Merge pull request #1323 from borglab/hybrid/multifrontal

release/4.3a0
Varun Agrawal 2022-12-23 00:25:31 -05:00 committed by GitHub
commit 583d12151c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 309 additions and 242 deletions

View File

@ -105,7 +105,7 @@ bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
/* *******************************************************************************/ /* *******************************************************************************/
void GaussianMixture::print(const std::string &s, void GaussianMixture::print(const std::string &s,
const KeyFormatter &formatter) const { const KeyFormatter &formatter) const {
std::cout << s; std::cout << (s.empty() ? "" : s + "\n");
if (isContinuous()) std::cout << "Continuous "; if (isContinuous()) std::cout << "Continuous ";
if (isDiscrete()) std::cout << "Discrete "; if (isDiscrete()) std::cout << "Discrete ";
if (isHybrid()) std::cout << "Hybrid "; if (isHybrid()) std::cout << "Hybrid ";

View File

@ -14,7 +14,7 @@
* @brief Hybrid Bayes Tree, the result of eliminating a * @brief Hybrid Bayes Tree, the result of eliminating a
* HybridJunctionTree * HybridJunctionTree
* @date Mar 11, 2022 * @date Mar 11, 2022
* @author Fan Jiang * @author Fan Jiang, Varun Agrawal
*/ */
#include <gtsam/base/treeTraversal-inst.h> #include <gtsam/base/treeTraversal-inst.h>
@ -73,6 +73,8 @@ struct HybridAssignmentData {
GaussianBayesTree::sharedNode parentClique_; GaussianBayesTree::sharedNode parentClique_;
// The gaussian bayes tree that will be recursively created. // The gaussian bayes tree that will be recursively created.
GaussianBayesTree* gaussianbayesTree_; GaussianBayesTree* gaussianbayesTree_;
// Flag indicating if all the nodes are valid. Used in optimize().
bool valid_;
/** /**
* @brief Construct a new Hybrid Assignment Data object. * @brief Construct a new Hybrid Assignment Data object.
@ -83,10 +85,13 @@ struct HybridAssignmentData {
*/ */
HybridAssignmentData(const DiscreteValues& assignment, HybridAssignmentData(const DiscreteValues& assignment,
const GaussianBayesTree::sharedNode& parentClique, const GaussianBayesTree::sharedNode& parentClique,
GaussianBayesTree* gbt) GaussianBayesTree* gbt, bool valid = true)
: assignment_(assignment), : assignment_(assignment),
parentClique_(parentClique), parentClique_(parentClique),
gaussianbayesTree_(gbt) {} gaussianbayesTree_(gbt),
valid_(valid) {}
bool isValid() const { return valid_; }
/** /**
* @brief A function used during tree traversal that operates on each node * @brief A function used during tree traversal that operates on each node
@ -101,6 +106,7 @@ struct HybridAssignmentData {
HybridAssignmentData& parentData) { HybridAssignmentData& parentData) {
// Extract the gaussian conditional from the Hybrid clique // Extract the gaussian conditional from the Hybrid clique
HybridConditional::shared_ptr hybrid_conditional = node->conditional(); HybridConditional::shared_ptr hybrid_conditional = node->conditional();
GaussianConditional::shared_ptr conditional; GaussianConditional::shared_ptr conditional;
if (hybrid_conditional->isHybrid()) { if (hybrid_conditional->isHybrid()) {
conditional = (*hybrid_conditional->asMixture())(parentData.assignment_); conditional = (*hybrid_conditional->asMixture())(parentData.assignment_);
@ -111,15 +117,21 @@ struct HybridAssignmentData {
conditional = boost::make_shared<GaussianConditional>(); conditional = boost::make_shared<GaussianConditional>();
} }
// Create the GaussianClique for the current node GaussianBayesTree::sharedNode clique;
auto clique = boost::make_shared<GaussianBayesTree::Node>(conditional); if (conditional) {
// Add the current clique to the GaussianBayesTree. // Create the GaussianClique for the current node
parentData.gaussianbayesTree_->addClique(clique, parentData.parentClique_); clique = boost::make_shared<GaussianBayesTree::Node>(conditional);
// Add the current clique to the GaussianBayesTree.
parentData.gaussianbayesTree_->addClique(clique,
parentData.parentClique_);
} else {
parentData.valid_ = false;
}
// Create new HybridAssignmentData where the current node is the parent // Create new HybridAssignmentData where the current node is the parent
// This will be passed down to the children nodes // This will be passed down to the children nodes
HybridAssignmentData data(parentData.assignment_, clique, HybridAssignmentData data(parentData.assignment_, clique,
parentData.gaussianbayesTree_); parentData.gaussianbayesTree_, parentData.valid_);
return data; return data;
} }
}; };
@ -138,6 +150,9 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
visitorPost); visitorPost);
} }
if (!rootData.isValid()) {
return VectorValues();
}
VectorValues result = gbt.optimize(); VectorValues result = gbt.optimize();
// Return the optimized bayes net result. // Return the optimized bayes net result.

