Merge pull request #1323 from borglab/hybrid/multifrontal
commit
583d12151c
|
@ -105,7 +105,7 @@ bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
|
|||
/* *******************************************************************************/
|
||||
void GaussianMixture::print(const std::string &s,
|
||||
const KeyFormatter &formatter) const {
|
||||
std::cout << s;
|
||||
std::cout << (s.empty() ? "" : s + "\n");
|
||||
if (isContinuous()) std::cout << "Continuous ";
|
||||
if (isDiscrete()) std::cout << "Discrete ";
|
||||
if (isHybrid()) std::cout << "Hybrid ";
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
* @brief Hybrid Bayes Tree, the result of eliminating a
|
||||
* HybridJunctionTree
|
||||
* @date Mar 11, 2022
|
||||
* @author Fan Jiang
|
||||
* @author Fan Jiang, Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/base/treeTraversal-inst.h>
|
||||
|
@ -73,6 +73,8 @@ struct HybridAssignmentData {
|
|||
GaussianBayesTree::sharedNode parentClique_;
|
||||
// The gaussian bayes tree that will be recursively created.
|
||||
GaussianBayesTree* gaussianbayesTree_;
|
||||
// Flag indicating if all the nodes are valid. Used in optimize().
|
||||
bool valid_;
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Assignment Data object.
|
||||
|
@ -83,10 +85,13 @@ struct HybridAssignmentData {
|
|||
*/
|
||||
HybridAssignmentData(const DiscreteValues& assignment,
|
||||
const GaussianBayesTree::sharedNode& parentClique,
|
||||
GaussianBayesTree* gbt)
|
||||
GaussianBayesTree* gbt, bool valid = true)
|
||||
: assignment_(assignment),
|
||||
parentClique_(parentClique),
|
||||
gaussianbayesTree_(gbt) {}
|
||||
gaussianbayesTree_(gbt),
|
||||
valid_(valid) {}
|
||||
|
||||
bool isValid() const { return valid_; }
|
||||
|
||||
/**
|
||||
* @brief A function used during tree traversal that operates on each node
|
||||
|
@ -101,6 +106,7 @@ struct HybridAssignmentData {
|
|||
HybridAssignmentData& parentData) {
|
||||
// Extract the gaussian conditional from the Hybrid clique
|
||||
HybridConditional::shared_ptr hybrid_conditional = node->conditional();
|
||||
|
||||
GaussianConditional::shared_ptr conditional;
|
||||
if (hybrid_conditional->isHybrid()) {
|
||||
conditional = (*hybrid_conditional->asMixture())(parentData.assignment_);
|
||||
|
@ -111,15 +117,21 @@ struct HybridAssignmentData {
|
|||
conditional = boost::make_shared<GaussianConditional>();
|
||||
}
|
||||
|
||||
GaussianBayesTree::sharedNode clique;
|
||||
if (conditional) {
|
||||
// Create the GaussianClique for the current node
|
||||
auto clique = boost::make_shared<GaussianBayesTree::Node>(conditional);
|
||||
clique = boost::make_shared<GaussianBayesTree::Node>(conditional);
|
||||
// Add the current clique to the GaussianBayesTree.
|
||||
parentData.gaussianbayesTree_->addClique(clique, parentData.parentClique_);
|
||||
parentData.gaussianbayesTree_->addClique(clique,
|
||||
parentData.parentClique_);
|
||||
} else {
|
||||
parentData.valid_ = false;
|
||||
}
|
||||
|
||||
// Create new HybridAssignmentData where the current node is the parent
|
||||
// This will be passed down to the children nodes
|
||||
HybridAssignmentData data(parentData.assignment_, clique,
|
||||
parentData.gaussianbayesTree_);
|
||||
parentData.gaussianbayesTree_, parentData.valid_);
|
||||
return data;
|
||||
}
|
||||
};
|
||||
|
@ -138,6 +150,9 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
|
|||
visitorPost);
|
||||
}
|
||||
|
||||
if (!rootData.isValid()) {
|
||||
return VectorValues();
|
||||
}
|
||||
VectorValues result = gbt.optimize();
|
||||
|
||||
// Return the optimized bayes net result.
|
||||
|
|
|
@ -50,9 +50,12 @@ class GTSAM_EXPORT HybridBayesTreeClique
|
|||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
typedef boost::weak_ptr<This> weak_ptr;
|
||||
HybridBayesTreeClique() {}
|
||||
virtual ~HybridBayesTreeClique() {}
|
||||
HybridBayesTreeClique(const boost::shared_ptr<HybridConditional>& conditional)
|
||||
: Base(conditional) {}
|
||||
///< Copy constructor
|
||||
HybridBayesTreeClique(const HybridBayesTreeClique& clique) : Base(clique) {}
|
||||
|
||||
virtual ~HybridBayesTreeClique() {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Elimination Tree type for Hybrid
|
||||
* Elimination Tree type for Hybrid Factor Graphs.
