Small typos
parent
f2a7ccae2d
commit
539f32ad66
|
@ -1744,7 +1744,7 @@ For small angles
|
|||
we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
e^{\skew{\omega}}\approx\skew{\omega}=\omega\skew 1
|
||||
e^{\skew{\omega}}\approx I+\skew{\omega}=I+\omega\skew 1
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -2122,7 +2122,7 @@ Analoguous to
|
|||
\begin_inset Formula $\SEthree$
|
||||
\end_inset
|
||||
|
||||
, we can compute a velocity
|
||||
(see below), we can compute a velocity
|
||||
\begin_inset Formula $\xihat\hat{p}$
|
||||
\end_inset
|
||||
|
||||
|
@ -3143,8 +3143,7 @@ p\\
|
|||
|
||||
\end_inset
|
||||
|
||||
We would now like to know what an incremental rotation parameterized by
|
||||
|
||||
We would now like to know what an incremental pose parameterized by
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
@ -3227,6 +3226,17 @@ v
|
|||
|
||||
\end_inset
|
||||
|
||||
yielding the derivative
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=T\left[\begin{array}{cc}
|
||||
-\Skew p & I_{3}\\
|
||||
0 & 0
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The inverse action
|
||||
\begin_inset Formula $T^{-1}p$
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue