Template on size_t, Darshan's updates to cleanup comments, default coordinate to exponential, separate filter and demo specific functions, rename stateAction to operator *, fix brace initialization

release/4.3a0
jenniferoum 2025-04-25 07:08:14 -07:00
parent 51e20eca58
commit 17bf752576
3 changed files with 895 additions and 972 deletions

259
examples/ABC.h Normal file
View File

@ -0,0 +1,259 @@
/**
* @file ABC.h
* @brief Core components for Attitude-Bias-Calibration systems
*
* This file contains fundamental components and utilities for the ABC system
* based on the paper "Overcoming Bias: Equivariant Filter Design for Biased
* Attitude Estimation with Online Calibration" by Fornasier et al.
* Authors: Darshan Rajasekaran & Jennifer Oum
*/
#ifndef ABC_H
#define ABC_H
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Unit3.h>
namespace gtsam {
namespace abc_eqf_lib {
using namespace std;
using namespace gtsam;
//========================================================================
// Utility Functions
//========================================================================
//========================================================================
// Utility Functions
//========================================================================
/// Check if a vector is a unit vector
bool checkNorm(const Vector3& x, double tol = 1e-3);
/// Check if vector contains NaN values
bool hasNaN(const Vector3& vec);
/// Create a block diagonal matrix from two matrices
Matrix blockDiag(const Matrix& A, const Matrix& B);
/// Repeat a block matrix n times along the diagonal
Matrix repBlock(const Matrix& A, int n);
// Utility Functions Implementation
/**
* @brief Verifies if a vector has unit norm within tolerance
* @param x 3d vector
* @param tol optional tolerance
* @return Bool indicating that the vector norm is approximately 1
*/
bool checkNorm(const Vector3& x, double tol) {
return abs(x.norm() - 1) < tol || std::isnan(x.norm());
}
/**
* @brief Checks if the input vector has any NaNs
* @param vec A 3-D vector
* @return true if present, false otherwise
*/
bool hasNaN(const Vector3& vec) {
return std::isnan(vec[0]) || std::isnan(vec[1]) || std::isnan(vec[2]);
}
/**
* @brief Creates a block diagonal matrix from input matrices
* @param A Matrix A
* @param B Matrix B
* @return A single consolidated matrix with A in the top left and B in the
* bottom right
*/
Matrix blockDiag(const Matrix& A, const Matrix& B) {
if (A.size() == 0) {
return B;
} else if (B.size() == 0) {
return A;
} else {
Matrix result(A.rows() + B.rows(), A.cols() + B.cols());
result.setZero();
result.block(0, 0, A.rows(), A.cols()) = A;
result.block(A.rows(), A.cols(), B.rows(), B.cols()) = B;
return result;
}
}
/**
* @brief Creates a block diagonal matrix by repeating a matrix 'n' times
* @param A A matrix
* @param n Number of times to be repeated
* @return Block diag matrix with A repeated 'n' times
*/
Matrix repBlock(const Matrix& A, int n) {
if (n <= 0) return Matrix();
Matrix result = A;
for (int i = 1; i < n; i++) {
result = blockDiag(result, A);
}
return result;
}
//========================================================================
// Core Data Types
//========================================================================
/// Input struct for the Biased Attitude System
struct Input {
Vector3 w; /// Angular velocity (3-vector)
Matrix Sigma; /// Noise covariance (6x6 matrix)
static Input random(); /// Random input
Matrix3 W() const { /// Return w as a skew symmetric matrix
return Rot3::Hat(w);
}
};
/// Measurement struct
struct Measurement {
Unit3 y; /// Measurement direction in sensor frame
Unit3 d; /// Known direction in global frame
Matrix3 Sigma; /// Covariance matrix of the measurement
int cal_idx = -1; /// Calibration index (-1 for calibrated sensor)
};
/// State class representing the state of the Biased Attitude System
template <size_t N>
class State {
public:
Rot3 R; // Attitude rotation matrix R
Vector3 b; // Gyroscope bias b
std::array<Rot3, N> S; // Sensor calibrations S
/// Constructor
State(const Rot3& R = Rot3::Identity(), const Vector3& b = Vector3::Zero(),
const std::array<Rot3, N>& S = std::array<Rot3, N>{})
: R(R), b(b), S(S) {}
/// Identity function
static State identity() {
std::array<Rot3, N> S_id{};
S_id.fill(Rot3::Identity());
return State(Rot3::Identity(), Vector3::Zero(), S_id);
}
/**
* Compute Local coordinates in the state relative to another state.