|
||||
*
|
||||
* @ingroup hybrid
|
||||
*/
|
||||
|
|
|
@ -92,7 +92,6 @@ GaussianMixtureFactor::Sum sumFrontals(
|
|||
if (auto cgmf = boost::dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
|
||||
sum = cgmf->add(sum);
|
||||
}
|
||||
|
||||
if (auto gm = boost::dynamic_pointer_cast<HybridConditional>(f)) {
|
||||
sum = gm->asMixture()->add(sum);
|
||||
}
|
||||
|
@ -189,7 +188,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
DiscreteKeys discreteSeparator(discreteSeparatorSet.begin(),
|
||||
discreteSeparatorSet.end());
|
||||
|
||||
// sum out frontals, this is the factor on the separator
|
||||
// sum out frontals, this is the factor 𝜏 on the separator
|
||||
GaussianMixtureFactor::Sum sum = sumFrontals(factors);
|
||||
|
||||
// If a tree leaf contains nullptr,
|
||||
|
@ -257,13 +256,14 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// If there are no more continuous parents, then we should create here a
|
||||
// DiscreteFactor, with the error for each discrete choice.
|
||||
if (keysOfSeparator.empty()) {
|
||||
// TODO(Varun) Use the math from the iMHS_Math-1-indexed document
|
||||
VectorValues empty_values;
|
||||
auto factorProb = [&](const GaussianFactor::shared_ptr &factor) {
|
||||
if (!factor) {
|
||||
return 0.0; // If nullptr, return 0.0 probability
|
||||
} else {
|
||||
return 1.0;
|
||||
double error =
|
||||
0.5 * std::abs(factor->augmentedInformation().determinant());
|
||||
return std::exp(-error);
|
||||
}
|
||||
};
|
||||
DecisionTree<Key, double> fdt(separatorFactors, factorProb);
|
||||
|
@ -529,122 +529,13 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
|
|||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
DecisionTree<Key, VectorValues::shared_ptr>
|
||||
HybridGaussianFactorGraph::continuousDelta(
|
||||
const DiscreteKeys &discrete_keys,
|
||||
const boost::shared_ptr<BayesNetType> &continuousBayesNet,
|
||||
const std::vector<DiscreteValues> &assignments) const {
|
||||
// Create a decision tree of all the different VectorValues
|
||||
std::vector<VectorValues::shared_ptr> vector_values;
|
||||
for (const DiscreteValues &assignment : assignments) {
|
||||
VectorValues values = continuousBayesNet->optimize(assignment);
|
||||
vector_values.push_back(boost::make_shared<VectorValues>(values));
|
||||
}
|
||||
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
|
||||
vector_values);
|
||||
|
||||
return delta_tree;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::continuousProbPrimes(
|
||||
const DiscreteKeys &orig_discrete_keys,
|
||||
const boost::shared_ptr<BayesNetType> &continuousBayesNet) const {
|
||||
// Generate all possible assignments.
|
||||
const std::vector<DiscreteValues> assignments =
|
||||
DiscreteValues::CartesianProduct(orig_discrete_keys);
|
||||
|
||||
// Save a copy of the original discrete key ordering
|
||||
DiscreteKeys discrete_keys(orig_discrete_keys);
|
||||
// Reverse discrete keys order for correct tree construction
|
||||
std::reverse(discrete_keys.begin(), discrete_keys.end());
|
||||
|
||||
// Create a decision tree of all the different VectorValues
|
||||
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
|
||||
this->continuousDelta(discrete_keys, continuousBayesNet, assignments);
|
||||
|
||||
// Get the probPrime tree with the correct leaf probabilities
|
||||
std::vector<double> probPrimes;
|
||||
for (const DiscreteValues &assignment : assignments) {
|
||||
VectorValues delta = *delta_tree(assignment);
|
||||
|
||||
// If VectorValues is empty, it means this is a pruned branch.
|
||||
// Set thr probPrime to 0.0.
|
||||
if (delta.size() == 0) {
|
||||
probPrimes.push_back(0.0);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Compute the error given the delta and the assignment.
|
||||
double error = this->error(delta, assignment);
|
||||
probPrimes.push_back(exp(-error));
|
||||
}
|
||||
|
||||
AlgebraicDecisionTree<Key> probPrimeTree(discrete_keys, probPrimes);
|
||||
return probPrimeTree;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
|
||||
HybridGaussianFactorGraph::eliminateHybridSequential(
|
||||
const boost::optional<Ordering> continuous,
|
||||
const boost::optional<Ordering> discrete, const Eliminate &function,
|
||||
OptionalVariableIndex variableIndex) const {
|
||||
Ordering continuous_ordering =
|
||||
continuous ? *continuous : Ordering(this->continuousKeys());
|
||||
Ordering discrete_ordering =
|
||||
discrete ? *discrete : Ordering(this->discreteKeys());
|
||||
|
||||
// Eliminate continuous
|
||||
HybridBayesNet::shared_ptr bayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr discreteGraph;
|
||||
std::tie(bayesNet, discreteGraph) =
|
||||
BaseEliminateable::eliminatePartialSequential(continuous_ordering,
|
||||
function, variableIndex);
|
||||
|
||||
// Get the last continuous conditional which will have all the discrete keys
|
||||
auto last_conditional = bayesNet->at(bayesNet->size() - 1);
|
||||
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
|
||||
|
||||
// If not discrete variables, return the eliminated bayes net.
