Merge branch 'hybrid/tests' into hybrid/multifrontal
commit
46380caeb9
|
|
@ -0,0 +1,21 @@
|
|||
# This triggers building of packages
|
||||
name: Trigger Package Builds
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- develop
|
||||
jobs:
|
||||
trigger-package-build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Trigger Package Rebuild
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
github-token: ${{ secrets.PACKAGING_REPO_ACCESS_TOKEN }}
|
||||
script: |
|
||||
await github.rest.actions.createWorkflowDispatch({
|
||||
owner: 'borglab-launchpad',
|
||||
repo: 'gtsam-packaging',
|
||||
workflow_id: 'main.yaml',
|
||||
ref: 'master'
|
||||
})
|
||||
|
|
@ -10,7 +10,7 @@ endif()
|
|||
set (GTSAM_VERSION_MAJOR 4)
|
||||
set (GTSAM_VERSION_MINOR 2)
|
||||
set (GTSAM_VERSION_PATCH 0)
|
||||
set (GTSAM_PRERELEASE_VERSION "a7")
|
||||
set (GTSAM_PRERELEASE_VERSION "a8")
|
||||
math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}")
|
||||
|
||||
if (${GTSAM_VERSION_PATCH} EQUAL 0)
|
||||
|
|
|
|||
12
README.md
12
README.md
|
|
@ -31,11 +31,11 @@ In the root library folder execute:
|
|||
|
||||
```sh
|
||||
#!bash
|
||||
$ mkdir build
|
||||
$ cd build
|
||||
$ cmake ..
|
||||
$ make check (optional, runs unit tests)
|
||||
$ make install
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
make check (optional, runs unit tests)
|
||||
make install
|
||||
```
|
||||
|
||||
Prerequisites:
|
||||
|
|
@ -68,7 +68,7 @@ We provide support for [MATLAB](matlab/README.md) and [Python](python/README.md)
|
|||
|
||||
If you are using GTSAM for academic work, please use the following citation:
|
||||
|
||||
```
|
||||
```bibtex
|
||||
@software{gtsam,
|
||||
author = {Frank Dellaert and Richard Roberts and Varun Agrawal and Alex Cunningham and Chris Beall and Duy-Nguyen Ta and Fan Jiang and lucacarlone and nikai and Jose Luis Blanco-Claraco and Stephen Williams and ydjian and John Lambert and Andy Melim and Zhaoyang Lv and Akshay Krishnan and Jing Dong and Gerry Chen and Krunal Chande and balderdash-devil and DiffDecisionTrees and Sungtae An and mpaluri and Ellon Paiva Mendes and Mike Bosse and Akash Patel and Ayush Baid and Paul Furgale and matthewbroadwaynavenio and roderick-koehle},
|
||||
title = {borglab/gtsam},
|
||||
|
|
|
|||
|
|
@ -2,4 +2,4 @@ set (excluded_examples
|
|||
elaboratePoint2KalmanFilter.cpp
|
||||
)
|
||||
|
||||
gtsamAddExamplesGlob("*.cpp" "${excluded_examples}" "gtsam;${Boost_PROGRAM_OPTIONS_LIBRARY}")
|
||||
gtsamAddExamplesGlob("*.cpp" "${excluded_examples}" "gtsam;gtsam_unstable;${Boost_PROGRAM_OPTIONS_LIBRARY}")
|
||||
|
|
|
|||
|
|
@ -267,7 +267,6 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
if (use_isam) {
|
||||
isam2->update(*graph, initial_values);
|
||||
isam2->update();
|
||||
result = isam2->calculateEstimate();
|
||||
|
||||
// reset the graph
|
||||
|
|
|
|||
|
|
@ -31,18 +31,37 @@ namespace gtsam {
|
|||
template class BayesTreeCliqueBase<GaussianBayesTreeClique, GaussianFactorGraph>;
|
||||
template class BayesTree<GaussianBayesTreeClique>;
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal
|
||||
{
|
||||
/* ************************************************************************* */
|
||||
double logDeterminant(const GaussianBayesTreeClique::shared_ptr& clique,
|
||||
double& parentSum) {
|
||||
parentSum += clique->conditional()
|
||||
->R()
|
||||
.diagonal()
|
||||
.unaryExpr([](double x) { return log(x); })
|
||||
.sum();
|
||||
return 0;
|
||||
/* ************************************************************************ */
|
||||
namespace internal {
|
||||
|
||||
/**
|
||||
* @brief Struct to help with traversing the Bayes Tree
|
||||
* for log-determinant computation.