* @param other The other state
* @return Local coordinates in the tangent space
*/
Vector localCoordinates(const State<N>& other) const {
Vector eps(6 + 3 * N);
// First 3 elements - attitude
eps.head<3>() = Rot3::Logmap(R.between(other.R));
// Next 3 elements - bias
// Next 3 elements - bias
eps.segment<3>(3) = other.b - b;
// Remaining elements - calibrations
for (size_t i = 0; i < N; i++) {
eps.segment<3>(6 + 3 * i) = Rot3::Logmap(S[i].between(other.S[i]));
}
return eps;
}
/**
* Retract from tangent space back to the manifold
* @param v Vector in the tangent space
* @return New state
*/
State retract(const Vector& v) const {
if (v.size() != static_cast<Eigen::Index>(6 + 3 * N)) {
throw std::invalid_argument(
"Vector size does not match state dimensions");
}
Rot3 newR = R * Rot3::Expmap(v.head<3>());
Vector3 newB = b + v.segment<3>(3);
std::array<Rot3, N> newS;
for (size_t i = 0; i < N; i++) {
newS[i] = S[i] * Rot3::Expmap(v.segment<3>(6 + 3 * i));
}
return State(newR, newB, newS);
}
};
//========================================================================
// Symmetry Group
//========================================================================
/**
* Symmetry group (SO(3) |x so(3)) x SO(3) x ... x SO(3)
* Each element of the B list is associated with a calibration state
*/
template <size_t N>
struct G {
Rot3 A; /// First SO(3) element
Matrix3 a; /// so(3) element (skew-symmetric matrix)
std::array<Rot3, N> B; /// List of SO(3) elements for calibration
/// Initialize the symmetry group G
G(const Rot3& A = Rot3::Identity(), const Matrix3& a = Matrix3::Zero(),
const std::array<Rot3, N>& B = std::array<Rot3, N>{})
: A(A), a(a), B(B) {}
/// Group multiplication
G operator*(const G<N>& other) const {
std::array<Rot3, N> newB;
for (size_t i = 0; i < N; i++) {
newB[i] = B[i] * other.B[i];
}
return G(A * other.A, a + Rot3::Hat(A.matrix() * Rot3::Vee(other.a)), newB);
}
/// Group inverse
G inv() const {
Matrix3 Ainv = A.inverse().matrix();
std::array<Rot3, N> Binv;
for (size_t i = 0; i < N; i++) {
Binv[i] = B[i].inverse();
}
return G(A.inverse(), -Rot3::Hat(Ainv * Rot3::Vee(a)), Binv);
}
/// Identity element
static G identity(int n) {
std::array<Rot3, N> B;
B.fill(Rot3::Identity());
return G(Rot3::Identity(), Matrix3::Zero(), B);
}
/// Exponential map of the tangent space elements to the group
static G exp(const Vector& x) {
if (x.size() != static_cast<Eigen::Index>(6 + 3 * N)) {
throw std::invalid_argument("Vector size mismatch for group exponential");
}
Rot3 A = Rot3::Expmap(x.head<3>());
Vector3 a_vee = Rot3::ExpmapDerivative(-x.head<3>()) * x.segment<3>(3);
Matrix3 a = Rot3::Hat(a_vee);
std::array<Rot3, N> B;
for (size_t i = 0; i < N; i++) {
B[i] = Rot3::Expmap(x.segment<3>(6 + 3 * i));
}
return G(A, a, B);
}
};
} // namespace abc_eqf_lib
template <size_t N>
struct traits<abc_eqf_lib::State<N>>
: internal::LieGroupTraits<abc_eqf_lib::State<N>> {};
template <size_t N>
struct traits<abc_eqf_lib::G<N>> : internal::LieGroupTraits<abc_eqf_lib::G<N>> {
};
} // namespace gtsam
#endif // ABC_H

File diff suppressed because it is too large Load Diff

View File

@ -3,17 +3,33 @@
* @brief Demonstration of the full Attitude-Bias-Calibration Equivariant Filter * @brief Demonstration of the full Attitude-Bias-Calibration Equivariant Filter
* *
* This demo shows the Equivariant Filter (EqF) for attitude estimation * This demo shows the Equivariant Filter (EqF) for attitude estimation