|
||||
if (discrete_keys.size() == 0) {
|
||||
return bayesNet;
|
||||
}
|
||||
|
||||
AlgebraicDecisionTree<Key> probPrimeTree =
|
||||
this->continuousProbPrimes(discrete_keys, bayesNet);
|
||||
|
||||
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
|
||||
|
||||
// Perform discrete elimination
|
||||
HybridBayesNet::shared_ptr discreteBayesNet =
|
||||
discreteGraph->BaseEliminateable::eliminateSequential(
|
||||
discrete_ordering, function, variableIndex);
|
||||
|
||||
bayesNet->add(*discreteBayesNet);
|
||||
|
||||
return bayesNet;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
|
||||
HybridGaussianFactorGraph::eliminateSequential(
|
||||
OptionalOrderingType orderingType, const Eliminate &function,
|
||||
OptionalVariableIndex variableIndex) const {
|
||||
return BaseEliminateable::eliminateSequential(orderingType, function,
|
||||
variableIndex);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
|
||||
HybridGaussianFactorGraph::eliminateSequential(
|
||||
const Ordering &ordering, const Eliminate &function,
|
||||
OptionalVariableIndex variableIndex) const {
|
||||
std::pair<Ordering, Ordering>
|
||||
HybridGaussianFactorGraph::separateContinuousDiscreteOrdering(
|
||||
const Ordering &ordering) const {
|
||||
KeySet all_continuous_keys = this->continuousKeys();
|
||||
KeySet all_discrete_keys = this->discreteKeys();
|
||||
Ordering continuous_ordering, discrete_ordering;
|
||||
|
||||
// Segregate the continuous and the discrete keys
|
||||
for (auto &&key : ordering) {
|
||||
if (std::find(all_continuous_keys.begin(), all_continuous_keys.end(),
|
||||
key) != all_continuous_keys.end()) {
|
||||
|
@ -657,8 +548,7 @@ HybridGaussianFactorGraph::eliminateSequential(
|
|||
}
|
||||
}
|
||||
|
||||
return this->eliminateHybridSequential(continuous_ordering,
|
||||
discrete_ordering);
|
||||
return std::make_pair(continuous_ordering, discrete_ordering);
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -217,57 +217,92 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
|||
const DiscreteValues& discreteValues) const;
|
||||
|
||||
/**
|
||||
* @brief Compute the VectorValues solution for the continuous variables for
|
||||
* each mode.
|
||||
* @brief Helper method to compute the VectorValues solution for the
|
||||
* continuous variables for each discrete mode.
|
||||
* Used as a helper to compute q(\mu | M, Z) which is used by
|
||||
* both P(X | M, Z) and P(M | Z).
|
||||
*
|
||||
* @tparam BAYES Template on the type of Bayes graph, either a bayes net or a
|
||||
* bayes tree.
|
||||
* @param discrete_keys The discrete keys which form all the modes.
|
||||
* @param continuousBayesNet The Bayes Net representing the continuous
|
||||
* @param continuousBayesNet The Bayes Net/Tree representing the continuous
|
||||
* eliminated variables.
|
||||
* @param assignments List of all discrete assignments to create the final
|
||||
* decision tree.
|
||||
* @return DecisionTree<Key, VectorValues::shared_ptr>
|
||||
*/
|
||||
template <typename BAYES>
|
||||
DecisionTree<Key, VectorValues::shared_ptr> continuousDelta(
|
||||
const DiscreteKeys& discrete_keys,
|
||||
const boost::shared_ptr<BayesNetType>& continuousBayesNet,
|
||||
const std::vector<DiscreteValues>& assignments) const;
|
||||
const boost::shared_ptr<BAYES>& continuousBayesNet,
|
||||
const std::vector<DiscreteValues>& assignments) const {
|
||||
// Create a decision tree of all the different VectorValues
|
||||
std::vector<VectorValues::shared_ptr> vector_values;
|
||||
for (const DiscreteValues& assignment : assignments) {
|
||||
VectorValues values = continuousBayesNet->optimize(assignment);
|
||||
vector_values.push_back(boost::make_shared<VectorValues>(values));
|
||||
}
|
||||
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
|
||||
vector_values);
|
||||
|
||||
return delta_tree;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the unnormalized probabilities of the continuous variables
|
||||
* for each of the modes.
|
||||
*
|
||||
* @tparam BAYES Template on the type of Bayes graph, either a bayes net or a
|
||||
* bayes tree.
|
||||
* @param discrete_keys The discrete keys which form all the modes.
|
||||
* @param continuousBayesNet The Bayes Net representing the continuous
|
||||
* eliminated variables.
