gtsam/tests/testGaussianFactorGraphB.cpp

588 lines
20 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianFactorGraphB.cpp
* @brief Unit tests for Linear Factor Graph
* @author Christian Potthast
**/
#include <tests/smallExample.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/set.hpp> // for operator +=
#include <boost/assign/std/vector.hpp> // for operator +=
using namespace boost::assign;
#include <boost/range/adaptor/map.hpp>
namespace br { using namespace boost::range; using namespace boost::adaptors; }
#include <string.h>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace example;
double tol=1e-5;
using symbol_shorthand::X;
using symbol_shorthand::L;
static auto kUnit2 = noiseModel::Unit::Create(2);
/* ************************************************************************* */
TEST( GaussianFactorGraph, equals ) {
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianFactorGraph fg2 = createGaussianFactorGraph();
EXPECT(fg.equals(fg2));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, error ) {
GaussianFactorGraph fg = createGaussianFactorGraph();
VectorValues cfg = createZeroDelta();
// note the error is the same as in testNonlinearFactorGraph as a
// zero delta config in the linear graph is equivalent to noisy in
// non-linear, which is really linear under the hood
double actual = fg.error(cfg);
DOUBLES_EQUAL( 5.625, actual, 1e-9 );
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x1) {
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianConditional::shared_ptr conditional;
auto result = fg.eliminatePartialSequential(Ordering(list_of(X(1))));
conditional = result.first->front();
// create expected Conditional Gaussian
Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
Vector d = Vector2(-0.133333, -0.0222222);
GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13);
EXPECT(assert_equal(expected, *conditional, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x2) {
Ordering ordering;
ordering += X(2), L(1), X(1);
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering(list_of(X(2)))).first;
// create expected Conditional Gaussian
double sigma = 0.0894427;
Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.2 * I, S13 = -0.8 * I;
Vector d = Vector2(0.2, -0.14) / sigma;
GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_l1) {
Ordering ordering;
ordering += L(1), X(1), X(2);
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering(list_of(L(1)))).first;
// create expected Conditional Gaussian
double sigma = sqrt(2.0) / 10.;
Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.5 * I, S13 = -0.5 * I;
Vector d = Vector2(-0.1, 0.25) / sigma;
GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x1_fast) {
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianConditional::shared_ptr conditional;
JacobianFactor::shared_ptr remaining;
boost::tie(conditional, remaining) = EliminateQR(fg, Ordering(list_of(X(1))));
// create expected Conditional Gaussian
Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
Vector d = Vector2(-0.133333, -0.0222222);
GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13, kUnit2);
// Create expected remaining new factor
JacobianFactor expectedFactor(
L(1), (Matrix(4, 2) << 6.87184, 0, 0, 6.87184, 0, 0, 0, 0).finished(),
X(2),
(Matrix(4, 2) << -5.25494, 0, 0, -5.25494, -7.27607, 0, 0, -7.27607)
.finished(),
(Vector(4) << -1.21268, 1.73817, -0.727607, 1.45521).finished(),
noiseModel::Unit::Create(4));
EXPECT(assert_equal(expected, *conditional, tol));
EXPECT(assert_equal(expectedFactor, *remaining, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x2_fast) {
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering(list_of(X(2)))).first;
// create expected Conditional Gaussian
double sigma = 0.0894427;
Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.2 * I, S13 = 0.8 * I;
Vector d = Vector2(-0.2, 0.14) / sigma;
GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_l1_fast) {
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering(list_of(L(1)))).first;
// create expected Conditional Gaussian
double sigma = sqrt(2.0) / 10.;
Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.5 * I, S13 = 0.5 * I;
Vector d = Vector2(0.1, -0.25) / sigma;
GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
#if 0
/* ************************************************************************* */
TEST( GaussianFactorGraph, eliminateAll )
{
// create expected Chordal bayes Net
Matrix I = I_2x2;
Ordering ordering;
ordering += X(2),L(1),X(1);
Vector d1 = Vector2(-0.1,-0.1);
GaussianBayesNet expected = simpleGaussian(X(1),d1,0.1);
double sig1 = 0.149071;
Vector d2 = Vector2(0.0, 0.2)/sig1, sigma2 = Vector::Ones(2);
push_front(expected,L(1),d2, I/sig1,X(1), (-1)*I/sig1,sigma2);
double sig2 = 0.0894427;
Vector d3 = Vector2(0.2, -0.14)/sig2, sigma3 = Vector::Ones(2);
push_front(expected,X(2),d3, I/sig2,L(1), (-0.2)*I/sig2, X(1), (-0.8)*I/sig2, sigma3);
// Check one ordering
GaussianFactorGraph fg1 = createGaussianFactorGraph();
GaussianBayesNet actual = *GaussianSequentialSolver(fg1).eliminate();
EXPECT(assert_equal(expected,actual,tol));
GaussianBayesNet actualQR = *GaussianSequentialSolver(fg1, true).eliminate();
EXPECT(assert_equal(expected,actualQR,tol));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, copying )
{
// Create a graph
Ordering ordering; ordering += X(2),L(1),X(1);
GaussianFactorGraph actual = createGaussianFactorGraph();
// Copy the graph !
GaussianFactorGraph copy = actual;
// now eliminate the copy
GaussianBayesNet actual1 = *GaussianSequentialSolver(copy).eliminate();
// Create the same graph, but not by copying
GaussianFactorGraph expected = createGaussianFactorGraph();
// and check that original is still the same graph
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet )
{
Ordering ord;
ord += X(2),L(1),X(1);
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
// render with a given ordering
GaussianBayesNet CBN = *GaussianSequentialSolver(fg).eliminate();
// True GaussianFactorGraph
GaussianFactorGraph fg2(CBN);
GaussianBayesNet CBN2 = *GaussianSequentialSolver(fg2).eliminate();
EXPECT(assert_equal(CBN,CBN2));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, getOrdering)
{
Ordering original; original += L(1),X(1),X(2);
FactorGraph<IndexFactor> symbolic(createGaussianFactorGraph(original));
Permutation perm(*inference::PermutationCOLAMD(VariableIndex(symbolic)));
Ordering actual = original; actual.permuteInPlace(perm);
Ordering expected; expected += L(1),X(2),X(1);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, optimize_Cholesky )
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
// create a graph
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
// optimize the graph
VectorValues actual = *GaussianSequentialSolver(fg, false).optimize();
// verify
VectorValues expected = createCorrectDelta(ord);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, optimize_QR )
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
// create a graph
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
// optimize the graph
VectorValues actual = *GaussianSequentialSolver(fg, true).optimize();
// verify
VectorValues expected = createCorrectDelta(ord);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, combine)
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
// create a test graph
GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
// create another factor graph
GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
// get sizes
size_t size1 = fg1.size();
size_t size2 = fg2.size();
// combine them
fg1.combine(fg2);
EXPECT(size1+size2 == fg1.size());
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, combine2)
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
// create a test graph
GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
// create another factor graph
GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
// get sizes
size_t size1 = fg1.size();
size_t size2 = fg2.size();
// combine them
GaussianFactorGraph fg3 = GaussianFactorGraph::combine2(fg1, fg2);
EXPECT(size1+size2 == fg3.size());
}
/* ************************************************************************* */
// print a vector of ints if needed for debugging
void print(vector<int> v) {
for (size_t k = 0; k < v.size(); k++)
cout << v[k] << " ";
cout << endl;
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, createSmoother)
{
GaussianFactorGraph fg1 = createSmoother(2).first;
LONGS_EQUAL(3,fg1.size());
GaussianFactorGraph fg2 = createSmoother(3).first;
LONGS_EQUAL(5,fg2.size());
}
/* ************************************************************************* */
double error(const VectorValues& x) {
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
return fg.error(x);
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, multiplication )
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
GaussianFactorGraph A = createGaussianFactorGraph(ord);
VectorValues x = createCorrectDelta(ord);
Errors actual = A * x;
Errors expected;
expected += Vector2(-1.0,-1.0);
expected += Vector2(2.0,-1.0);
expected += Vector2(0.0, 1.0);
expected += Vector2(-1.0, 1.5);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
// Extra test on elimination prompted by Michael's email to Frank 1/4/2010
TEST( GaussianFactorGraph, elimination )
{
Ordering ord;
ord += X(1), X(2);
// Create Gaussian Factor Graph
GaussianFactorGraph fg;
Matrix Ap = I_2x2, An = I_2x2 * -1;
Vector b = (Vector(1) << 0.0).finished();
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1,2.0);
fg += ord[X(1)], An, ord[X(2)], Ap, b, sigma;
fg += ord[X(1)], Ap, b, sigma;
fg += ord[X(2)], Ap, b, sigma;
// Eliminate
GaussianBayesNet bayesNet = *GaussianSequentialSolver(fg).eliminate();
// Check sigma
EXPECT_DOUBLES_EQUAL(1.0,bayesNet[ord[X(2)]]->get_sigmas()(0),1e-5);
// Check matrix
Matrix R;Vector d;
boost::tie(R,d) = matrix(bayesNet);
Matrix expected = (Matrix(2, 2) <<
0.707107, -0.353553,
0.0, 0.612372).finished();
Matrix expected2 = (Matrix(2, 2) <<
0.707107, -0.353553,
0.0, -0.612372).finished();
EXPECT(equal_with_abs_tol(expected, R, 1e-6) || equal_with_abs_tol(expected2, R, 1e-6));
}
/* ************************************************************************* */
// Tests ported from ConstrainedGaussianFactorGraph
/* ************************************************************************* */
TEST( GaussianFactorGraph, constrained_simple )
{
// get a graph with a constraint in it
GaussianFactorGraph fg = createSimpleConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
// verify
