From 539f32ad66cd6e0036ccdfeb869562f0c7b962c8 Mon Sep 17 00:00:00 2001 From: Frank Dellaert Date: Thu, 15 Nov 2012 20:07:11 +0000 Subject: [PATCH] Small typos --- doc/LieGroups.lyx | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/doc/LieGroups.lyx b/doc/LieGroups.lyx index 03116dbc9..0ceb6da09 100644 --- a/doc/LieGroups.lyx +++ b/doc/LieGroups.lyx @@ -1744,7 +1744,7 @@ For small angles we have \begin_inset Formula \[ -e^{\skew{\omega}}\approx\skew{\omega}=\omega\skew 1 +e^{\skew{\omega}}\approx I+\skew{\omega}=I+\omega\skew 1 \] \end_inset @@ -2122,7 +2122,7 @@ Analoguous to \begin_inset Formula $\SEthree$ \end_inset -, we can compute a velocity + (see below), we can compute a velocity \begin_inset Formula $\xihat\hat{p}$ \end_inset @@ -3143,8 +3143,7 @@ p\\ \end_inset -We would now like to know what an incremental rotation parameterized by - +We would now like to know what an incremental pose parameterized by \begin_inset Formula $\xi$ \end_inset @@ -3227,6 +3226,17 @@ v \end_inset +yielding the derivative +\begin_inset Formula +\[ +\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=T\left[\begin{array}{cc} +-\Skew p & I_{3}\\ +0 & 0 +\end{array}\right] +\] + +\end_inset + The inverse action \begin_inset Formula $T^{-1}p$ \end_inset