|
||||
* @return AlgebraicDecisionTree<Key>
|
||||
*/
|
||||
template <typename BAYES>
|
||||
AlgebraicDecisionTree<Key> continuousProbPrimes(
|
||||
const DiscreteKeys& discrete_keys,
|
||||
const boost::shared_ptr<BayesNetType>& continuousBayesNet) const;
|
||||
const boost::shared_ptr<BAYES>& continuousBayesNet) const {
|
||||
// Generate all possible assignments.
|
||||
const std::vector<DiscreteValues> assignments =
|
||||
DiscreteValues::CartesianProduct(discrete_keys);
|
||||
|
||||
/**
|
||||
* @brief Custom elimination function which computes the correct
|
||||
* continuous probabilities.
|
||||
*
|
||||
* @param continuous Optional ordering for all continuous variables.
|
||||
* @param discrete Optional ordering for all discrete variables.
|
||||
* @return boost::shared_ptr<BayesNetType>
|
||||
*/
|
||||
boost::shared_ptr<BayesNetType> eliminateHybridSequential(
|
||||
const boost::optional<Ordering> continuous = boost::none,
|
||||
const boost::optional<Ordering> discrete = boost::none,
|
||||
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
|
||||
OptionalVariableIndex variableIndex = boost::none) const;
|
||||
// Save a copy of the original discrete key ordering
|
||||
DiscreteKeys reversed_discrete_keys(discrete_keys);
|
||||
// Reverse discrete keys order for correct tree construction
|
||||
std::reverse(reversed_discrete_keys.begin(), reversed_discrete_keys.end());
|
||||
|
||||
// Create a decision tree of all the different VectorValues
|
||||
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
|
||||
this->continuousDelta(reversed_discrete_keys, continuousBayesNet,
|
||||
assignments);
|
||||
|
||||
// Get the probPrime tree with the correct leaf probabilities
|
||||
std::vector<double> probPrimes;
|
||||
for (const DiscreteValues& assignment : assignments) {
|
||||
VectorValues delta = *delta_tree(assignment);
|
||||
|
||||
// If VectorValues is empty, it means this is a pruned branch.
|
||||
// Set thr probPrime to 0.0.
|
||||
if (delta.size() == 0) {
|
||||
probPrimes.push_back(0.0);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Compute the error given the delta and the assignment.
|
||||
double error = this->error(delta, assignment);
|
||||
probPrimes.push_back(exp(-error));
|
||||
}
|
||||
|
||||
AlgebraicDecisionTree<Key> probPrimeTree(reversed_discrete_keys,
|
||||
probPrimes);
|
||||
return probPrimeTree;
|
||||
}
|
||||
|
||||
std::pair<Ordering, Ordering> separateContinuousDiscreteOrdering(
|
||||
const Ordering& ordering) const;
|
||||
|
||||
boost::shared_ptr<BayesNetType> eliminateSequential(
|
||||
OptionalOrderingType orderingType = boost::none,
|
||||
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
|
||||
OptionalVariableIndex variableIndex = boost::none) const;
|
||||
|
||||
boost::shared_ptr<BayesNetType> eliminateSequential(
|
||||
const Ordering& ordering,
|
||||
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
|
||||
OptionalVariableIndex variableIndex = boost::none) const;
|
||||
|
||||
/**
|
||||
* @brief Return a Colamd constrained ordering where the discrete keys are
|
||||
|
|
|
@ -51,6 +51,7 @@ class HybridEliminationTree;
|
|||
*/
|
||||
class GTSAM_EXPORT HybridJunctionTree
|
||||
: public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> {
|
||||
|
||||
public:
|
||||
typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>
|
||||
Base; ///< Base class
|
||||
|
|
|
@ -32,7 +32,7 @@ void HybridSmoother::update(HybridGaussianFactorGraph graph,
|
|||
addConditionals(graph, hybridBayesNet_, ordering);
|
||||
|
||||
// Eliminate.
|
||||
auto bayesNetFragment = graph.eliminateHybridSequential();
|
||||
auto bayesNetFragment = graph.eliminateSequential(ordering);
|
||||
|
||||
/// Prune
|
||||
if (maxNrLeaves) {
|
||||
|
|
|
@ -164,25 +164,6 @@ TEST(HybridBayesNet, Optimize) {
|
|||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net multifrontal optimize
|
||||
TEST(HybridBayesNet, OptimizeMultifrontal) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesTree::shared_ptr hybridBayesTree =
|
||||
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
|
||||
HybridValues delta = hybridBayesTree->optimize();
|
||||
|
||||
VectorValues expectedValues;
|
||||
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
|
||||
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
|
||||
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
|
||||
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
|
||||
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net error
|
||||
TEST(HybridBayesNet, Error) {
|
||||
|
|
|
@ -32,6 +32,25 @@ using noiseModel::Isotropic;
|
|||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test multifrontal optimize
|
||||
TEST(HybridBayesTree, OptimizeMultifrontal) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesTree::shared_ptr hybridBayesTree =
|
||||
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
|
||||
HybridValues delta = hybridBayesTree->optimize();
|
||||
|
||||
VectorValues expectedValues;
|
||||
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
|
||||
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
|
||||
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
|
||||
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
|
||||
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test for optimizing a HybridBayesTree with a given assignment.