VectorValues expected = createSimpleConstraintValues();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, constrained_single )
{
// get a graph with a constraint in it
GaussianFactorGraph fg = createSingleConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
// verify
VectorValues expected = createSingleConstraintValues();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, constrained_multi1 )
{
// get a graph with a constraint in it
GaussianFactorGraph fg = createMultiConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
// verify
VectorValues expected = createMultiConstraintValues();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
static SharedDiagonal model = noiseModel::Isotropic::Sigma(2,1);
/* ************************************************************************* */
TEST(GaussianFactorGraph, replace)
{
Ordering ord; ord += X(1),X(2),X(3),X(4),X(5),X(6);
SharedDiagonal noise(noiseModel::Isotropic::Sigma(3, 1.0));
GaussianFactorGraph::sharedFactor f1(new JacobianFactor(
ord[X(1)], I_3x3, ord[X(2)], I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f2(new JacobianFactor(
ord[X(2)], I_3x3, ord[X(3)], I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f3(new JacobianFactor(
ord[X(3)], I_3x3, ord[X(4)], I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f4(new JacobianFactor(
ord[X(5)], I_3x3, ord[X(6)], I_3x3, Z_3x1, noise));
GaussianFactorGraph actual;
actual.push_back(f1);
actual.push_back(f2);
actual.push_back(f3);
actual.replace(0, f4);
GaussianFactorGraph expected;
expected.push_back(f4);
expected.push_back(f2);
expected.push_back(f3);
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, createSmoother2)
{
using namespace example;
GaussianFactorGraph fg2;
Ordering ordering;
boost::tie(fg2,ordering) = createSmoother(3);
LONGS_EQUAL(5,fg2.size());
// eliminate
vector<Index> x3var; x3var.push_back(ordering[X(3)]);
vector<Index> x1var; x1var.push_back(X(1));
GaussianBayesNet p_x3 = *GaussianSequentialSolver(
*GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate();
GaussianBayesNet p_x1 = *GaussianSequentialSolver(
*GaussianSequentialSolver(fg2).jointFactorGraph(x1var)).eliminate();
CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry
}
#endif
/* ************************************************************************* */
TEST(GaussianFactorGraph, hasConstraints)
{
FactorGraph<GaussianFactor> fgc1 = createMultiConstraintGraph();
EXPECT(hasConstraints(fgc1));
FactorGraph<GaussianFactor> fgc2 = createSimpleConstraintGraph() ;
EXPECT(hasConstraints(fgc2));
GaussianFactorGraph fg = createGaussianFactorGraph();
EXPECT(!hasConstraints(fg));
}
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/sam/RangeFactor.h>
/* ************************************************************************* */
TEST( GaussianFactorGraph, conditional_sigma_failure) {
// This system derives from a failure case in DDF in which a Bayes Tree
// has non-unit sigmas for conditionals in the Bayes Tree, which
// should never happen by construction
// Reason for the failure: using Vector_() is dangerous as having a non-float gets set to zero, resulting in constraints
gtsam::Key xC1 = 0, l32 = 1, l41 = 2;
// noisemodels at nonlinear level
gtsam::SharedNoiseModel priorModel = noiseModel::Diagonal::Sigmas((Vector(6) << 0.05, 0.05, 3.0, 0.2, 0.2, 0.2).finished());
gtsam::SharedNoiseModel measModel = kUnit2;
gtsam::SharedNoiseModel elevationModel = noiseModel::Isotropic::Sigma(1, 3.0);
double fov = 60; // degrees
int imgW = 640; // pixels
int imgH = 480; // pixels
gtsam::Cal3_S2::shared_ptr K(new gtsam::Cal3_S2(fov, imgW, imgH));
typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
double relElevation = 6;
Values initValues;
initValues.insert(xC1,
Pose3(Rot3(
-1., 0.0, 1.2246468e-16,
0.0, 1., 0.0,
-1.2246468e-16, 0.0, -1.),
Point3(0.511832102, 8.42819594, 5.76841725)));
initValues.insert(l32, Point3(0.364081507, 6.89766221, -0.231582751) );
initValues.insert(l41, Point3(1.61051523, 6.7373052, -0.231582751) );
NonlinearFactorGraph factors;
factors += PriorFactor<Pose3>(xC1,
Pose3(Rot3(
-1., 0.0, 1.2246468e-16,
0.0, 1., 0.0,
-1.2246468e-16, 0.0, -1),
Point3(0.511832102, 8.42819594, 5.76841725)), priorModel);
factors += ProjectionFactor(Point2(333.648615, 98.61535), measModel, xC1, l32, K);
factors += ProjectionFactor(Point2(218.508, 83.8022039), measModel, xC1, l41, K);
factors += RangeFactor<Pose3,Point3>(xC1, l32, relElevation, elevationModel);
factors += RangeFactor<Pose3,Point3>(xC1, l41, relElevation, elevationModel);
// Check that sigmas are correct (i.e., unit)
GaussianFactorGraph lfg = *factors.linearize(initValues);
GaussianBayesTree actBT = *lfg.eliminateMultifrontal();
// Check that all sigmas in an unconstrained bayes tree are set to one
for(const GaussianBayesTree::sharedClique& clique: actBT.nodes() | br::map_values) {
GaussianConditional::shared_ptr conditional = clique->conditional();
//size_t dim = conditional->rows();
//EXPECT(assert_equal(gtsam::Vector::Ones(dim), conditional->get_model()->sigmas(), tol));
EXPECT(!conditional->get_model());
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */