diff --git a/gtsam/hybrid/tests/TinyHybridExample.h b/gtsam/hybrid/tests/TinyHybridExample.h index ad1374911..0ef8955c4 100644 --- a/gtsam/hybrid/tests/TinyHybridExample.h +++ b/gtsam/hybrid/tests/TinyHybridExample.h @@ -36,12 +36,12 @@ const DiscreteKey mode{M(0), 2}; * num_measurements is the number of measurements of the continuous variable x0. * If manyModes is true, then we introduce one mode per measurement. */ -inline HybridBayesNet createHybridBayesNet(int num_measurements = 1, +inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1, bool manyModes = false) { HybridBayesNet bayesNet; // Create Gaussian mixture z_i = x0 + noise for each measurement. - for (int i = 0; i < num_measurements; i++) { + for (size_t i = 0; i < num_measurements; i++) { const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode; bayesNet.emplace_back( new GaussianMixture({Z(i)}, {X(0)}, {mode_i}, @@ -57,7 +57,7 @@ inline HybridBayesNet createHybridBayesNet(int num_measurements = 1, // Add prior on mode. const size_t nrModes = manyModes ? num_measurements : 1; - for (const size_t i = 0; i < nrModes; i++) { + for (size_t i = 0; i < nrModes; i++) { bayesNet.emplace_back(new DiscreteConditional({M(i), 2}, "4/6")); } return bayesNet; @@ -70,7 +70,7 @@ inline HybridBayesNet createHybridBayesNet(int num_measurements = 1, * the generative Bayes net model HybridBayesNet::Example(num_measurements) */ inline HybridGaussianFactorGraph createHybridGaussianFactorGraph( - int num_measurements = 1, + size_t num_measurements = 1, boost::optional measurements = boost::none, bool manyModes = false) { auto bayesNet = createHybridBayesNet(num_measurements, manyModes);