Remove const, use size_t everywhere.
parent
6a035b88d7
commit
416cb65f6b
|
@ -36,12 +36,12 @@ const DiscreteKey mode{M(0), 2};
|
||||||
* num_measurements is the number of measurements of the continuous variable x0.
|
* num_measurements is the number of measurements of the continuous variable x0.
|
||||||
* If manyModes is true, then we introduce one mode per measurement.
|
* If manyModes is true, then we introduce one mode per measurement.
|
||||||
*/
|
*/
|
||||||
inline HybridBayesNet createHybridBayesNet(int num_measurements = 1,
|
inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
|
||||||
bool manyModes = false) {
|
bool manyModes = false) {
|
||||||
HybridBayesNet bayesNet;
|
HybridBayesNet bayesNet;
|
||||||
|
|
||||||
// Create Gaussian mixture z_i = x0 + noise for each measurement.
|
// Create Gaussian mixture z_i = x0 + noise for each measurement.
|
||||||
for (int i = 0; i < num_measurements; i++) {
|
for (size_t i = 0; i < num_measurements; i++) {
|
||||||
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
|
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
|
||||||
bayesNet.emplace_back(
|
bayesNet.emplace_back(
|
||||||
new GaussianMixture({Z(i)}, {X(0)}, {mode_i},
|
new GaussianMixture({Z(i)}, {X(0)}, {mode_i},
|
||||||
|
@ -57,7 +57,7 @@ inline HybridBayesNet createHybridBayesNet(int num_measurements = 1,
|
||||||
|
|
||||||
// Add prior on mode.
|
// Add prior on mode.
|
||||||
const size_t nrModes = manyModes ? num_measurements : 1;
|
const size_t nrModes = manyModes ? num_measurements : 1;
|
||||||
for (const size_t i = 0; i < nrModes; i++) {
|
for (size_t i = 0; i < nrModes; i++) {
|
||||||
bayesNet.emplace_back(new DiscreteConditional({M(i), 2}, "4/6"));
|
bayesNet.emplace_back(new DiscreteConditional({M(i), 2}, "4/6"));
|
||||||
}
|
}
|
||||||
return bayesNet;
|
return bayesNet;
|
||||||
|
@ -70,7 +70,7 @@ inline HybridBayesNet createHybridBayesNet(int num_measurements = 1,
|
||||||
* the generative Bayes net model HybridBayesNet::Example(num_measurements)
|
* the generative Bayes net model HybridBayesNet::Example(num_measurements)
|
||||||
*/
|
*/
|
||||||
inline HybridGaussianFactorGraph createHybridGaussianFactorGraph(
|
inline HybridGaussianFactorGraph createHybridGaussianFactorGraph(
|
||||||
int num_measurements = 1,
|
size_t num_measurements = 1,
|
||||||
boost::optional<VectorValues> measurements = boost::none,
|
boost::optional<VectorValues> measurements = boost::none,
|
||||||
bool manyModes = false) {
|
bool manyModes = false) {
|
||||||
auto bayesNet = createHybridBayesNet(num_measurements, manyModes);
|
auto bayesNet = createHybridBayesNet(num_measurements, manyModes);
|
||||||
|
|
Loading…
Reference in New Issue