|
||||
TEST(HybridBayesTree, OptimizeAssignment) {
|
||||
|
@ -137,6 +156,12 @@ TEST(HybridBayesTree, Optimize) {
|
|||
boost::dynamic_pointer_cast<DecisionTreeFactor>(factor->inner()));
|
||||
}
|
||||
|
||||
// Add the probabilities for each branch
|
||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}, {M(2), 2}};
|
||||
vector<double> probs = {0.012519475, 0.041280228, 0.075018647, 0.081663656,
|
||||
0.037152205, 0.12248971, 0.07349729, 0.08};
|
||||
dfg.emplace_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||
|
||||
DiscreteValues expectedMPE = dfg.optimize();
|
||||
VectorValues expectedValues = hybridBayesNet->optimize(expectedMPE);
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
|
@ -23,6 +24,7 @@
|
|||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
@ -69,6 +71,28 @@ Ordering getOrdering(HybridGaussianFactorGraph& factors,
|
|||
return ordering;
|
||||
}
|
||||
|
||||
TEST(HybridEstimation, Full) {
|
||||
size_t K = 3;
|
||||
std::vector<double> measurements = {0, 1, 2};
|
||||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0};
|
||||
// Switching example of robot moving in 1D
|
||||
// with given measurements and equal mode priors.
|
||||
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
|
||||
HybridGaussianFactorGraph graph = switching.linearizedFactorGraph;
|
||||
|
||||
Ordering hybridOrdering;
|
||||
hybridOrdering += X(0);
|
||||
hybridOrdering += X(1);
|
||||
hybridOrdering += X(2);
|
||||
hybridOrdering += M(0);
|
||||
hybridOrdering += M(1);
|
||||
HybridBayesNet::shared_ptr bayesNet =
|
||||
graph.eliminateSequential(hybridOrdering);
|
||||
|
||||
EXPECT_LONGS_EQUAL(5, bayesNet->size());
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, Incremental) {
|
||||
|
@ -78,6 +102,8 @@ TEST(HybridEstimation, Incremental) {
|
|||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
|
||||
// Switching example of robot moving in 1D with given measurements and equal
|
||||
// mode priors.
|
||||
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
|
||||
HybridSmoother smoother;
|
||||
HybridNonlinearFactorGraph graph;
|
||||
|
@ -135,7 +161,7 @@ TEST(HybridEstimation, Incremental) {
|
|||
* @param between_sigma Noise model sigma for the between factor.
|
||||
* @return GaussianFactorGraph::shared_ptr
|
||||
*/
|
||||
GaussianFactorGraph::shared_ptr specificProblem(
|
||||
GaussianFactorGraph::shared_ptr specificModesFactorGraph(
|
||||
size_t K, const std::vector<double>& measurements,
|
||||
const std::vector<size_t>& discrete_seq, double measurement_sigma = 0.1,
|
||||
double between_sigma = 1.0) {
|
||||
|
@ -183,7 +209,7 @@ std::vector<size_t> getDiscreteSequence(size_t x) {
|
|||
}
|
||||
|
||||
/**
|
||||
* @brief Helper method to get the probPrimeTree
|
||||
* @brief Helper method to get the tree of unnormalized probabilities
|
||||
* as per the new elimination scheme.
|
||||
*
|
||||
* @param graph The HybridGaussianFactorGraph to eliminate.
|
||||
|
@ -241,82 +267,169 @@ AlgebraicDecisionTree<Key> probPrimeTree(
|
|||
TEST(HybridEstimation, Probability) {
|
||||
constexpr size_t K = 4;
|
||||
std::vector<double> measurements = {0, 1, 2, 2};
|
||||
|
||||
// This is the correct sequence
|
||||
// std::vector<size_t> discrete_seq = {1, 1, 0};
|
||||
|
||||
double between_sigma = 1.0, measurement_sigma = 0.1;
|
||||
|
||||
std::vector<double> expected_errors, expected_prob_primes;
|
||||
std::map<size_t, std::vector<size_t>> discrete_seq_map;
|
||||
for (size_t i = 0; i < pow(2, K - 1); i++) {
|
||||
std::vector<size_t> discrete_seq = getDiscreteSequence<K>(i);
|
||||
discrete_seq_map[i] = getDiscreteSequence<K>(i);
|
||||
|
||||
GaussianFactorGraph::shared_ptr linear_graph = specificProblem(
|
||||
K, measurements, discrete_seq, measurement_sigma, between_sigma);
|
||||
GaussianFactorGraph::shared_ptr linear_graph = specificModesFactorGraph(
|
||||
K, measurements, discrete_seq_map[i], measurement_sigma, between_sigma);
|
||||
|
||||
auto bayes_net = linear_graph->eliminateSequential();
|
||||
|
||||
VectorValues values = bayes_net->optimize();
|
||||
|
||||
double error = linear_graph->error(values);
|
||||
expected_errors.push_back(error);
|
||||
double prob_prime = linear_graph->probPrime(values);
|
||||
expected_prob_primes.push_back(prob_prime);
|
||||
}
|
||||
|
||||
// Switching example of robot moving in 1D with given measurements and equal
|
||||
// mode priors.