* with both gyroscope bias and sensor extrinsic calibration, based on the paper: * with both gyroscope bias and sensor extrinsic calibration, based on the
* "Overcoming Bias: Equivariant Filter Design for Biased Attitude Estimation * paper: "Overcoming Bias: Equivariant Filter Design for Biased Attitude
* with Online Calibration" by Fornasier et al. * Estimation with Online Calibration" by Fornasier et al. Authors: Darshan
* Authors: Darshan Rajasekaran & Jennifer Oum * Rajasekaran & Jennifer Oum
*/ */
#include "ABC_EQF.h" #include "ABC_EQF.h"
// Use namespace for convenience // Use namespace for convenience
using namespace abc_eqf_lib;
using namespace gtsam; using namespace gtsam;
constexpr size_t N = 1; // Number of calibration states
using M = abc_eqf_lib::State<N>;
using Group = abc_eqf_lib::G<N>;
using EqFilter = abc_eqf_lib::EqF<N>;
using gtsam::abc_eqf_lib::EqF;
using gtsam::abc_eqf_lib::Input;
using gtsam::abc_eqf_lib::Measurement;
/// Data structure for ground-truth, input and output data
struct Data {
M xi; /// Ground-truth state
Input u; /// Input measurements
std::vector<Measurement> y; /// Output measurements
int n_meas; /// Number of measurements
double t; /// Time
double dt; /// Time step
};
//======================================================================== //========================================================================
// Data Processing Functions // Data Processing Functions
@ -31,402 +47,398 @@ using namespace gtsam;
* - std_w_x, std_w_y, std_w_z: Angular velocity measurement standard deviations * - std_w_x, std_w_y, std_w_z: Angular velocity measurement standard deviations
* - std_b_x, std_b_y, std_b_z: Bias process noise standard deviations * - std_b_x, std_b_y, std_b_z: Bias process noise standard deviations
* - y_x_0, y_y_0, y_z_0, y_x_1, y_y_1, y_z_1: Direction measurements * - y_x_0, y_y_0, y_z_0, y_x_1, y_y_1, y_z_1: Direction measurements
* - std_y_x_0, std_y_y_0, std_y_z_0, std_y_x_1, std_y_y_1, std_y_z_1: Direction measurement standard deviations * - std_y_x_0, std_y_y_0, std_y_z_0, std_y_x_1, std_y_y_1, std_y_z_1: Direction
* measurement standard deviations
* - d_x_0, d_y_0, d_z_0, d_x_1, d_y_1, d_z_1: Reference directions * - d_x_0, d_y_0, d_z_0, d_x_1, d_y_1, d_z_1: Reference directions
* *
* @param filename Path to the CSV file
* @param startRow First row to load (default: 0)
* @param maxRows Maximum number of rows to load (default: all)
* @param downsample Downsample factor (default: 1, which means no downsampling)
* @return Vector of Data objects
*/ */
std::vector<Data> loadDataFromCSV(const std::string& filename, std::vector<Data> loadDataFromCSV(const std::string& filename, int startRow = 0,
int startRow = 0, int maxRows = -1, int downsample = 1);
int maxRows = -1,
int downsample = 1);
/** /// Process data with EqF and print summary results
* Process data with EqF and print summary results void processDataWithEqF(EqFilter& filter, const std::vector<Data>& data_list,
* @param filter Initialized EqF filter int printInterval = 10);
* @param data_list Vector of Data objects to process
* @param printInterval Progress indicator interval (used internally)
*/
void processDataWithEqF(EqF& filter, const std::vector<Data>& data_list, int printInterval = 10);
//======================================================================== //========================================================================