View File

@ -50,9 +50,12 @@ class GTSAM_EXPORT HybridBayesTreeClique
typedef boost::shared_ptr<This> shared_ptr; typedef boost::shared_ptr<This> shared_ptr;
typedef boost::weak_ptr<This> weak_ptr; typedef boost::weak_ptr<This> weak_ptr;
HybridBayesTreeClique() {} HybridBayesTreeClique() {}
virtual ~HybridBayesTreeClique() {}
HybridBayesTreeClique(const boost::shared_ptr<HybridConditional>& conditional) HybridBayesTreeClique(const boost::shared_ptr<HybridConditional>& conditional)
: Base(conditional) {} : Base(conditional) {}
///< Copy constructor
HybridBayesTreeClique(const HybridBayesTreeClique& clique) : Base(clique) {}
virtual ~HybridBayesTreeClique() {}
}; };
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -24,7 +24,7 @@
namespace gtsam { namespace gtsam {
/** /**
* Elimination Tree type for Hybrid * Elimination Tree type for Hybrid Factor Graphs.
* *
* @ingroup hybrid * @ingroup hybrid
*/ */

View File

@ -92,7 +92,6 @@ GaussianMixtureFactor::Sum sumFrontals(
if (auto cgmf = boost::dynamic_pointer_cast<GaussianMixtureFactor>(f)) { if (auto cgmf = boost::dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
sum = cgmf->add(sum); sum = cgmf->add(sum);
} }
if (auto gm = boost::dynamic_pointer_cast<HybridConditional>(f)) { if (auto gm = boost::dynamic_pointer_cast<HybridConditional>(f)) {
sum = gm->asMixture()->add(sum); sum = gm->asMixture()->add(sum);
} }
@ -189,7 +188,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
DiscreteKeys discreteSeparator(discreteSeparatorSet.begin(), DiscreteKeys discreteSeparator(discreteSeparatorSet.begin(),
discreteSeparatorSet.end()); discreteSeparatorSet.end());
// sum out frontals, this is the factor on the separator // sum out frontals, this is the factor 𝜏 on the separator
GaussianMixtureFactor::Sum sum = sumFrontals(factors); GaussianMixtureFactor::Sum sum = sumFrontals(factors);
// If a tree leaf contains nullptr, // If a tree leaf contains nullptr,
@ -257,13 +256,14 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
// If there are no more continuous parents, then we should create here a // If there are no more continuous parents, then we should create here a
// DiscreteFactor, with the error for each discrete choice. // DiscreteFactor, with the error for each discrete choice.
if (keysOfSeparator.empty()) { if (keysOfSeparator.empty()) {
// TODO(Varun) Use the math from the iMHS_Math-1-indexed document
VectorValues empty_values; VectorValues empty_values;
auto factorProb = [&](const GaussianFactor::shared_ptr &factor) { auto factorProb = [&](const GaussianFactor::shared_ptr &factor) {
if (!factor) { if (!factor) {
return 0.0; // If nullptr, return 0.0 probability return 0.0; // If nullptr, return 0.0 probability
} else { } else {
return 1.0; double error =
0.5 * std::abs(factor->augmentedInformation().determinant());
return std::exp(-error);
} }
}; };
DecisionTree<Key, double> fdt(separatorFactors, factorProb); DecisionTree<Key, double> fdt(separatorFactors, factorProb);
@ -529,122 +529,13 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
} }
/* ************************************************************************ */ /* ************************************************************************ */
DecisionTree<Key, VectorValues::shared_ptr> std::pair<Ordering, Ordering>
HybridGaussianFactorGraph::continuousDelta( HybridGaussianFactorGraph::separateContinuousDiscreteOrdering(
const DiscreteKeys &discrete_keys, const Ordering &ordering) const {
const boost::shared_ptr<BayesNetType> &continuousBayesNet,
const std::vector<DiscreteValues> &assignments) const {
// Create a decision tree of all the different VectorValues
std::vector<VectorValues::shared_ptr> vector_values;
for (const DiscreteValues &assignment : assignments) {
VectorValues values = continuousBayesNet->optimize(assignment);
vector_values.push_back(boost::make_shared<VectorValues>(values));
}
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
vector_values);
return delta_tree;
}
/* ************************************************************************ */
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::continuousProbPrimes(
const DiscreteKeys &orig_discrete_keys,
const boost::shared_ptr<BayesNetType> &continuousBayesNet) const {
// Generate all possible assignments.
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(orig_discrete_keys);
// Save a copy of the original discrete key ordering
DiscreteKeys discrete_keys(orig_discrete_keys);
// Reverse discrete keys order for correct tree construction
std::reverse(discrete_keys.begin(), discrete_keys.end());
// Create a decision tree of all the different VectorValues
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
this->continuousDelta(discrete_keys, continuousBayesNet, assignments);
// Get the probPrime tree with the correct leaf probabilities
std::vector<double> probPrimes;
for (const DiscreteValues &assignment : assignments) {
VectorValues delta = *delta_tree(assignment);
// If VectorValues is empty, it means this is a pruned branch.
// Set thr probPrime to 0.0.
if (delta.size() == 0) {
probPrimes.push_back(0.0);
continue;
}
// Compute the error given the delta and the assignment.
double error = this->error(delta, assignment);
probPrimes.push_back(exp(-error));
}
AlgebraicDecisionTree<Key> probPrimeTree(discrete_keys, probPrimes);
return probPrimeTree;
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateHybridSequential(
const boost::optional<Ordering> continuous,
const boost::optional<Ordering> discrete, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
Ordering continuous_ordering =
continuous ? *continuous : Ordering(this->continuousKeys());
Ordering discrete_ordering =
discrete ? *discrete : Ordering(this->discreteKeys());
// Eliminate continuous
HybridBayesNet::shared_ptr bayesNet;
HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesNet, discreteGraph) =
BaseEliminateable::eliminatePartialSequential(continuous_ordering,
function, variableIndex);
// Get the last continuous conditional which will have all the discrete keys
auto last_conditional = bayesNet->at(bayesNet->size() - 1);
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
// If not discrete variables, return the eliminated bayes net.
if (discrete_keys.size() == 0) {
return bayesNet;
}
AlgebraicDecisionTree<Key> probPrimeTree =
this->continuousProbPrimes(discrete_keys, bayesNet);
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
// Perform discrete elimination
HybridBayesNet::shared_ptr discreteBayesNet =
discreteGraph->BaseEliminateable::eliminateSequential(
discrete_ordering, function, variableIndex);
bayesNet->add(*discreteBayesNet);
return bayesNet;
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateSequential(
OptionalOrderingType orderingType, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
return BaseEliminateable::eliminateSequential(orderingType, function,
variableIndex);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateSequential(
const Ordering &ordering, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
KeySet all_continuous_keys = this->continuousKeys(); KeySet all_continuous_keys = this->continuousKeys();
KeySet all_discrete_keys = this->discreteKeys(); KeySet all_discrete_keys = this->discreteKeys();
Ordering continuous_ordering, discrete_ordering; Ordering continuous_ordering, discrete_ordering;
// Segregate the continuous and the discrete keys
for (auto &&key : ordering) { for (auto &&key : ordering) {
if (std::find(all_continuous_keys.begin(), all_continuous_keys.end(), if (std::find(all_continuous_keys.begin(), all_continuous_keys.end(),
key) != all_continuous_keys.end()) { key) != all_continuous_keys.end()) {
@ -657,8 +548,7 @@ HybridGaussianFactorGraph::eliminateSequential(
} }
} }
return this->eliminateHybridSequential(continuous_ordering, return std::make_pair(continuous_ordering, discrete_ordering);
discrete_ordering);
} }
} // namespace gtsam } // namespace gtsam

