Merge pull request #1698 from borglab/frank/cleaner_eliminate
commit
6b098c70d5
|
@ -96,7 +96,6 @@ static GaussianFactorGraphTree addGaussian(
|
|||
// TODO(dellaert): it's probably more efficient to first collect the discrete
|
||||
// keys, and then loop over all assignments to populate a vector.
|
||||
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
|
||||
|
||||
GaussianFactorGraphTree result;
|
||||
|
||||
for (auto &f : factors_) {
|
||||
|
@ -198,6 +197,51 @@ GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
|
|||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
using Result = std::pair<std::shared_ptr<GaussianConditional>,
|
||||
GaussianMixtureFactor::sharedFactor>;
|
||||
|
||||
// Integrate the probability mass in the last continuous conditional using
|
||||
// the unnormalized probability q(μ;m) = exp(-error(μ;m)) at the mean.
|
||||
// discrete_probability = exp(-error(μ;m)) * sqrt(det(2π Σ_m))
|
||||
static std::shared_ptr<Factor> createDiscreteFactor(
|
||||
const DecisionTree<Key, Result> &eliminationResults,
|
||||
const DiscreteKeys &discreteSeparator) {
|
||||
auto probability = [&](const Result &pair) -> double {
|
||||
const auto &[conditional, factor] = pair;
|
||||
static const VectorValues kEmpty;
|
||||
// If the factor is not null, it has no keys, just contains the residual.
|
||||
if (!factor) return 1.0; // TODO(dellaert): not loving this.
|
||||
return exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
|
||||
};
|
||||
|
||||
DecisionTree<Key, double> probabilities(eliminationResults, probability);
|
||||
|
||||
return std::make_shared<DecisionTreeFactor>(discreteSeparator, probabilities);
|
||||
}
|
||||
|
||||
// Create GaussianMixtureFactor on the separator, taking care to correct
|
||||
// for conditional constants.
|
||||
static std::shared_ptr<Factor> createGaussianMixtureFactor(
|
||||
const DecisionTree<Key, Result> &eliminationResults,
|
||||
const KeyVector &continuousSeparator,
|
||||
const DiscreteKeys &discreteSeparator) {
|
||||
// Correct for the normalization constant used up by the conditional
|
||||
auto correct = [&](const Result &pair) -> GaussianFactor::shared_ptr {
|
||||
const auto &[conditional, factor] = pair;
|
||||
if (factor) {
|
||||
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
|
||||
if (!hf) throw std::runtime_error("Expected HessianFactor!");
|
||||
hf->constantTerm() += 2.0 * conditional->logNormalizationConstant();
|
||||
}
|
||||
return factor;
|
||||
};
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> newFactors(eliminationResults,
|
||||
correct);
|
||||
|
||||
return std::make_shared<GaussianMixtureFactor>(continuousSeparator,
|
||||
discreteSeparator, newFactors);
|
||||
}
|
||||
|
||||
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
|
||||
hybridElimination(const HybridGaussianFactorGraph &factors,
|
||||
const Ordering &frontalKeys,
|
||||
|
@ -217,9 +261,6 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// FG has a nullptr as we're looping over the factors.
|
||||
factorGraphTree = removeEmpty(factorGraphTree);
|
||||
|
||||
using Result = std::pair<std::shared_ptr<GaussianConditional>,
|
||||
GaussianMixtureFactor::sharedFactor>;
|
||||
|
||||
// This is the elimination method on the leaf nodes
|
||||
auto eliminate = [&](const GaussianFactorGraph &graph) -> Result {
|
||||
if (graph.empty()) {
|
||||
|
@ -234,53 +275,22 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// Perform elimination!
|
||||
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
|
||||
|
||||
// Separate out decision tree into conditionals and remaining factors.
|
||||
const auto [conditionals, newFactors] = unzip(eliminationResults);
|
||||
// If there are no more continuous parents we create a DiscreteFactor with the
|
||||
// error for each discrete choice. Otherwise, create a GaussianMixtureFactor
|
||||
// on the separator, taking care to correct for conditional constants.
|
||||
auto newFactor =
|
||||
continuousSeparator.empty()
|
||||
? createDiscreteFactor(eliminationResults, discreteSeparator)
|
||||
: createGaussianMixtureFactor(eliminationResults, continuousSeparator,
|
||||
discreteSeparator);
|
||||
|
||||
// Create the GaussianMixture from the conditionals
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
eliminationResults, [](const Result &pair) { return pair.first; });
|
||||
auto gaussianMixture = std::make_shared<GaussianMixture>(
|
||||
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
|
||||
|
||||
if (continuousSeparator.empty()) {
|
||||
// If there are no more continuous parents, then we create a
|
||||
// DiscreteFactor here, with the error for each discrete choice.
|
||||
|
||||
// Integrate the probability mass in the last continuous conditional using
|
||||
// the unnormalized probability q(μ;m) = exp(-error(μ;m)) at the mean.
|
||||
// discrete_probability = exp(-error(μ;m)) * sqrt(det(2π Σ_m))
|
||||
auto probability = [&](const Result &pair) -> double {
|
||||
static const VectorValues kEmpty;
|
||||
// If the factor is not null, it has no keys, just contains the residual.
|
||||
const auto &factor = pair.second;
|
||||
if (!factor) return 1.0; // TODO(dellaert): not loving this.
|
||||
return exp(-factor->error(kEmpty)) / pair.first->normalizationConstant();
|
||||
};
|
||||
|
||||
DecisionTree<Key, double> probabilities(eliminationResults, probability);
|
||||
|
||||
return {
|
||||
std::make_shared<HybridConditional>(gaussianMixture),
|
||||
std::make_shared<DecisionTreeFactor>(discreteSeparator, probabilities)};
|
||||
} else {
|
||||
// Otherwise, we create a resulting GaussianMixtureFactor on the separator,
|
||||
// taking care to correct for conditional constant.
|
||||
|
||||
// Correct for the normalization constant used up by the conditional
|
||||
auto correct = [&](const Result &pair) {
|
||||
const auto &factor = pair.second;
|
||||
if (!factor) return;
|
||||
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
|
||||
if (!hf) throw std::runtime_error("Expected HessianFactor!");
|
||||
hf->constantTerm() += 2.0 * pair.first->logNormalizationConstant();
|
||||
};
|
||||
eliminationResults.visit(correct);
|
||||
|
||||
const auto mixtureFactor = std::make_shared<GaussianMixtureFactor>(
|
||||
continuousSeparator, discreteSeparator, newFactors);
|
||||
|
||||
return {std::make_shared<HybridConditional>(gaussianMixture),
|
||||
mixtureFactor};
|
||||
}
|
||||
return {std::make_shared<HybridConditional>(gaussianMixture), newFactor};
|
||||
}
|
||||
|
||||
/* ************************************************************************
|
||||
|
|
Loading…
Reference in New Issue