|
||||
Switching switching(K, between_sigma, measurement_sigma, measurements,
|
||||
"1/1 1/1");
|
||||
auto graph = switching.linearizedFactorGraph;
|
||||
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
|
||||
|
||||
HybridBayesNet::shared_ptr bayesNet = graph.eliminateSequential(ordering);
|
||||
auto discreteConditional = bayesNet->atDiscrete(bayesNet->size() - 3);
|
||||
|
||||
// Test if the probPrimeTree matches the probability of
|
||||
// the individual factor graphs
|
||||
for (size_t i = 0; i < pow(2, K - 1); i++) {
|
||||
DiscreteValues discrete_assignment;
|
||||
for (size_t v = 0; v < discrete_seq_map[i].size(); v++) {
|
||||
discrete_assignment[M(v)] = discrete_seq_map[i][v];
|
||||
}
|
||||
double discrete_transition_prob = 0.25;
|
||||
EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i) * discrete_transition_prob,
|
||||
(*discreteConditional)(discrete_assignment), 1e-8);
|
||||
}
|
||||
|
||||
HybridValues hybrid_values = bayesNet->optimize();
|
||||
|
||||
// This is the correct sequence as designed
|
||||
DiscreteValues discrete_seq;
|
||||
discrete_seq[M(0)] = 1;
|
||||
discrete_seq[M(1)] = 1;
|
||||
discrete_seq[M(2)] = 0;
|
||||
|
||||
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/**
|
||||
* Test for correctness of different branches of the P'(Continuous | Discrete)
|
||||
* in the multi-frontal setting. The values should match those of P'(Continuous)
|
||||
* for each discrete mode.
|
||||
*/
|
||||
TEST(HybridEstimation, ProbabilityMultifrontal) {
|
||||
constexpr size_t K = 4;
|
||||
std::vector<double> measurements = {0, 1, 2, 2};
|
||||
|
||||
double between_sigma = 1.0, measurement_sigma = 0.1;
|
||||
|
||||
// For each discrete mode sequence, create the individual factor graphs and
|
||||
// optimize each.
|
||||
std::vector<double> expected_errors, expected_prob_primes;
|
||||
std::map<size_t, std::vector<size_t>> discrete_seq_map;
|
||||
for (size_t i = 0; i < pow(2, K - 1); i++) {
|
||||
discrete_seq_map[i] = getDiscreteSequence<K>(i);
|
||||
|
||||
GaussianFactorGraph::shared_ptr linear_graph = specificModesFactorGraph(
|
||||
K, measurements, discrete_seq_map[i], measurement_sigma, between_sigma);
|
||||
|
||||
auto bayes_tree = linear_graph->eliminateMultifrontal();
|
||||
|
||||
VectorValues values = bayes_tree->optimize();
|
||||
|
||||
expected_errors.push_back(linear_graph->error(values));
|
||||
expected_prob_primes.push_back(linear_graph->probPrime(values));
|
||||
}
|
||||
|
||||
Switching switching(K, between_sigma, measurement_sigma, measurements);
|
||||
// Switching example of robot moving in 1D with given measurements and equal
|
||||
// mode priors.
|
||||
Switching switching(K, between_sigma, measurement_sigma, measurements,
|
||||
"1/1 1/1");
|
||||
auto graph = switching.linearizedFactorGraph;
|
||||
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
|
||||
|
||||
// Get the tree of unnormalized probabilities for each mode sequence.
