, the
|
||||
// problem is still under-constrained. Here we add a prior on the second pose
|
||||
// x1, so this will fix the scale by indicating the distance between x0 and
|
||||
// x1. Because these two are fixed, the rest of the poses will be also be
|
||||
// fixed.
|
||||
graph.emplace_shared<PriorFactor<Pose3> >(1, poses[1],
|
||||
noise); // add directly to graph
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Values initialEstimate;
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < 3; ++i)
|
||||
initialEstimate.insert(i, poses[i].compose(delta));
|
||||
// initialEstimate.print("Initial Estimates:\n");
|
||||
|
||||
// Optimize the graph and print results
|
||||
isam2.update(graph, initialEstimate);
|
||||
Values result = isam2.calculateEstimate();
|
||||
// result.print("Results:\n");
|
||||
|
||||
// we add new measurements from this pose
|
||||
size_t pose_idx = 3;
|
||||
|
||||
// Now update existing smart factors with new observations
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
SmartFactor::shared_ptr smartfactor = smart_factors[j];
|
||||
|
||||
// add the 4th measurement
|
||||
Camera camera(poses[pose_idx], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
smartfactor->add(measurement, pose_idx);
|
||||
}
|
||||
|
||||
graph.resize(0);
|
||||
initialEstimate.clear();
|
||||
|
||||
// update initial estimate for the new pose
|
||||
initialEstimate.insert(pose_idx, poses[pose_idx].compose(delta));
|
||||
|
||||
// this should break the system
|
||||
isam2.update(graph, initialEstimate);
|
||||
result = isam2.calculateEstimate();
|
||||
EXPECT(std::find(result.keys().begin(), result.keys().end(), pose_idx) !=
|
||||
result.keys().end());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue