Recovered eliminateOne
parent
9502c71dca
commit
464804d8f5
|
@ -46,6 +46,8 @@ double tol=1e-5;
|
|||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::L;
|
||||
|
||||
static auto kUnit2 = noiseModel::Unit::Create(2);
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, equals ) {
|
||||
|
||||
|
@ -67,120 +69,108 @@ TEST( GaussianFactorGraph, error ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateOne_x1 )
|
||||
{
|
||||
TEST(GaussianFactorGraph, eliminateOne_x1) {
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
|
||||
GaussianConditional::shared_ptr conditional;
|
||||
pair<GaussianBayesNet::shared_ptr, GaussianFactorGraph::shared_ptr> result =
|
||||
fg.eliminatePartialSequential(Ordering(list_of(X(1))));
|
||||
auto result = fg.eliminatePartialSequential(Ordering(list_of(X(1))));
|
||||
conditional = result.first->front();
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
Matrix I = 15*I_2x2, R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
|
||||
Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
|
||||
Vector d = Vector2(-0.133333, -0.0222222);
|
||||
GaussianConditional expected(X(1),15*d,R11,L(1),S12,X(2),S13);
|
||||
GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13);
|
||||
|
||||
EXPECT(assert_equal(expected,*conditional,tol));
|
||||
EXPECT(assert_equal(expected, *conditional, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianFactorGraph, eliminateOne_x2) {
|
||||
Ordering ordering;
|
||||
ordering += X(2), L(1), X(1);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
auto actual = EliminateQR(fg, Ordering(list_of(X(2)))).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sigma = 0.0894427;
|
||||
Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.2 * I, S13 = -0.8 * I;
|
||||
Vector d = Vector2(0.2, -0.14) / sigma;
|
||||
GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
|
||||
|
||||
EXPECT(assert_equal(expected, *actual, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianFactorGraph, eliminateOne_l1) {
|
||||
Ordering ordering;
|
||||
ordering += L(1), X(1), X(2);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
auto actual = EliminateQR(fg, Ordering(list_of(L(1)))).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sigma = sqrt(2.0) / 10.;
|
||||
Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.5 * I, S13 = -0.5 * I;
|
||||
Vector d = Vector2(-0.1, 0.25) / sigma;
|
||||
GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
|
||||
|
||||
EXPECT(assert_equal(expected, *actual, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianFactorGraph, eliminateOne_x1_fast) {
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
GaussianConditional::shared_ptr conditional;
|
||||
JacobianFactor::shared_ptr remaining;
|
||||
boost::tie(conditional, remaining) = EliminateQR(fg, Ordering(list_of(X(1))));
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
|
||||
Vector d = Vector2(-0.133333, -0.0222222);
|
||||
GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13, kUnit2);
|
||||
|
||||
// Create expected remaining new factor
|
||||
JacobianFactor expectedFactor(
|
||||
L(1), (Matrix(4, 2) << 6.87184, 0, 0, 6.87184, 0, 0, 0, 0).finished(),
|
||||
X(2),
|
||||
(Matrix(4, 2) << -5.25494, 0, 0, -5.25494, -7.27607, 0, 0, -7.27607)
|
||||
.finished(),
|
||||
(Vector(4) << -1.21268, 1.73817, -0.727607, 1.45521).finished(),
|
||||
noiseModel::Unit::Create(4));
|
||||
|
||||
EXPECT(assert_equal(expected, *conditional, tol));
|
||||
EXPECT(assert_equal(expectedFactor, *remaining, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianFactorGraph, eliminateOne_x2_fast) {
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
auto actual = EliminateQR(fg, Ordering(list_of(X(2)))).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sigma = 0.0894427;
|
||||
Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.2 * I, S13 = 0.8 * I;
|
||||
Vector d = Vector2(-0.2, 0.14) / sigma;
|
||||
GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
|
||||
|
||||
EXPECT(assert_equal(expected, *actual, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianFactorGraph, eliminateOne_l1_fast) {
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
auto actual = EliminateQR(fg, Ordering(list_of(L(1)))).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sigma = sqrt(2.0) / 10.;
|
||||
Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.5 * I, S13 = 0.5 * I;
|
||||
Vector d = Vector2(0.1, -0.25) / sigma;
|
||||
GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
|
||||
|
||||
EXPECT(assert_equal(expected, *actual, tol));
|
||||
}
|
||||
|
||||
#if 0
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateOne_x2 )
|
||||
{
|
||||
Ordering ordering; ordering += X(2),L(1),X(1);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
|
||||
GaussianConditional::shared_ptr actual = fg.eliminateOne(0, EliminateQR).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sig = 0.0894427;
|
||||
Matrix I = I_2x2/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
|
||||
Vector d = Vector2(0.2, -0.14)/sig, sigma = Vector::Ones(2);
|
||||
GaussianConditional expected(ordering[X(2)],d,R11,ordering[L(1)],S12,ordering[X(1)],S13,sigma);
|
||||
|
||||
EXPECT(assert_equal(expected,*actual,tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateOne_l1 )
|
||||
{
|
||||
Ordering ordering; ordering += L(1),X(1),X(2);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
|
||||
GaussianConditional::shared_ptr actual = fg.eliminateOne(0, EliminateQR).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sig = sqrt(2.0)/10.;
|
||||
Matrix I = I_2x2/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
|
||||
Vector d = Vector2(-0.1, 0.25)/sig, sigma = Vector::Ones(2);
|
||||
GaussianConditional expected(ordering[L(1)],d,R11,ordering[X(1)],S12,ordering[X(2)],S13,sigma);
|
||||
|
||||
EXPECT(assert_equal(expected,*actual,tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateOne_x1_fast )
|
||||
{
|
||||
Ordering ordering; ordering += X(1),L(1),X(2);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
|
||||
GaussianConditional::shared_ptr conditional;
|
||||
GaussianFactorGraph remaining;
|
||||
boost::tie(conditional,remaining) = fg.eliminateOne(ordering[X(1)], EliminateQR);
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
Matrix I = 15*I_2x2, R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
|
||||
Vector d = Vector2(-0.133333, -0.0222222), sigma = Vector::Ones(2);
|
||||
GaussianConditional expected(ordering[X(1)],15*d,R11,ordering[L(1)],S12,ordering[X(2)],S13,sigma);
|
||||
|
||||
// Create expected remaining new factor
|
||||
JacobianFactor expectedFactor(1, (Matrix(4,2) <<
|
||||
4.714045207910318, 0.,
|
||||
0., 4.714045207910318,
|
||||
0., 0.,
|
||||
0., 0.).finished(),
|
||||
2, (Matrix(4,2) <<
|
||||
-2.357022603955159, 0.,
|
||||
0., -2.357022603955159,
|
||||
7.071067811865475, 0.,
|
||||
0., 7.071067811865475).finished(),
|
||||
(Vector(4) << -0.707106781186547, 0.942809041582063, 0.707106781186547, -1.414213562373094).finished(), noiseModel::Unit::Create(4));
|
||||
|
||||
EXPECT(assert_equal(expected,*conditional,tol));
|
||||
EXPECT(assert_equal((const GaussianFactor&)expectedFactor,*remaining.back(),tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateOne_x2_fast )
|
||||
{
|
||||
Ordering ordering; ordering += X(1),L(1),X(2);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
|
||||
GaussianConditional::shared_ptr actual = fg.eliminateOne(ordering[X(2)], EliminateQR).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sig = 0.0894427;
|
||||
Matrix I = I_2x2/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
|
||||
Vector d = Vector2(0.2, -0.14)/sig, sigma = Vector::Ones(2);
|
||||
GaussianConditional expected(ordering[X(2)],d,R11,ordering[X(1)],S13,ordering[L(1)],S12,sigma);
|
||||
|
||||
EXPECT(assert_equal(expected,*actual,tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateOne_l1_fast )
|
||||
{
|
||||
Ordering ordering; ordering += X(1),L(1),X(2);
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
|
||||
GaussianConditional::shared_ptr actual = fg.eliminateOne(ordering[L(1)], EliminateQR).first;
|
||||
|
||||
// create expected Conditional Gaussian
|
||||
double sig = sqrt(2.0)/10.;
|
||||
Matrix I = I_2x2/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
|
||||
Vector d = Vector2(-0.1, 0.25)/sig, sigma = Vector::Ones(2);
|
||||
GaussianConditional expected(ordering[L(1)],d,R11,ordering[X(1)],S12,ordering[X(2)],S13,sigma);
|
||||
|
||||
EXPECT(assert_equal(expected,*actual,tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, eliminateAll )
|
||||
{
|
||||
|
@ -191,18 +181,18 @@ TEST( GaussianFactorGraph, eliminateAll )
|
|||
ordering += X(2),L(1),X(1);
|
||||
|
||||
Vector d1 = Vector2(-0.1,-0.1);
|
||||
GaussianBayesNet expected = simpleGaussian(ordering[X(1)],d1,0.1);
|
||||
GaussianBayesNet expected = simpleGaussian(X(1),d1,0.1);
|
||||
|
||||
double sig1 = 0.149071;
|
||||
Vector d2 = Vector2(0.0, 0.2)/sig1, sigma2 = Vector::Ones(2);
|
||||
push_front(expected,ordering[L(1)],d2, I/sig1,ordering[X(1)], (-1)*I/sig1,sigma2);
|
||||
push_front(expected,L(1),d2, I/sig1,X(1), (-1)*I/sig1,sigma2);
|
||||
|
||||
double sig2 = 0.0894427;
|
||||
Vector d3 = Vector2(0.2, -0.14)/sig2, sigma3 = Vector::Ones(2);
|
||||
push_front(expected,ordering[X(2)],d3, I/sig2,ordering[L(1)], (-0.2)*I/sig2, ordering[X(1)], (-0.8)*I/sig2, sigma3);
|
||||
push_front(expected,X(2),d3, I/sig2,L(1), (-0.2)*I/sig2, X(1), (-0.8)*I/sig2, sigma3);
|
||||
|
||||
// Check one ordering
|
||||
GaussianFactorGraph fg1 = createGaussianFactorGraph(ordering);
|
||||
GaussianFactorGraph fg1 = createGaussianFactorGraph();
|
||||
GaussianBayesNet actual = *GaussianSequentialSolver(fg1).eliminate();
|
||||
EXPECT(assert_equal(expected,actual,tol));
|
||||
|
||||
|
@ -215,7 +205,7 @@ TEST( GaussianFactorGraph, copying )
|
|||
{
|
||||
// Create a graph
|
||||
Ordering ordering; ordering += X(2),L(1),X(1);
|
||||
GaussianFactorGraph actual = createGaussianFactorGraph(ordering);
|
||||
GaussianFactorGraph actual = createGaussianFactorGraph();
|
||||
|
||||
// Copy the graph !
|
||||
GaussianFactorGraph copy = actual;
|
||||
|
@ -224,7 +214,7 @@ TEST( GaussianFactorGraph, copying )
|
|||
GaussianBayesNet actual1 = *GaussianSequentialSolver(copy).eliminate();
|
||||
|
||||
// Create the same graph, but not by copying
|
||||
GaussianFactorGraph expected = createGaussianFactorGraph(ordering);
|
||||
GaussianFactorGraph expected = createGaussianFactorGraph();
|
||||
|
||||
// and check that original is still the same graph
|
||||
EXPECT(assert_equal(expected,actual));
|
||||
|
@ -505,7 +495,7 @@ TEST(GaussianFactorGraph, createSmoother2)
|
|||
|
||||
// eliminate
|
||||
vector<Index> x3var; x3var.push_back(ordering[X(3)]);
|
||||
vector<Index> x1var; x1var.push_back(ordering[X(1)]);
|
||||
vector<Index> x1var; x1var.push_back(X(1));
|
||||
GaussianBayesNet p_x3 = *GaussianSequentialSolver(
|
||||
*GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate();
|
||||
GaussianBayesNet p_x1 = *GaussianSequentialSolver(
|
||||
|
@ -544,7 +534,7 @@ TEST( GaussianFactorGraph, conditional_sigma_failure) {
|
|||
|
||||
// noisemodels at nonlinear level
|
||||
gtsam::SharedNoiseModel priorModel = noiseModel::Diagonal::Sigmas((Vector(6) << 0.05, 0.05, 3.0, 0.2, 0.2, 0.2).finished());
|
||||
gtsam::SharedNoiseModel measModel = noiseModel::Unit::Create(2);
|
||||
gtsam::SharedNoiseModel measModel = kUnit2;
|
||||
gtsam::SharedNoiseModel elevationModel = noiseModel::Isotropic::Sigma(1, 3.0);
|
||||
|
||||
double fov = 60; // degrees
|
||||
|
|
Loading…
Reference in New Issue