format and refactor the SFM BAL example

release/4.3a0
Varun Agrawal 2021-11-09 18:19:47 -05:00
parent a634a91c1a
commit 1bcb44784a
1 changed files with 59 additions and 48 deletions

View File

@ -7,49 +7,58 @@
See LICENSE for the license information
Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert)
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert, Varun Agrawal)
"""
import argparse
import logging
import sys
import matplotlib.pyplot as plt
import numpy as np
import gtsam
from gtsam import (
GeneralSFMFactorCal3Bundler,
PinholeCameraCal3Bundler,
PriorFactorPinholeCameraCal3Bundler,
readBal,
symbol_shorthand
)
from gtsam import (GeneralSFMFactorCal3Bundler,
PriorFactorPinholeCameraCal3Bundler, PriorFactorPoint3,
readBal)
from gtsam.symbol_shorthand import C, P
from gtsam.utils.plot import plot_3d_points, plot_trajectory
C = symbol_shorthand.C
P = symbol_shorthand.P
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
def plot(scene_data: gtsam.SfmData, result: gtsam.Values):
"""Plot the trajectory."""
plot_vals = gtsam.Values()
for cam_idx in range(scene_data.number_cameras()):
plot_vals.insert(C(cam_idx),
result.atPinholeCameraCal3Bundler(C(cam_idx)).pose())
for t_idx in range(scene_data.number_tracks()):
plot_vals.insert(P(t_idx), result.atPoint3(P(t_idx)))
def run(args):
plot_3d_points(0, plot_vals, linespec="g.")
plot_trajectory(0, plot_vals, show=True)
def run(args: argparse.Namespace):
""" Run LM optimization with BAL input data and report resulting error """
input_file = gtsam.findExampleDataFile(args.input_file)
if args.input_file:
input_file = args.input_file
else:
input_file = gtsam.findExampleDataFile("dubrovnik-3-7-pre")
# Load the SfM data from file
scene_data = readBal(input_file)
logging.info(f"read {scene_data.number_tracks()} tracks on {scene_data.number_cameras()} cameras\n")
logging.info("read %d tracks on %d cameras\n", scene_data.number_tracks(),
scene_data.number_cameras())
# Create a factor graph
graph = gtsam.NonlinearFactorGraph()
# We share *one* noiseModel between all projection factors
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Add measurements to the factor graph
j = 0
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx) # SfmTrack
track = scene_data.track(t_idx) # SfmTrack
# retrieve the SfmMeasurement objects
for m_idx in range(track.number_measurements()):
# i represents the camera index, and uv is the 2d measurement
@ -60,20 +69,18 @@ def run(args):
# Add a prior on pose x1. This indirectly specifies where the origin is.
graph.push_back(
gtsam.PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)
)
)
PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0),
gtsam.noiseModel.Isotropic.Sigma(9, 0.1)))
# Also add a prior on the position of the first landmark to fix the scale
graph.push_back(
gtsam.PriorFactorPoint3(
P(0), scene_data.track(0).point3(), gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
)
)
PriorFactorPoint3(P(0),
scene_data.track(0).point3(),
gtsam.noiseModel.Isotropic.Sigma(3, 0.1)))
# Create initial estimate
initial = gtsam.Values()
i = 0
# add each PinholeCameraCal3Bundler
for cam_idx in range(scene_data.number_cameras()):
@ -81,12 +88,10 @@ def run(args):
initial.insert(C(i), camera)
i += 1
j = 0
# add each SfmTrack
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx)
initial.insert(P(j), track.point3())
j += 1
track = scene_data.track(t_idx)
initial.insert(P(t_idx), track.point3())
# Optimize the graph and print results
try:
@ -94,25 +99,31 @@ def run(args):
params.setVerbosityLM("ERROR")
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = lm.optimize()
except Exception as e:
except RuntimeError:
logging.exception("LM Optimization failed")
return
# Error drops from ~2764.22 to ~0.046
logging.info(f"final error: {graph.error(result)}")
logging.info("initial error: %f", graph.error(initial))
logging.info("final error: %f", graph.error(result))
plot(scene_data, result)
def main():
"""Main runner."""
parser = argparse.ArgumentParser()
parser.add_argument('-i',
'--input_file',
type=str,
default="",
help="""Read SFM data from the specified BAL file.
The data format is described here: https://grail.cs.washington.edu/projects/bal/.
BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples,
then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector
and (x,y,z) 3d point initializations.""")
run(parser.parse_args())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input_file',
type=str,
default="dubrovnik-3-7-pre",
help='Read SFM data from the specified BAL file'
'The data format is described here: https://grail.cs.washington.edu/projects/bal/.'
'BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples, '
'then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector'
'and (x,y,z) 3d point initializations.'
)
run(parser.parse_args())
main()