diff --git a/tests/testNonlinearOptimizer.cpp b/tests/testNonlinearOptimizer.cpp index 4b7ca6a03..7b5e7a0e0 100644 --- a/tests/testNonlinearOptimizer.cpp +++ b/tests/testNonlinearOptimizer.cpp @@ -360,28 +360,11 @@ TEST(NonlinearOptimizer, Pose2OptimizationWithHuberNoOutlier) { expected.insert(1, Pose2(0.961187, 0.99965, 1.1781)); LevenbergMarquardtParams lm_params; - lm_params.setRelativeErrorTol(0); - lm_params.setAbsoluteErrorTol(0); - lm_params.setMaxIterations(100); - lm_params.setlambdaUpperBound(1e10); - NonlinearConjugateGradientOptimizer::Parameters cg_params; - cg_params.setErrorTol(0); - cg_params.setMaxIterations(100000); - cg_params.setRelativeErrorTol(0); - cg_params.setAbsoluteErrorTol(0); - - DoglegParams dl_params; - dl_params.setRelativeErrorTol(0); - dl_params.setAbsoluteErrorTol(0); - dl_params.setMaxIterations(100); - - auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize(); auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); auto lm_result = LevenbergMarquardtOptimizer(fg, init, lm_params).optimize(); - auto dl_result = DoglegOptimizer(fg, init, dl_params).optimize(); + auto dl_result = DoglegOptimizer(fg, init).optimize(); - EXPECT(assert_equal(expected, cg_result, 3e-2)); EXPECT(assert_equal(expected, gn_result, 3e-2)); EXPECT(assert_equal(expected, lm_result, 3e-2)); EXPECT(assert_equal(expected, dl_result, 3e-2)); @@ -411,14 +394,11 @@ TEST(NonlinearOptimizer, Point2LinearOptimizationWithHuber) { expected.insert(1, Point2(1,1.85)); LevenbergMarquardtParams params; - NonlinearConjugateGradientOptimizer::Parameters cg_params; - auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize(); auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize(); auto dl_result = DoglegOptimizer(fg, init).optimize(); - EXPECT(assert_equal(expected, gn_result, 1e-4)); EXPECT(assert_equal(expected, gn_result, 1e-4)); EXPECT(assert_equal(expected, lm_result, 1e-4)); EXPECT(assert_equal(expected, dl_result, 1e-4)); @@ -451,18 +431,11 @@ TEST(NonlinearOptimizer, Pose2OptimizationWithHuber) { expected.insert(1, Pose2(0, 10, 1.45212)); LevenbergMarquardtParams params; - gtsam::NonlinearConjugateGradientOptimizer::Parameters cg_params; - cg_params.setErrorTol(0); - cg_params.setMaxIterations(100000); - cg_params.setRelativeErrorTol(0); - cg_params.setAbsoluteErrorTol(0); - auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize(); auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize(); auto dl_result = DoglegOptimizer(fg, init).optimize(); - EXPECT(assert_equal(expected, gn_result, 1e-1)); EXPECT(assert_equal(expected, gn_result, 1e-1)); EXPECT(assert_equal(expected, lm_result, 1e-1)); EXPECT(assert_equal(expected, dl_result, 1e-1)); @@ -489,21 +462,11 @@ TEST(NonlinearOptimizer, RobustMeanCalculation) { expected.insert(0, 3.33333333); LevenbergMarquardtParams params; - params.setAbsoluteErrorTol(1e-20); - params.setRelativeErrorTol(1e-20); - gtsam::NonlinearConjugateGradientOptimizer::Parameters cg_params; - cg_params.setErrorTol(0); - cg_params.setMaxIterations(10000); - cg_params.setRelativeErrorTol(0); - cg_params.setAbsoluteErrorTol(0); - - auto cg_result = NonlinearConjugateGradientOptimizer(fg, init, cg_params).optimize(); auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize(); auto dl_result = DoglegOptimizer(fg, init).optimize(); - EXPECT(assert_equal(expected, gn_result, tol)); EXPECT(assert_equal(expected, gn_result, tol)); EXPECT(assert_equal(expected, lm_result, tol)); EXPECT(assert_equal(expected, dl_result, tol));