View File

@ -217,57 +217,92 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
const DiscreteValues& discreteValues) const; const DiscreteValues& discreteValues) const;
/** /**
* @brief Compute the VectorValues solution for the continuous variables for * @brief Helper method to compute the VectorValues solution for the
* each mode. * continuous variables for each discrete mode.
* Used as a helper to compute q(\mu | M, Z) which is used by
* both P(X | M, Z) and P(M | Z).
* *
* @tparam BAYES Template on the type of Bayes graph, either a bayes net or a
* bayes tree.
* @param discrete_keys The discrete keys which form all the modes. * @param discrete_keys The discrete keys which form all the modes.
* @param continuousBayesNet The Bayes Net representing the continuous * @param continuousBayesNet The Bayes Net/Tree representing the continuous
* eliminated variables. * eliminated variables.
* @param assignments List of all discrete assignments to create the final * @param assignments List of all discrete assignments to create the final
* decision tree. * decision tree.
* @return DecisionTree<Key, VectorValues::shared_ptr> * @return DecisionTree<Key, VectorValues::shared_ptr>
*/ */
template <typename BAYES>
DecisionTree<Key, VectorValues::shared_ptr> continuousDelta( DecisionTree<Key, VectorValues::shared_ptr> continuousDelta(
const DiscreteKeys& discrete_keys, const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesNetType>& continuousBayesNet, const boost::shared_ptr<BAYES>& continuousBayesNet,
const std::vector<DiscreteValues>& assignments) const; const std::vector<DiscreteValues>& assignments) const {
// Create a decision tree of all the different VectorValues
std::vector<VectorValues::shared_ptr> vector_values;
for (const DiscreteValues& assignment : assignments) {
VectorValues values = continuousBayesNet->optimize(assignment);
vector_values.push_back(boost::make_shared<VectorValues>(values));
}
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
vector_values);
return delta_tree;
}
/** /**
* @brief Compute the unnormalized probabilities of the continuous variables * @brief Compute the unnormalized probabilities of the continuous variables
* for each of the modes. * for each of the modes.
* *
* @tparam BAYES Template on the type of Bayes graph, either a bayes net or a
* bayes tree.
* @param discrete_keys The discrete keys which form all the modes. * @param discrete_keys The discrete keys which form all the modes.
* @param continuousBayesNet The Bayes Net representing the continuous * @param continuousBayesNet The Bayes Net representing the continuous
* eliminated variables. * eliminated variables.
* @return AlgebraicDecisionTree<Key> * @return AlgebraicDecisionTree<Key>
*/ */
template <typename BAYES>
AlgebraicDecisionTree<Key> continuousProbPrimes( AlgebraicDecisionTree<Key> continuousProbPrimes(
const DiscreteKeys& discrete_keys, const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesNetType>& continuousBayesNet) const; const boost::shared_ptr<BAYES>& continuousBayesNet) const {
// Generate all possible assignments.
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(discrete_keys);
/** // Save a copy of the original discrete key ordering
* @brief Custom elimination function which computes the correct DiscreteKeys reversed_discrete_keys(discrete_keys);
* continuous probabilities. // Reverse discrete keys order for correct tree construction
* std::reverse(reversed_discrete_keys.begin(), reversed_discrete_keys.end());
* @param continuous Optional ordering for all continuous variables.
* @param discrete Optional ordering for all discrete variables.
* @return boost::shared_ptr<BayesNetType>
*/
boost::shared_ptr<BayesNetType> eliminateHybridSequential(
const boost::optional<Ordering> continuous = boost::none,
const boost::optional<Ordering> discrete = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
boost::shared_ptr<BayesNetType> eliminateSequential( // Create a decision tree of all the different VectorValues
OptionalOrderingType orderingType = boost::none, DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
const Eliminate& function = EliminationTraitsType::DefaultEliminate, this->continuousDelta(reversed_discrete_keys, continuousBayesNet,
OptionalVariableIndex variableIndex = boost::none) const; assignments);
boost::shared_ptr<BayesNetType> eliminateSequential( // Get the probPrime tree with the correct leaf probabilities
const Ordering& ordering, std::vector<double> probPrimes;
const Eliminate& function = EliminationTraitsType::DefaultEliminate, for (const DiscreteValues& assignment : assignments) {
OptionalVariableIndex variableIndex = boost::none) const; VectorValues delta = *delta_tree(assignment);
// If VectorValues is empty, it means this is a pruned branch.
// Set thr probPrime to 0.0.
if (delta.size() == 0) {
probPrimes.push_back(0.0);
continue;
}
// Compute the error given the delta and the assignment.
double error = this->error(delta, assignment);
probPrimes.push_back(exp(-error));
}
AlgebraicDecisionTree<Key> probPrimeTree(reversed_discrete_keys,
probPrimes);
return probPrimeTree;
}
std::pair<Ordering, Ordering> separateContinuousDiscreteOrdering(
const Ordering& ordering) const;
/** /**
* @brief Return a Colamd constrained ordering where the discrete keys are * @brief Return a Colamd constrained ordering where the discrete keys are

View File

@ -51,10 +51,11 @@ class HybridEliminationTree;
*/ */
class GTSAM_EXPORT HybridJunctionTree class GTSAM_EXPORT HybridJunctionTree
: public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> { : public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> {
public: public:
typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>
Base; ///< Base class Base; ///< Base class
typedef HybridJunctionTree This; ///< This class typedef HybridJunctionTree This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
/** /**

View File

@ -32,7 +32,7 @@ void HybridSmoother::update(HybridGaussianFactorGraph graph,
addConditionals(graph, hybridBayesNet_, ordering); addConditionals(graph, hybridBayesNet_, ordering);
// Eliminate. // Eliminate.
auto bayesNetFragment = graph.eliminateHybridSequential(); auto bayesNetFragment = graph.eliminateSequential(ordering);
/// Prune /// Prune
if (maxNrLeaves) { if (maxNrLeaves) {

View File

@ -164,25 +164,6 @@ TEST(HybridBayesNet, Optimize) {
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5)); EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
} }
/* ****************************************************************************/
// Test bayes net multifrontal optimize
TEST(HybridBayesNet, OptimizeMultifrontal) {
Switching s(4);
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
HybridBayesTree::shared_ptr hybridBayesTree =
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
HybridValues delta = hybridBayesTree->optimize();
VectorValues expectedValues;
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/ /* ****************************************************************************/
// Test bayes net error // Test bayes net error
TEST(HybridBayesNet, Error) { TEST(HybridBayesNet, Error) {

View File

@ -32,6 +32,25 @@ using noiseModel::Isotropic;
using symbol_shorthand::M; using symbol_shorthand::M;
using symbol_shorthand::X; using symbol_shorthand::X;
/* ****************************************************************************/
// Test multifrontal optimize
TEST(HybridBayesTree, OptimizeMultifrontal) {
Switching s(4);
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
HybridBayesTree::shared_ptr hybridBayesTree =
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
HybridValues delta = hybridBayesTree->optimize();
VectorValues expectedValues;
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/ /* ****************************************************************************/
// Test for optimizing a HybridBayesTree with a given assignment. // Test for optimizing a HybridBayesTree with a given assignment.
TEST(HybridBayesTree, OptimizeAssignment) { TEST(HybridBayesTree, OptimizeAssignment) {
@ -136,6 +155,12 @@ TEST(HybridBayesTree, Optimize) {
dfg.push_back( dfg.push_back(
boost::dynamic_pointer_cast<DecisionTreeFactor>(factor->inner())); boost::dynamic_pointer_cast<DecisionTreeFactor>(factor->inner()));
} }
// Add the probabilities for each branch
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}, {M(2), 2}};
vector<double> probs = {0.012519475, 0.041280228, 0.075018647, 0.081663656,
0.037152205, 0.12248971, 0.07349729, 0.08};
dfg.emplace_shared<DecisionTreeFactor>(discrete_keys, probs);
DiscreteValues expectedMPE = dfg.optimize(); DiscreteValues expectedMPE = dfg.optimize();
VectorValues expectedValues = hybridBayesNet->optimize(expectedMPE); VectorValues expectedValues = hybridBayesNet->optimize(expectedMPE);