// Data Processing Functions Implementation // Data Processing Functions Implementation
//======================================================================== //========================================================================
/** /*
* @brief Loads the test data from the csv file * Loads the test data from the csv file
* @param filename path to the csv file is specified * startRow First row to load based on csv, 0 by default
* @param startRow First row to load based on csv, 0 by default * maxRows maximum rows to load, defaults to all rows
* @param maxRows maximum rows to load, defaults to all rows * downsample Downsample factor, default 1
* @param downsample Downsample factor, default 1 * A list of data objects
* @return A list of data objects */
*/
std::vector<Data> loadDataFromCSV(const std::string& filename, int startRow,
int maxRows, int downsample) {
std::vector<Data> data_list;
std::ifstream file(filename);
if (!file.is_open()) {
throw std::runtime_error("Failed to open file: " + filename);
}
std::vector<Data> loadDataFromCSV(const std::string& filename, std::cout << "Loading data from " << filename << "..." << std::flush;
int startRow,
int maxRows,
int downsample) {
std::vector<Data> data_list;
std::ifstream file(filename);
if (!file.is_open()) { std::string line;
throw std::runtime_error("Failed to open file: " + filename); int lineNumber = 0;
} int rowCount = 0;
int errorCount = 0;
double prevTime = 0.0;
std::cout << "Loading data from " << filename << "..." << std::flush; // Skip header
std::getline(file, line);
lineNumber++;
std::string line; // Skip to startRow
int lineNumber = 0; while (lineNumber < startRow && std::getline(file, line)) {
int rowCount = 0; lineNumber++;
int errorCount = 0; }
double prevTime = 0.0;
// Skip header // Read data
std::getline(file, line); while (std::getline(file, line) && (maxRows == -1 || rowCount < maxRows)) {
lineNumber++; lineNumber++;
// Skip to startRow // Apply downsampling
while (lineNumber < startRow && std::getline(file, line)) { if ((lineNumber - startRow - 1) % downsample != 0) {
lineNumber++; continue;
} }
// Read data std::istringstream ss(line);
while (std::getline(file, line) && (maxRows == -1 || rowCount < maxRows)) { std::string token;
lineNumber++; std::vector<double> values;
// Apply downsampling // Parse line into values
if ((lineNumber - startRow - 1) % downsample != 0) { while (std::getline(ss, token, ',')) {
continue; try {
} values.push_back(std::stod(token));
} catch (const std::exception& e) {
std::istringstream ss(line); errorCount++;
std::string token; values.push_back(0.0); // Use default value
std::vector<double> values; }
// Parse line into values
while (std::getline(ss, token, ',')) {
try {
values.push_back(std::stod(token));
} catch (const std::exception& e) {
errorCount++;
values.push_back(0.0); // Use default value
}
}
// Check if we have enough values
if (values.size() < 39) {
errorCount++;
continue;
}
// Extract values
double t = values[0];
double dt = (rowCount == 0) ? 0.0 : t - prevTime;
prevTime = t;
// Create ground truth state
Quaternion quat(values[1], values[2], values[3], values[4]); // w, x, y, z
Rot3 R = Rot3(quat);
Vector3 b(values[5], values[6], values[7]);
Quaternion calQuat(values[8], values[9], values[10], values[11]); // w, x, y, z
std::vector<Rot3> S = {Rot3(calQuat)};
State xi(R, b, S);
// Create input
Vector3 w(values[12], values[13], values[14]);
// Create input covariance matrix (6x6)