|
||||
AlgebraicDecisionTree<Key> expected_probPrimeTree = probPrimeTree(graph);
|
||||
|
||||
// Eliminate continuous
|
||||
Ordering continuous_ordering(graph.continuousKeys());
|
||||
HybridBayesNet::shared_ptr bayesNet;
|
||||
HybridBayesTree::shared_ptr bayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr discreteGraph;
|
||||
std::tie(bayesNet, discreteGraph) =
|
||||
graph.eliminatePartialSequential(continuous_ordering);
|
||||
std::tie(bayesTree, discreteGraph) =
|
||||
graph.eliminatePartialMultifrontal(continuous_ordering);
|
||||
|
||||
// Get the last continuous conditional which will have all the discrete keys
|
||||
auto last_conditional = bayesNet->at(bayesNet->size() - 1);
|
||||
Key last_continuous_key =
|
||||
continuous_ordering.at(continuous_ordering.size() - 1);
|
||||
auto last_conditional = (*bayesTree)[last_continuous_key]->conditional();
|
||||
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
|
||||
|
||||
const std::vector<DiscreteValues> assignments =
|
||||
DiscreteValues::CartesianProduct(discrete_keys);
|
||||
|
||||
// Reverse discrete keys order for correct tree construction
|
||||
std::reverse(discrete_keys.begin(), discrete_keys.end());
|
||||
|
||||
// Create a decision tree of all the different VectorValues
|
||||
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
|
||||
graph.continuousDelta(discrete_keys, bayesNet, assignments);
|
||||
|
||||
AlgebraicDecisionTree<Key> probPrimeTree =
|
||||
graph.continuousProbPrimes(discrete_keys, bayesNet);
|
||||
graph.continuousProbPrimes(discrete_keys, bayesTree);
|
||||
|
||||
EXPECT(assert_equal(expected_probPrimeTree, probPrimeTree));
|
||||
|
||||
// Test if the probPrimeTree matches the probability of
|
||||
// the individual factor graphs
|
||||
for (size_t i = 0; i < pow(2, K - 1); i++) {
|
||||
std::vector<size_t> discrete_seq = getDiscreteSequence<K>(i);
|
||||
Assignment<Key> discrete_assignment;
|
||||
for (size_t v = 0; v < discrete_seq.size(); v++) {
|
||||
discrete_assignment[M(v)] = discrete_seq[v];
|
||||
for (size_t v = 0; v < discrete_seq_map[i].size(); v++) {
|
||||
discrete_assignment[M(v)] = discrete_seq_map[i][v];
|
||||
}
|
||||
EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i),
|
||||
probPrimeTree(discrete_assignment), 1e-8);
|
||||
}
|
||||
|
||||
// remainingGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
|
||||
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
|
||||
|
||||
// Ordering discrete(graph.discreteKeys());
|
||||
// // remainingGraph->print("remainingGraph");
|
||||
// // discrete.print();
|
||||
// auto discreteBayesNet = remainingGraph->eliminateSequential(discrete);
|
||||
// bayesNet->add(*discreteBayesNet);
|
||||
// // bayesNet->print();
|
||||
Ordering discrete(graph.discreteKeys());
|
||||
auto discreteBayesTree =
|
||||
discreteGraph->BaseEliminateable::eliminateMultifrontal(discrete);
|
||||
|
||||
// HybridValues hybrid_values = bayesNet->optimize();
|
||||
// hybrid_values.discrete().print();
|
||||
EXPECT_LONGS_EQUAL(1, discreteBayesTree->size());
|
||||
// DiscreteBayesTree should have only 1 clique
|
||||
auto discrete_clique = (*discreteBayesTree)[discrete.at(0)];
|
||||
|
||||
std::set<HybridBayesTreeClique::shared_ptr> clique_set;
|
||||
for (auto node : bayesTree->nodes()) {
|
||||
clique_set.insert(node.second);
|
||||
}
|
||||
|
||||
// Set the root of the bayes tree as the discrete clique
|
||||
for (auto clique : clique_set) {
|
||||
if (clique->conditional()->parents() ==
|
||||
discrete_clique->conditional()->frontals()) {
|
||||
discreteBayesTree->addClique(clique, discrete_clique);
|
||||
|
||||
} else {
|
||||
// Remove the clique from the children of the parents since it will get
|
||||
// added again in addClique.
|
||||
auto clique_it = std::find(clique->parent()->children.begin(),
|
||||
clique->parent()->children.end(), clique);
|
||||
clique->parent()->children.erase(clique_it);
|
||||
discreteBayesTree->addClique(clique, clique->parent());
|
||||
}
|
||||
}
|
||||
|
||||
HybridValues hybrid_values = discreteBayesTree->optimize();
|
||||
|
||||
// This is the correct sequence as designed
|
||||
DiscreteValues discrete_seq;
|
||||
discrete_seq[M(0)] = 1;
|
||||
discrete_seq[M(1)] = 1;
|
||||
discrete_seq[M(2)] = 0;
|
||||
|
||||
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -182,7 +182,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
|||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
||||
|
||||
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
// TODO(Varun) Adding extra discrete variable not connected to continuous
|
||||
// variable throws segfault
|
||||
// hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
|
||||
HybridBayesTree::shared_ptr result =
|
||||
hfg.eliminateMultifrontal(hfg.getHybridOrdering());
|
||||
|
|
|
@ -165,7 +165,8 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
discrete_ordering += M(0);
|
||||
discrete_ordering += M(1);
|
||||
HybridBayesTree::shared_ptr discreteBayesTree =
|
||||
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering);
|
||||
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
|
||||
discrete_ordering);
|
||||
|
||||
DiscreteValues m00;
|
||||
m00[M(0)] = 0, m00[M(1)] = 0;
|
||||
|
@ -175,12 +176,12 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
|
||||
auto discreteConditional = isam[M(1)]->conditional()->asDiscreteConditional();
|
||||
|
||||
// Test if the probability values are as expected with regression tests.
|
||||
// Test the probability values with regression tests.