View File

@ -15,6 +15,7 @@
* @author Varun Agrawal * @author Varun Agrawal
*/ */
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/geometry/Pose2.h> #include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridBayesNet.h> #include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h> #include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
@ -23,6 +24,7 @@
#include <gtsam/hybrid/MixtureFactor.h> #include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h> #include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h> #include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianFactorGraph.h> #include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h> #include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h> #include <gtsam/linear/NoiseModel.h>
@ -69,6 +71,28 @@ Ordering getOrdering(HybridGaussianFactorGraph& factors,
return ordering; return ordering;
} }
TEST(HybridEstimation, Full) {
size_t K = 3;
std::vector<double> measurements = {0, 1, 2};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0};
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridGaussianFactorGraph graph = switching.linearizedFactorGraph;
Ordering hybridOrdering;
hybridOrdering += X(0);
hybridOrdering += X(1);
hybridOrdering += X(2);
hybridOrdering += M(0);
hybridOrdering += M(1);
HybridBayesNet::shared_ptr bayesNet =
graph.eliminateSequential(hybridOrdering);
EXPECT_LONGS_EQUAL(5, bayesNet->size());
}
/****************************************************************************/ /****************************************************************************/
// Test approximate inference with an additional pruning step. // Test approximate inference with an additional pruning step.
TEST(HybridEstimation, Incremental) { TEST(HybridEstimation, Incremental) {
@ -78,6 +102,8 @@ TEST(HybridEstimation, Incremental) {
// Ground truth discrete seq // Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0, std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0}; 1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
// Switching example of robot moving in 1D with given measurements and equal
// mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1"); Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridSmoother smoother; HybridSmoother smoother;
HybridNonlinearFactorGraph graph; HybridNonlinearFactorGraph graph;
@ -135,7 +161,7 @@ TEST(HybridEstimation, Incremental) {
* @param between_sigma Noise model sigma for the between factor. * @param between_sigma Noise model sigma for the between factor.
* @return GaussianFactorGraph::shared_ptr * @return GaussianFactorGraph::shared_ptr
*/ */
GaussianFactorGraph::shared_ptr specificProblem( GaussianFactorGraph::shared_ptr specificModesFactorGraph(
size_t K, const std::vector<double>& measurements, size_t K, const std::vector<double>& measurements,
const std::vector<size_t>& discrete_seq, double measurement_sigma = 0.1, const std::vector<size_t>& discrete_seq, double measurement_sigma = 0.1,
double between_sigma = 1.0) { double between_sigma = 1.0) {
@ -183,7 +209,7 @@ std::vector<size_t> getDiscreteSequence(size_t x) {
} }
/** /**
* @brief Helper method to get the probPrimeTree * @brief Helper method to get the tree of unnormalized probabilities
* as per the new elimination scheme. * as per the new elimination scheme.
* *
* @param graph The HybridGaussianFactorGraph to eliminate. * @param graph The HybridGaussianFactorGraph to eliminate.
@ -241,82 +267,169 @@ AlgebraicDecisionTree<Key> probPrimeTree(
TEST(HybridEstimation, Probability) { TEST(HybridEstimation, Probability) {
constexpr size_t K = 4; constexpr size_t K = 4;
std::vector<double> measurements = {0, 1, 2, 2}; std::vector<double> measurements = {0, 1, 2, 2};
// This is the correct sequence
// std::vector<size_t> discrete_seq = {1, 1, 0};
double between_sigma = 1.0, measurement_sigma = 0.1; double between_sigma = 1.0, measurement_sigma = 0.1;
std::vector<double> expected_errors, expected_prob_primes; std::vector<double> expected_errors, expected_prob_primes;
std::map<size_t, std::vector<size_t>> discrete_seq_map;
for (size_t i = 0; i < pow(2, K - 1); i++) { for (size_t i = 0; i < pow(2, K - 1); i++) {
std::vector<size_t> discrete_seq = getDiscreteSequence<K>(i); discrete_seq_map[i] = getDiscreteSequence<K>(i);
GaussianFactorGraph::shared_ptr linear_graph = specificProblem( GaussianFactorGraph::shared_ptr linear_graph = specificModesFactorGraph(
K, measurements, discrete_seq, measurement_sigma, between_sigma); K, measurements, discrete_seq_map[i], measurement_sigma, between_sigma);
auto bayes_net = linear_graph->eliminateSequential(); auto bayes_net = linear_graph->eliminateSequential();
VectorValues values = bayes_net->optimize(); VectorValues values = bayes_net->optimize();
double error = linear_graph->error(values);
expected_errors.push_back(error);
double prob_prime = linear_graph->probPrime(values);
expected_prob_primes.push_back(prob_prime);
}
// Switching example of robot moving in 1D with given measurements and equal
// mode priors.
Switching switching(K, between_sigma, measurement_sigma, measurements,
"1/1 1/1");
auto graph = switching.linearizedFactorGraph;
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
HybridBayesNet::shared_ptr bayesNet = graph.eliminateSequential(ordering);
auto discreteConditional = bayesNet->atDiscrete(bayesNet->size() - 3);
// Test if the probPrimeTree matches the probability of
// the individual factor graphs
for (size_t i = 0; i < pow(2, K - 1); i++) {
DiscreteValues discrete_assignment;
for (size_t v = 0; v < discrete_seq_map[i].size(); v++) {
discrete_assignment[M(v)] = discrete_seq_map[i][v];
}
double discrete_transition_prob = 0.25;
EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i) * discrete_transition_prob,
(*discreteConditional)(discrete_assignment), 1e-8);
}
HybridValues hybrid_values = bayesNet->optimize();
// This is the correct sequence as designed
DiscreteValues discrete_seq;
discrete_seq[M(0)] = 1;
discrete_seq[M(1)] = 1;
discrete_seq[M(2)] = 0;
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
}
/****************************************************************************/
/**
* Test for correctness of different branches of the P'(Continuous | Discrete)
* in the multi-frontal setting. The values should match those of P'(Continuous)
* for each discrete mode.
*/
TEST(HybridEstimation, ProbabilityMultifrontal) {
constexpr size_t K = 4;