// First 3x3 block for angular velocity, second 3x3 block for bias process noise
Matrix inputCov = Matrix::Zero(6, 6);
inputCov(0, 0) = values[15] * values[15]; // std_w_x^2
inputCov(1, 1) = values[16] * values[16]; // std_w_y^2
inputCov(2, 2) = values[17] * values[17]; // std_w_z^2
inputCov(3, 3) = values[18] * values[18]; // std_b_x^2
inputCov(4, 4) = values[19] * values[19]; // std_b_y^2
inputCov(5, 5) = values[20] * values[20]; // std_b_z^2
Input u{w, inputCov};
// Create measurements
std::vector<Measurement> measurements;
// First measurement (calibrated sensor, cal_idx = 0)
Vector3 y0(values[21], values[22], values[23]);
Vector3 d0(values[33], values[34], values[35]);
// Normalize vectors if needed
if (abs(y0.norm() - 1.0) > 1e-5) y0.normalize();
if (abs(d0.norm() - 1.0) > 1e-5) d0.normalize();
// Measurement covariance
Matrix3 covY0 = Matrix3::Zero();
covY0(0, 0) = values[27] * values[27]; // std_y_x_0^2
covY0(1, 1) = values[28] * values[28]; // std_y_y_0^2
covY0(2, 2) = values[29] * values[29]; // std_y_z_0^2
// Create measurement
measurements.push_back(Measurement{Unit3(y0), Unit3(d0), covY0, 0});
// Second measurement (calibrated sensor, cal_idx = -1)
Vector3 y1(values[24], values[25], values[26]);
Vector3 d1(values[36], values[37], values[38]);
// Normalize vectors if needed
if (abs(y1.norm() - 1.0) > 1e-5) y1.normalize();
if (abs(d1.norm() - 1.0) > 1e-5) d1.normalize();
// Measurement covariance
Matrix3 covY1 = Matrix3::Zero();
covY1(0, 0) = values[30] * values[30]; // std_y_x_1^2
covY1(1, 1) = values[31] * values[31]; // std_y_y_1^2
covY1(2, 2) = values[32] * values[32]; // std_y_z_1^2
// Create measurement
measurements.push_back(Measurement{Unit3(y1), Unit3(d1), covY1, -1});
// Create Data object and add to list
data_list.push_back(Data{xi, 1, u, measurements, 2, t, dt});
rowCount++;
// Show loading progress every 1000 rows
if (rowCount % 1000 == 0) {
std::cout << "." << std::flush;
}
} }
std::cout << " Done!" << std::endl; // Check if we have enough values
std::cout << "Loaded " << data_list.size() << " data points"; if (values.size() < 39) {
errorCount++;
if (errorCount > 0) { continue;
std::cout << " (" << errorCount << " errors encountered)";
} }
std::cout << std::endl; // Extract values
double t = values[0];
double dt = (rowCount == 0) ? 0.0 : t - prevTime;
prevTime = t;
return data_list; // Create ground truth state
} Quaternion quat(values[1], values[2], values[3], values[4]); // w, x, y, z
/** Rot3 R = Rot3(quat);
* @brief Takes in the data and runs an EqF on it and reports the results
* @param filter Initialized EqF filter Vector3 b(values[5], values[6], values[7]);
* @param data_list std::vector<Data>
* @param printInterval Progress indicator Quaternion calQuat(values[8], values[9], values[10],
* Prints the performance statstics like average error etc values[11]); // w, x, y, z
* Uses Rot3 between, logmap and rpy functions std::array<Rot3, N> S = {Rot3(calQuat)};
*/
void processDataWithEqF(EqF& filter, const std::vector<Data>& data_list, int printInterval) { M xi(R, b, S);
if (data_list.empty()) {
std::cerr << "No data to process" << std::endl; // Create input
return; Vector3 w(values[12], values[13], values[14]);
// Create input covariance matrix (6x6)
// First 3x3 block for angular velocity, second 3x3 block for bias process
// noise
Matrix inputCov = Matrix::Zero(6, 6);
inputCov(0, 0) = values[15] * values[15]; // std_w_x^2
inputCov(1, 1) = values[16] * values[16]; // std_w_y^2
inputCov(2, 2) = values[17] * values[17]; // std_w_z^2
inputCov(3, 3) = values[18] * values[18]; // std_b_x^2
inputCov(4, 4) = values[19] * values[19]; // std_b_y^2
inputCov(5, 5) = values[20] * values[20]; // std_b_z^2
Input u{w, inputCov};
// Create measurements
std::vector<Measurement> measurements;
// First measurement (calibrated sensor, cal_idx = 0)
Vector3 y0(values[21], values[22], values[23]);
Vector3 d0(values[33], values[34], values[35]);
// Normalize vectors if needed
if (abs(y0.norm() - 1.0) > 1e-5) y0.normalize();
if (abs(d0.norm() - 1.0) > 1e-5) d0.normalize();
// Measurement covariance
Matrix3 covY0 = Matrix3::Zero();
covY0(0, 0) = values[27] * values[27]; // std_y_x_0^2
covY0(1, 1) = values[28] * values[28]; // std_y_y_0^2
covY0(2, 2) = values[29] * values[29]; // std_y_z_0^2
// Create measurement
measurements.push_back(Measurement{Unit3(y0), Unit3(d0), covY0, 0});
// Second measurement (calibrated sensor, cal_idx = -1)
Vector3 y1(values[24], values[25], values[26]);
Vector3 d1(values[36], values[37], values[38]);
// Normalize vectors if needed
if (abs(y1.norm() - 1.0) > 1e-5) y1.normalize();
if (abs(d1.norm() - 1.0) > 1e-5) d1.normalize();
// Measurement covariance
Matrix3 covY1 = Matrix3::Zero();
covY1(0, 0) = values[30] * values[30]; // std_y_x_1^2
covY1(1, 1) = values[31] * values[31]; // std_y_y_1^2
covY1(2, 2) = values[32] * values[32]; // std_y_z_1^2
// Create measurement
measurements.push_back(Measurement{Unit3(y1), Unit3(d1), covY1, -1});
// Create Data object and add to list
data_list.push_back(Data{xi, u, measurements, 2, t, dt});
rowCount++;
// Show loading progress every 1000 rows
if (rowCount % 1000 == 0) {
std::cout << "." << std::flush;
} }
}
std::cout << "Processing " << data_list.size() << " data points with EqF..." << std::endl; std::cout << " Done!" << std::endl;
std::cout << "Loaded " << data_list.size() << " data points";
// Track performance metrics if (errorCount > 0) {
std::vector<double> att_errors; std::cout << " (" << errorCount << " errors encountered)";
std::vector<double> bias_errors; }
std::vector<double> cal_errors;
// Track time for performance measurement std::cout << std::endl;
auto start = std::chrono::high_resolution_clock::now();
int totalMeasurements = 0; return data_list;
int validMeasurements = 0;
// Define constant for converting radians to degrees
const double RAD_TO_DEG = 180.0 / M_PI;
// Print a progress indicator
int progressStep = data_list.size() / 10; // 10 progress updates
if (progressStep < 1) progressStep = 1;
std::cout << "Progress: ";
for (size_t i = 0; i < data_list.size(); i++) {
const Data& data = data_list[i];
// Propagate filter with current input and time step
filter.propagation(data.u, data.dt);
// Process all measurements
for (const auto& y : data.y) {
totalMeasurements++;
// Skip invalid measurements
Vector3 y_vec = y.y.unitVector();
Vector3 d_vec = y.d.unitVector();
if (std::isnan(y_vec[0]) || std::isnan(y_vec[1]) || std::isnan(y_vec[2]) ||
std::isnan(d_vec[0]) || std::isnan(d_vec[1]) || std::isnan(d_vec[2])) {
continue;
}
try {
filter.update(y);
validMeasurements++;
} catch (const std::exception& e) {
std::cerr << "Error updating at t=" << data.t
<< ": " << e.what() << std::endl;
}
}
// Get current state estimate
State estimate = filter.stateEstimate();
// Calculate errors
Vector3 att_error = Rot3::Logmap(data.xi.R.between(estimate.R));
Vector3 bias_error = estimate.b - data.xi.b;