|
||||
* Records the data which is passed to the child nodes in pre-order visit.
|
||||
*/
|
||||
struct LogDeterminantData {
|
||||
// Use pointer so we can get the full result after tree traversal
|
||||
double* logDet;
|
||||
LogDeterminantData(double* logDet)
|
||||
: logDet(logDet) {}
|
||||
};
|
||||
/* ************************************************************************ */
|
||||
LogDeterminantData& logDeterminant(
|
||||
const GaussianBayesTreeClique::shared_ptr& clique,
|
||||
LogDeterminantData& parentSum) {
|
||||
auto cg = clique->conditional();
|
||||
double logDet;
|
||||
if (cg->get_model()) {
|
||||
Vector diag = cg->R().diagonal();
|
||||
cg->get_model()->whitenInPlace(diag);
|
||||
logDet = diag.unaryExpr([](double x) { return log(x); }).sum();
|
||||
} else {
|
||||
logDet =
|
||||
cg->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
|
||||
}
|
||||
// Add the current clique's log-determinant to the overall sum
|
||||
(*parentSum.logDet) += logDet;
|
||||
return parentSum;
|
||||
}
|
||||
} // namespace internal
|
||||
|
||||
|
|
@ -87,7 +106,14 @@ namespace gtsam {
|
|||
return 0.0;
|
||||
} else {
|
||||
double sum = 0.0;
|
||||
treeTraversal::DepthFirstForest(*this, sum, internal::logDeterminant);
|
||||
// Store the log-determinant in this struct.
|
||||
internal::LogDeterminantData rootData(&sum);
|
||||
// No need to do anything for post-operation.
|
||||
treeTraversal::no_op visitorPost;
|
||||
// Limits OpenMP threads if we're mixing TBB and OpenMP
|
||||
TbbOpenMPMixedScope threadLimiter;
|
||||
// Traverse the GaussianBayesTree depth first and call logDeterminant on each node.
|
||||
treeTraversal::DepthFirstForestParallel(*this, rootData, internal::logDeterminant, visitorPost);
|
||||
return sum;
|
||||
}
|
||||
}
|
||||
|
|
@ -106,7 +132,3 @@ namespace gtsam {
|
|||
|
||||
|
||||
} // \namespace gtsam
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -15,18 +15,18 @@
|
|||
* @author Kai Ni
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
#include <boost/assign/std/set.hpp> // for operator +=
|
||||
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
#include <boost/assign/std/set.hpp> // for operator +=
|
||||
#include <iostream>
|
||||
|
||||
using namespace boost::assign;
|
||||
using namespace std::placeholders;
|
||||
|
|
@ -321,6 +321,35 @@ TEST(GaussianBayesTree, determinant_and_smallestEigenvalue) {
|
|||
EXPECT_DOUBLES_EQUAL(expectedDeterminant,actualDeterminant,expectedDeterminant*1e-6);// relative tolerance
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Test to expose bug in GaussianBayesTree::logDeterminant.
|
||||
TEST(GaussianBayesTree, LogDeterminant) {
|
||||
using symbol_shorthand::L;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Create a factor graph that will result in
|
||||
// a bayes tree with at least 2 nodes.
|
||||
GaussianFactorGraph fg;
|
||||
Key x1 = X(1), x2 = X(2), l1 = L(1);
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
fg += JacobianFactor(x1, 10 * I_2x2, -1.0 * Vector2::Ones(), unit2);
|
||||
fg += JacobianFactor(x2, 10 * I_2x2, x1, -10 * I_2x2, Vector2(2.0, -1.0),
|
||||
unit2);
|
||||
fg += JacobianFactor(l1, 5 * I_2x2, x1, -5 * I_2x2, Vector2(0.0, 1.0), unit2);
|
||||
fg +=
|
||||
JacobianFactor(x2, -5 * I_2x2, l1, 5 * I_2x2, Vector2(-1.0, 1.5), unit2);
|
||||
fg += JacobianFactor(x3, 10 * I_2x2, x2, -10 * I_2x2, Vector2(2.0, -1.0),
|
||||
unit2);
|
||||
fg += JacobianFactor(x3, 10 * I_2x2, -1.0 * Vector2::Ones(), unit2);
|
||||
|
||||
// create corresponding Bayes net and Bayes tree:
|
||||
boost::shared_ptr<gtsam::GaussianBayesNet> bn = fg.eliminateSequential();
|
||||
boost::shared_ptr<gtsam::GaussianBayesTree> bt = fg.eliminateMultifrontal();
|
||||
|
||||
// Test logDeterminant
|
||||
EXPECT_DOUBLES_EQUAL(bn->logDeterminant(), bt->logDeterminant(), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -48,6 +48,11 @@ inline Line3_ transformTo(const Pose3_ &wTc, const Line3_ &wL) {
|
|||
return Line3_(f, wTc, wL);
|
||||
}
|
||||
|
||||
inline Point3_ normalize(const Point3_& a){
|
||||
Point3 (*f)(const Point3 &, OptionalJacobian<3, 3>) = &normalize;
|
||||
return Point3_(f, a);
|
||||
}
|
||||
|
||||
inline Point3_ cross(const Point3_& a, const Point3_& b) {
|
||||
Point3 (*f)(const Point3 &, const Point3 &,
|
||||
OptionalJacobian<3, 3>, OptionalJacobian<3, 3>) = ✗
|
||||
|
|
|
|||
|
|
@ -60,10 +60,10 @@ def error_odom(measurement: np.ndarray, this: gtsam.CustomFactor,
|
|||
key1 = this.keys()[0]
|
||||
key2 = this.keys()[1]
|
||||
pos1, pos2 = values.atVector(key1), values.atVector(key2)
|
||||
error = measurement - (pos1 - pos2)
|
||||
error = (pos2 - pos1) - measurement
|
||||
if jacobians is not None:
|
||||
jacobians[0] = I
|
||||
jacobians[1] = -I
|
||||
jacobians[0] = -I
|
||||
jacobians[1] = I
|
||||
|
||||
return error
|
||||
|
||||
|
|
|
|||
|
|
@ -7,6 +7,8 @@
|
|||
* ** THIS FILE IS AUTO-GENERATED, DO NOT MODIFY! **
|
||||
*/
|
||||
|
||||
#define PYBIND11_DETAILED_ERROR_MESSAGES
|
||||
|
||||
// Include relevant boost libraries required by GTSAM
|
||||
{include_boost}
|
||||
|
||||
|
|
|
|||
|
|
@ -731,6 +731,19 @@ TEST(ExpressionFactor, variadicTemplate) {
|
|||
EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-8, 1e-5);
|
||||
}
|
||||
|
||||
TEST(ExpressionFactor, normalize) {
|
||||
auto model = noiseModel::Isotropic::Sigma(3, 1);
|
||||
|
||||
// Create expression
|
||||
const auto x = Vector3_(1);
|
||||
Vector3_ f_expr = normalize(x);
|
||||
|
||||
// Check derivatives
|
||||
Values values;
|
||||
values.insert(1, Vector3(1, 2, 3));
|
||||
ExpressionFactor<Vector3> factor(model, Vector3(1.0/sqrt(14), 2.0/sqrt(14), 3.0/sqrt(14)), f_expr);
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
|
||||
}
|
||||
|
||||
TEST(ExpressionFactor, crossProduct) {
|
||||
auto model = noiseModel::Isotropic::Sigma(3, 1);
|
||||
|
|
|
|||
Loading…
Reference in New Issue