std::vector<double> measurements = {0, 1, 2, 2};
double between_sigma = 1.0, measurement_sigma = 0.1;
// For each discrete mode sequence, create the individual factor graphs and
// optimize each.
std::vector<double> expected_errors, expected_prob_primes;
std::map<size_t, std::vector<size_t>> discrete_seq_map;
for (size_t i = 0; i < pow(2, K - 1); i++) {
discrete_seq_map[i] = getDiscreteSequence<K>(i);
GaussianFactorGraph::shared_ptr linear_graph = specificModesFactorGraph(
K, measurements, discrete_seq_map[i], measurement_sigma, between_sigma);
auto bayes_tree = linear_graph->eliminateMultifrontal();
VectorValues values = bayes_tree->optimize();
expected_errors.push_back(linear_graph->error(values)); expected_errors.push_back(linear_graph->error(values));
expected_prob_primes.push_back(linear_graph->probPrime(values)); expected_prob_primes.push_back(linear_graph->probPrime(values));
} }
Switching switching(K, between_sigma, measurement_sigma, measurements); // Switching example of robot moving in 1D with given measurements and equal
// mode priors.
Switching switching(K, between_sigma, measurement_sigma, measurements,
"1/1 1/1");
auto graph = switching.linearizedFactorGraph; auto graph = switching.linearizedFactorGraph;
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph()); Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
// Get the tree of unnormalized probabilities for each mode sequence.
AlgebraicDecisionTree<Key> expected_probPrimeTree = probPrimeTree(graph); AlgebraicDecisionTree<Key> expected_probPrimeTree = probPrimeTree(graph);
// Eliminate continuous // Eliminate continuous
Ordering continuous_ordering(graph.continuousKeys()); Ordering continuous_ordering(graph.continuousKeys());
HybridBayesNet::shared_ptr bayesNet; HybridBayesTree::shared_ptr bayesTree;
HybridGaussianFactorGraph::shared_ptr discreteGraph; HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesNet, discreteGraph) = std::tie(bayesTree, discreteGraph) =
graph.eliminatePartialSequential(continuous_ordering); graph.eliminatePartialMultifrontal(continuous_ordering);
// Get the last continuous conditional which will have all the discrete keys // Get the last continuous conditional which will have all the discrete keys
auto last_conditional = bayesNet->at(bayesNet->size() - 1); Key last_continuous_key =
continuous_ordering.at(continuous_ordering.size() - 1);
auto last_conditional = (*bayesTree)[last_continuous_key]->conditional();
DiscreteKeys discrete_keys = last_conditional->discreteKeys(); DiscreteKeys discrete_keys = last_conditional->discreteKeys();
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(discrete_keys);
// Reverse discrete keys order for correct tree construction
std::reverse(discrete_keys.begin(), discrete_keys.end());
// Create a decision tree of all the different VectorValues // Create a decision tree of all the different VectorValues
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
graph.continuousDelta(discrete_keys, bayesNet, assignments);
AlgebraicDecisionTree<Key> probPrimeTree = AlgebraicDecisionTree<Key> probPrimeTree =
graph.continuousProbPrimes(discrete_keys, bayesNet); graph.continuousProbPrimes(discrete_keys, bayesTree);
EXPECT(assert_equal(expected_probPrimeTree, probPrimeTree)); EXPECT(assert_equal(expected_probPrimeTree, probPrimeTree));
// Test if the probPrimeTree matches the probability of // Test if the probPrimeTree matches the probability of
// the individual factor graphs // the individual factor graphs
for (size_t i = 0; i < pow(2, K - 1); i++) { for (size_t i = 0; i < pow(2, K - 1); i++) {
std::vector<size_t> discrete_seq = getDiscreteSequence<K>(i);
Assignment<Key> discrete_assignment; Assignment<Key> discrete_assignment;
for (size_t v = 0; v < discrete_seq.size(); v++) { for (size_t v = 0; v < discrete_seq_map[i].size(); v++) {
discrete_assignment[M(v)] = discrete_seq[v]; discrete_assignment[M(v)] = discrete_seq_map[i][v];
} }
EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i), EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i),
probPrimeTree(discrete_assignment), 1e-8); probPrimeTree(discrete_assignment), 1e-8);
} }
// remainingGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree)); discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
// Ordering discrete(graph.discreteKeys()); Ordering discrete(graph.discreteKeys());
// // remainingGraph->print("remainingGraph"); auto discreteBayesTree =
// // discrete.print(); discreteGraph->BaseEliminateable::eliminateMultifrontal(discrete);
// auto discreteBayesNet = remainingGraph->eliminateSequential(discrete);
// bayesNet->add(*discreteBayesNet);
// // bayesNet->print();
// HybridValues hybrid_values = bayesNet->optimize(); EXPECT_LONGS_EQUAL(1, discreteBayesTree->size());
// hybrid_values.discrete().print(); // DiscreteBayesTree should have only 1 clique
auto discrete_clique = (*discreteBayesTree)[discrete.at(0)];
std::set<HybridBayesTreeClique::shared_ptr> clique_set;
for (auto node : bayesTree->nodes()) {
clique_set.insert(node.second);
}
// Set the root of the bayes tree as the discrete clique
for (auto clique : clique_set) {
if (clique->conditional()->parents() ==
discrete_clique->conditional()->frontals()) {
discreteBayesTree->addClique(clique, discrete_clique);
} else {
// Remove the clique from the children of the parents since it will get
// added again in addClique.
auto clique_it = std::find(clique->parent()->children.begin(),
clique->parent()->children.end(), clique);
clique->parent()->children.erase(clique_it);
discreteBayesTree->addClique(clique, clique->parent());
}
}
HybridValues hybrid_values = discreteBayesTree->optimize();
// This is the correct sequence as designed
DiscreteValues discrete_seq;
discrete_seq[M(0)] = 1;
discrete_seq[M(1)] = 1;
discrete_seq[M(2)] = 0;
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -182,7 +182,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())})); boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
hfg.add(DecisionTreeFactor(m1, {2, 8})); hfg.add(DecisionTreeFactor(m1, {2, 8}));
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4")); // TODO(Varun) Adding extra discrete variable not connected to continuous
// variable throws segfault
// hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
HybridBayesTree::shared_ptr result = HybridBayesTree::shared_ptr result =
hfg.eliminateMultifrontal(hfg.getHybridOrdering()); hfg.eliminateMultifrontal(hfg.getHybridOrdering());