|
||||
DiscreteValues assignment;
|
||||
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
|
||||
assignment[M(0)] = 0;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(0)] = 1;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
|
||||
|
@ -193,11 +194,15 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
|
||||
// Check if the clique conditional generated from incremental elimination
|
||||
// matches that of batch elimination.
|
||||
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
|
||||
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
(*expectedChordal)[M(1)]->conditional()->inner());
|
||||
auto expectedChordal =
|
||||
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal();
|
||||
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
isam[M(1)]->conditional()->inner());
|
||||
// Account for the probability terms from evaluating continuous FGs
|
||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||
vector<double> probs = {0.061923317, 0.20415914, 0.18374323, 0.2};
|
||||
auto expectedConditional =
|
||||
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
|
||||
}
|
||||
|
||||
|
|
|
@ -372,8 +372,7 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
|
|||
dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner());
|
||||
CHECK(discreteFactor);
|
||||
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
|
||||
// All leaves should be probability 1 since this is not P*(X|M,Z)
|
||||
EXPECT(discreteFactor->root_->isLeaf());
|
||||
EXPECT(discreteFactor->root_->isLeaf() == false);
|
||||
|
||||
// TODO(Varun) Test emplace_discrete
|
||||
}
|
||||
|
@ -386,11 +385,11 @@ TEST(HybridFactorGraph, Partial_Elimination) {
|
|||
|
||||
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||
|
||||
// Create ordering.
|
||||
// Create ordering of only continuous variables.
|
||||
Ordering ordering;
|
||||
for (size_t k = 0; k < self.K; k++) ordering += X(k);
|
||||
|
||||
// Eliminate partially.
|
||||
// Eliminate partially i.e. only continuous part.
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
|
@ -441,14 +440,6 @@ TEST(HybridFactorGraph, Full_Elimination) {
|
|||
discrete_fg.push_back(df->inner());
|
||||
}
|
||||
|
||||
// Get the probabilit P*(X | M, Z)
|
||||
DiscreteKeys discrete_keys =
|
||||
remainingFactorGraph_partial->at(2)->discreteKeys();
|
||||
AlgebraicDecisionTree<Key> probPrimeTree =
|
||||
linearizedFactorGraph.continuousProbPrimes(discrete_keys,
|
||||
hybridBayesNet_partial);
|
||||
discrete_fg.add(DecisionTreeFactor(discrete_keys, probPrimeTree));
|
||||
|
||||
ordering.clear();
|
||||
for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
|
||||
discreteBayesNet =
|
||||
|
|
|
@ -153,7 +153,8 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
HybridBayesTree::shared_ptr expectedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
|
||||
std::tie(expectedHybridBayesTree, expectedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
switching.linearizedFactorGraph
|
||||
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
|
||||
|
||||
// The densities on X(1) should be the same
|
||||
auto x0_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
|
@ -182,7 +183,8 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
discrete_ordering += M(0);
|
||||
discrete_ordering += M(1);
|
||||
HybridBayesTree::shared_ptr discreteBayesTree =
|
||||
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering);
|
||||
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
|
||||
discrete_ordering);
|
||||
|
||||
DiscreteValues m00;
|
||||
m00[M(0)] = 0, m00[M(1)] = 0;
|
||||
|
@ -193,12 +195,12 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
auto discreteConditional =
|
||||
bayesTree[M(1)]->conditional()->asDiscreteConditional();
|
||||
|
||||
// Test if the probability values are as expected with regression tests.
|
||||
// Test the probability values with regression tests.
|
||||
DiscreteValues assignment;
|
||||
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
|
||||
assignment[M(0)] = 0;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(0)] = 1;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
|
||||
|
@ -212,10 +214,13 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
// Check if the clique conditional generated from incremental elimination
|
||||
// matches that of batch elimination.
|
||||
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
|
||||
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
(*expectedChordal)[M(1)]->conditional()->inner());
|
||||
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
bayesTree[M(1)]->conditional()->inner());
|
||||
// Account for the probability terms from evaluating continuous FGs
|
||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||
vector<double> probs = {0.061923317, 0.20415914, 0.18374323, 0.2};
|
||||
auto expectedConditional =
|
||||
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
|
||||
}
|
||||
|
||||
|
@ -250,7 +255,8 @@ TEST(HybridNonlinearISAM, Approx_inference) {
|
|||
HybridBayesTree::shared_ptr unprunedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph;
|
||||
std::tie(unprunedHybridBayesTree, unprunedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
switching.linearizedFactorGraph
|
||||
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
|
||||
|
||||
size_t maxNrLeaves = 5;
|
||||
incrementalHybrid.update(graph1, initial);
|
||||
|
|
|
@ -73,7 +73,7 @@ public:
|
|||
/**
|
||||
* @brief Append new keys to the ordering as `ordering += keys`.
|
||||
*
|
||||
* @param key
|
||||
* @param keys The key vector to append to this ordering.
|
||||
* @return The ordering variable with appended keys.
|
||||
*/
|
||||
This& operator+=(KeyVector& keys);
|
||||
|
|
Loading…
Reference in New Issue