Remove redundant params
parent
3c0671ba8d
commit
4babfe2491
|
@ -360,28 +360,11 @@ TEST(NonlinearOptimizer, Pose2OptimizationWithHuberNoOutlier) {
|
||||||
expected.insert(1, Pose2(0.961187, 0.99965, 1.1781));
|
expected.insert(1, Pose2(0.961187, 0.99965, 1.1781));
|
||||||
|
|
||||||
LevenbergMarquardtParams lm_params;
|
LevenbergMarquardtParams lm_params;
|
||||||
lm_params.setRelativeErrorTol(0);
|
|
||||||
lm_params.setAbsoluteErrorTol(0);
|
|
||||||
lm_params.setMaxIterations(100);
|
|
||||||
lm_params.setlambdaUpperBound(1e10);
|
|
||||||
|
|
||||||
NonlinearConjugateGradientOptimizer::Parameters cg_params;
|
|
||||||
cg_params.setErrorTol(0);
|
|
||||||
cg_params.setMaxIterations(100000);
|
|
||||||
cg_params.setRelativeErrorTol(0);
|
|
||||||
cg_params.setAbsoluteErrorTol(0);
|
|
||||||
|
|
||||||
DoglegParams dl_params;
|
|
||||||
dl_params.setRelativeErrorTol(0);
|
|
||||||
dl_params.setAbsoluteErrorTol(0);
|
|
||||||
dl_params.setMaxIterations(100);
|
|
||||||
|
|
||||||
auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize();
|
|
||||||
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
||||||
auto lm_result = LevenbergMarquardtOptimizer(fg, init, lm_params).optimize();
|
auto lm_result = LevenbergMarquardtOptimizer(fg, init, lm_params).optimize();
|
||||||
auto dl_result = DoglegOptimizer(fg, init, dl_params).optimize();
|
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
||||||
|
|
||||||
EXPECT(assert_equal(expected, cg_result, 3e-2));
|
|
||||||
EXPECT(assert_equal(expected, gn_result, 3e-2));
|
EXPECT(assert_equal(expected, gn_result, 3e-2));
|
||||||
EXPECT(assert_equal(expected, lm_result, 3e-2));
|
EXPECT(assert_equal(expected, lm_result, 3e-2));
|
||||||
EXPECT(assert_equal(expected, dl_result, 3e-2));
|
EXPECT(assert_equal(expected, dl_result, 3e-2));
|
||||||
|
@ -411,14 +394,11 @@ TEST(NonlinearOptimizer, Point2LinearOptimizationWithHuber) {
|
||||||
expected.insert(1, Point2(1,1.85));
|
expected.insert(1, Point2(1,1.85));
|
||||||
|
|
||||||
LevenbergMarquardtParams params;
|
LevenbergMarquardtParams params;
|
||||||
NonlinearConjugateGradientOptimizer::Parameters cg_params;
|
|
||||||
|
|
||||||
auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize();
|
|
||||||
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
||||||
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
|
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
|
||||||
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
||||||
|
|
||||||
EXPECT(assert_equal(expected, gn_result, 1e-4));
|
|
||||||
EXPECT(assert_equal(expected, gn_result, 1e-4));
|
EXPECT(assert_equal(expected, gn_result, 1e-4));
|
||||||
EXPECT(assert_equal(expected, lm_result, 1e-4));
|
EXPECT(assert_equal(expected, lm_result, 1e-4));
|
||||||
EXPECT(assert_equal(expected, dl_result, 1e-4));
|
EXPECT(assert_equal(expected, dl_result, 1e-4));
|
||||||
|
@ -451,18 +431,11 @@ TEST(NonlinearOptimizer, Pose2OptimizationWithHuber) {
|
||||||
expected.insert(1, Pose2(0, 10, 1.45212));
|
expected.insert(1, Pose2(0, 10, 1.45212));
|
||||||
|
|
||||||
LevenbergMarquardtParams params;
|
LevenbergMarquardtParams params;
|
||||||
gtsam::NonlinearConjugateGradientOptimizer::Parameters cg_params;
|
|
||||||
cg_params.setErrorTol(0);
|
|
||||||
cg_params.setMaxIterations(100000);
|
|
||||||
cg_params.setRelativeErrorTol(0);
|
|
||||||
cg_params.setAbsoluteErrorTol(0);
|
|
||||||
|
|
||||||
auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize();
|
|
||||||
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
||||||
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
|
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
|
||||||
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
||||||
|
|
||||||
EXPECT(assert_equal(expected, gn_result, 1e-1));
|
|
||||||
EXPECT(assert_equal(expected, gn_result, 1e-1));
|
EXPECT(assert_equal(expected, gn_result, 1e-1));
|
||||||
EXPECT(assert_equal(expected, lm_result, 1e-1));
|
EXPECT(assert_equal(expected, lm_result, 1e-1));
|
||||||
EXPECT(assert_equal(expected, dl_result, 1e-1));
|
EXPECT(assert_equal(expected, dl_result, 1e-1));
|
||||||
|
@ -489,21 +462,11 @@ TEST(NonlinearOptimizer, RobustMeanCalculation) {
|
||||||
expected.insert(0, 3.33333333);
|
expected.insert(0, 3.33333333);
|
||||||
|
|
||||||
LevenbergMarquardtParams params;
|
LevenbergMarquardtParams params;
|
||||||
params.setAbsoluteErrorTol(1e-20);
|
|
||||||
params.setRelativeErrorTol(1e-20);
|
|
||||||
|
|
||||||
gtsam::NonlinearConjugateGradientOptimizer::Parameters cg_params;
|
|
||||||
cg_params.setErrorTol(0);
|
|
||||||
cg_params.setMaxIterations(10000);
|
|
||||||
cg_params.setRelativeErrorTol(0);
|
|
||||||
cg_params.setAbsoluteErrorTol(0);
|
|
||||||
|
|
||||||
auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize();
|
|
||||||
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
|
||||||
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
|
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
|
||||||
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
auto dl_result = DoglegOptimizer(fg, init).optimize();
|
||||||
|
|
||||||
EXPECT(assert_equal(expected, gn_result, tol));
|
|
||||||
EXPECT(assert_equal(expected, gn_result, tol));
|
EXPECT(assert_equal(expected, gn_result, tol));
|
||||||
EXPECT(assert_equal(expected, lm_result, tol));
|
EXPECT(assert_equal(expected, lm_result, tol));
|
||||||
EXPECT(assert_equal(expected, dl_result, tol));
|
EXPECT(assert_equal(expected, dl_result, tol));
|
||||||
|
|
Loading…
Reference in New Issue