View File

@ -165,7 +165,8 @@ TEST(HybridGaussianElimination, IncrementalInference) {
discrete_ordering += M(0); discrete_ordering += M(0);
discrete_ordering += M(1); discrete_ordering += M(1);
HybridBayesTree::shared_ptr discreteBayesTree = HybridBayesTree::shared_ptr discreteBayesTree =
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering); expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
discrete_ordering);
DiscreteValues m00; DiscreteValues m00;
m00[M(0)] = 0, m00[M(1)] = 0; m00[M(0)] = 0, m00[M(1)] = 0;
@ -175,12 +176,12 @@ TEST(HybridGaussianElimination, IncrementalInference) {
auto discreteConditional = isam[M(1)]->conditional()->asDiscreteConditional(); auto discreteConditional = isam[M(1)]->conditional()->asDiscreteConditional();
// Test if the probability values are as expected with regression tests. // Test the probability values with regression tests.
DiscreteValues assignment; DiscreteValues assignment;
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5)); EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
assignment[M(0)] = 0; assignment[M(0)] = 0;
assignment[M(1)] = 0; assignment[M(1)] = 0;
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5)); EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 1; assignment[M(0)] = 1;
assignment[M(1)] = 0; assignment[M(1)] = 0;
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5)); EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
@ -193,11 +194,15 @@ TEST(HybridGaussianElimination, IncrementalInference) {
// Check if the clique conditional generated from incremental elimination // Check if the clique conditional generated from incremental elimination
// matches that of batch elimination. // matches that of batch elimination.
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal(); auto expectedChordal =
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>( expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal();
(*expectedChordal)[M(1)]->conditional()->inner());
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>( auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
isam[M(1)]->conditional()->inner()); isam[M(1)]->conditional()->inner());
// Account for the probability terms from evaluating continuous FGs
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
vector<double> probs = {0.061923317, 0.20415914, 0.18374323, 0.2};
auto expectedConditional =
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6)); EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
} }

View File

@ -372,8 +372,7 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner()); dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner());
CHECK(discreteFactor); CHECK(discreteFactor);
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size()); EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
// All leaves should be probability 1 since this is not P*(X|M,Z) EXPECT(discreteFactor->root_->isLeaf() == false);
EXPECT(discreteFactor->root_->isLeaf());
// TODO(Varun) Test emplace_discrete // TODO(Varun) Test emplace_discrete
} }
@ -386,11 +385,11 @@ TEST(HybridFactorGraph, Partial_Elimination) {
auto linearizedFactorGraph = self.linearizedFactorGraph; auto linearizedFactorGraph = self.linearizedFactorGraph;
// Create ordering. // Create ordering of only continuous variables.
Ordering ordering; Ordering ordering;
for (size_t k = 0; k < self.K; k++) ordering += X(k); for (size_t k = 0; k < self.K; k++) ordering += X(k);
// Eliminate partially. // Eliminate partially i.e. only continuous part.
HybridBayesNet::shared_ptr hybridBayesNet; HybridBayesNet::shared_ptr hybridBayesNet;
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph; HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
std::tie(hybridBayesNet, remainingFactorGraph) = std::tie(hybridBayesNet, remainingFactorGraph) =
@ -441,14 +440,6 @@ TEST(HybridFactorGraph, Full_Elimination) {
discrete_fg.push_back(df->inner()); discrete_fg.push_back(df->inner());
} }
// Get the probabilit P*(X | M, Z)
DiscreteKeys discrete_keys =
remainingFactorGraph_partial->at(2)->discreteKeys();
AlgebraicDecisionTree<Key> probPrimeTree =
linearizedFactorGraph.continuousProbPrimes(discrete_keys,
hybridBayesNet_partial);
discrete_fg.add(DecisionTreeFactor(discrete_keys, probPrimeTree));
ordering.clear(); ordering.clear();
for (size_t k = 0; k < self.K - 1; k++) ordering += M(k); for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
discreteBayesNet = discreteBayesNet =

View File

@ -153,7 +153,8 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
HybridBayesTree::shared_ptr expectedHybridBayesTree; HybridBayesTree::shared_ptr expectedHybridBayesTree;
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph; HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
std::tie(expectedHybridBayesTree, expectedRemainingGraph) = std::tie(expectedHybridBayesTree, expectedRemainingGraph) =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering); switching.linearizedFactorGraph
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
// The densities on X(1) should be the same // The densities on X(1) should be the same
auto x0_conditional = dynamic_pointer_cast<GaussianMixture>( auto x0_conditional = dynamic_pointer_cast<GaussianMixture>(
@ -182,7 +183,8 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
discrete_ordering += M(0); discrete_ordering += M(0);
discrete_ordering += M(1); discrete_ordering += M(1);
HybridBayesTree::shared_ptr discreteBayesTree = HybridBayesTree::shared_ptr discreteBayesTree =
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering); expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
discrete_ordering);
DiscreteValues m00; DiscreteValues m00;
m00[M(0)] = 0, m00[M(1)] = 0; m00[M(0)] = 0, m00[M(1)] = 0;
@ -193,12 +195,12 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
auto discreteConditional = auto discreteConditional =
bayesTree[M(1)]->conditional()->asDiscreteConditional(); bayesTree[M(1)]->conditional()->asDiscreteConditional();
// Test if the probability values are as expected with regression tests. // Test the probability values with regression tests.
DiscreteValues assignment; DiscreteValues assignment;
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5)); EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
assignment[M(0)] = 0; assignment[M(0)] = 0;
assignment[M(1)] = 0; assignment[M(1)] = 0;
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5)); EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 1; assignment[M(0)] = 1;
assignment[M(1)] = 0; assignment[M(1)] = 0;
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5)); EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
@ -212,10 +214,13 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
// Check if the clique conditional generated from incremental elimination // Check if the clique conditional generated from incremental elimination
// matches that of batch elimination. // matches that of batch elimination.
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal(); auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
(*expectedChordal)[M(1)]->conditional()->inner());
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>( auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
bayesTree[M(1)]->conditional()->inner()); bayesTree[M(1)]->conditional()->inner());
// Account for the probability terms from evaluating continuous FGs
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
vector<double> probs = {0.061923317, 0.20415914, 0.18374323, 0.2};
auto expectedConditional =
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6)); EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
} }
@ -250,7 +255,8 @@ TEST(HybridNonlinearISAM, Approx_inference) {
HybridBayesTree::shared_ptr unprunedHybridBayesTree; HybridBayesTree::shared_ptr unprunedHybridBayesTree;
HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph; HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph;
std::tie(unprunedHybridBayesTree, unprunedRemainingGraph) = std::tie(unprunedHybridBayesTree, unprunedRemainingGraph) =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering); switching.linearizedFactorGraph
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
size_t maxNrLeaves = 5; size_t maxNrLeaves = 5;
incrementalHybrid.update(graph1, initial); incrementalHybrid.update(graph1, initial);

View File

@ -73,7 +73,7 @@ public:
/** /**
* @brief Append new keys to the ordering as `ordering += keys`. * @brief Append new keys to the ordering as `ordering += keys`.
* *
* @param key * @param keys The key vector to append to this ordering.
* @return The ordering variable with appended keys. * @return The ordering variable with appended keys.
*/ */
This& operator+=(KeyVector& keys); This& operator+=(KeyVector& keys);