Vector3 cal_error = Vector3::Zero();
if (!data.xi.S.empty() && !estimate.S.empty()) {
cal_error = Rot3::Logmap(data.xi.S[0].between(estimate.S[0]));
}
// Store errors
att_errors.push_back(att_error.norm());
bias_errors.push_back(bias_error.norm());
cal_errors.push_back(cal_error.norm());
// Show progress dots
if (i % progressStep == 0) {
std::cout << "." << std::flush;
}
}
std::cout << " Done!" << std::endl;
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end - start;
// Calculate average errors
double avg_att_error = 0.0;
double avg_bias_error = 0.0;
double avg_cal_error = 0.0;
if (!att_errors.empty()) {
avg_att_error = std::accumulate(att_errors.begin(), att_errors.end(), 0.0) / att_errors.size();
avg_bias_error = std::accumulate(bias_errors.begin(), bias_errors.end(), 0.0) / bias_errors.size();
avg_cal_error = std::accumulate(cal_errors.begin(), cal_errors.end(), 0.0) / cal_errors.size();
}
// Calculate final errors from last data point
const Data& final_data = data_list.back();
State final_estimate = filter.stateEstimate();
Vector3 final_att_error = Rot3::Logmap(final_data.xi.R.between(final_estimate.R));
Vector3 final_bias_error = final_estimate.b - final_data.xi.b;
Vector3 final_cal_error = Vector3::Zero();
if (!final_data.xi.S.empty() && !final_estimate.S.empty()) {
final_cal_error = Rot3::Logmap(final_data.xi.S[0].between(final_estimate.S[0]));
}
// Print summary statistics
std::cout << "\n=== Filter Performance Summary ===" << std::endl;
std::cout << "Processing time: " << elapsed.count() << " seconds" << std::endl;
std::cout << "Processed measurements: " << totalMeasurements << " (valid: " << validMeasurements << ")" << std::endl;
// Average errors
std::cout << "\n-- Average Errors --" << std::endl;
std::cout << "Attitude: " << (avg_att_error * RAD_TO_DEG) << "°" << std::endl;
std::cout << "Bias: " << avg_bias_error << std::endl;
std::cout << "Calibration: " << (avg_cal_error * RAD_TO_DEG) << "°" << std::endl;
// Final errors
std::cout << "\n-- Final Errors --" << std::endl;
std::cout << "Attitude: " << (final_att_error.norm() * RAD_TO_DEG) << "°" << std::endl;
std::cout << "Bias: " << final_bias_error.norm() << std::endl;
std::cout << "Calibration: " << (final_cal_error.norm() * RAD_TO_DEG) << "°" << std::endl;
// Print a brief comparison of final estimate vs ground truth
std::cout << "\n-- Final State vs Ground Truth --" << std::endl;
std::cout << "Attitude (RPY) - Estimate: "
<< (final_estimate.R.rpy() * RAD_TO_DEG).transpose() << "° | Truth: "
<< (final_data.xi.R.rpy() * RAD_TO_DEG).transpose() << "°" << std::endl;
std::cout << "Bias - Estimate: " << final_estimate.b.transpose()
<< " | Truth: " << final_data.xi.b.transpose() << std::endl;
if (!final_estimate.S.empty() && !final_data.xi.S.empty()) {
std::cout << "Calibration (RPY) - Estimate: "
<< (final_estimate.S[0].rpy() * RAD_TO_DEG).transpose() << "° | Truth: "
<< (final_data.xi.S[0].rpy() * RAD_TO_DEG).transpose() << "°" << std::endl;
}
} }
/** /// Takes in the data and runs an EqF on it and reports the results
* Main function for the EqF demo void processDataWithEqF(EqFilter& filter, const std::vector<Data>& data_list,
* @param argc Number of arguments int printInterval) {
* @param argv Array of arguments if (data_list.empty()) {
* @return Exit code std::cerr << "No data to process" << std::endl;
*/ return;
}
std::cout << "Processing " << data_list.size() << " data points with EqF..."
<< std::endl;
// Track performance metrics
std::vector<double> att_errors;
std::vector<double> bias_errors;
std::vector<double> cal_errors;
// Track time for performance measurement
auto start = std::chrono::high_resolution_clock::now();
int totalMeasurements = 0;
int validMeasurements = 0;
// Define constant for converting radians to degrees
const double RAD_TO_DEG = 180.0 / M_PI;
// Print a progress indicator
int progressStep = data_list.size() / 10; // 10 progress updates
if (progressStep < 1) progressStep = 1;
std::cout << "Progress: ";
for (size_t i = 0; i < data_list.size(); i++) {
const Data& data = data_list[i];
// Propagate filter with current input and time step
filter.propagation(data.u, data.dt);
// Process all measurements
for (const auto& y : data.y) {
totalMeasurements++;
// Skip invalid measurements
Vector3 y_vec = y.y.unitVector();
Vector3 d_vec = y.d.unitVector();
if (std::isnan(y_vec[0]) || std::isnan(y_vec[1]) ||
std::isnan(y_vec[2]) || std::isnan(d_vec[0]) ||
std::isnan(d_vec[1]) || std::isnan(d_vec[2])) {
continue;
}
try {
filter.update(y);
validMeasurements++;
} catch (const std::exception& e) {
std::cerr << "Error updating at t=" << data.t << ": " << e.what()
<< std::endl;
}
}
// Get current state estimate
M estimate = filter.stateEstimate();
// Calculate errors
Vector3 att_error = Rot3::Logmap(data.xi.R.between(estimate.R));
Vector3 bias_error = estimate.b - data.xi.b;
Vector3 cal_error = Vector3::Zero();
if (!data.xi.S.empty() && !estimate.S.empty()) {
cal_error = Rot3::Logmap(data.xi.S[0].between(estimate.S[0]));
}
// Store errors
att_errors.push_back(att_error.norm());
bias_errors.push_back(bias_error.norm());
cal_errors.push_back(cal_error.norm());
// Show progress dots
if (i % progressStep == 0) {
std::cout << "." << std::flush;
}
}
std::cout << " Done!" << std::endl;
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end - start;
// Calculate average errors
double avg_att_error = 0.0;
double avg_bias_error = 0.0;
double avg_cal_error = 0.0;
if (!att_errors.empty()) {
avg_att_error = std::accumulate(att_errors.begin(), att_errors.end(), 0.0) /
att_errors.size();
avg_bias_error =
std::accumulate(bias_errors.begin(), bias_errors.end(), 0.0) /
bias_errors.size();
avg_cal_error = std::accumulate(cal_errors.begin(), cal_errors.end(), 0.0) /
cal_errors.size();
}
// Calculate final errors from last data point
const Data& final_data = data_list.back();
M final_estimate = filter.stateEstimate();
Vector3 final_att_error =
Rot3::Logmap(final_data.xi.R.between(final_estimate.R));
Vector3 final_bias_error = final_estimate.b - final_data.xi.b;
Vector3 final_cal_error = Vector3::Zero();
if (!final_data.xi.S.empty() && !final_estimate.S.empty()) {
final_cal_error =
Rot3::Logmap(final_data.xi.S[0].between(final_estimate.S[0]));
}
// Print summary statistics
std::cout << "\n=== Filter Performance Summary ===" << std::endl;
std::cout << "Processing time: " << elapsed.count() << " seconds"
<< std::endl;
std::cout << "Processed measurements: " << totalMeasurements
<< " (valid: " << validMeasurements << ")" << std::endl;
// Average errors
std::cout << "\n-- Average Errors --" << std::endl;
std::cout << "Attitude: " << (avg_att_error * RAD_TO_DEG) << "°" << std::endl;
std::cout << "Bias: " << avg_bias_error << std::endl;
std::cout << "Calibration: " << (avg_cal_error * RAD_TO_DEG) << "°"
<< std::endl;
// Final errors
std::cout << "\n-- Final Errors --" << std::endl;
std::cout << "Attitude: " << (final_att_error.norm() * RAD_TO_DEG) << "°"
<< std::endl;
std::cout << "Bias: " << final_bias_error.norm() << std::endl;
std::cout << "Calibration: " << (final_cal_error.norm() * RAD_TO_DEG) << "°"
<< std::endl;
// Print a brief comparison of final estimate vs ground truth
std::cout << "\n-- Final State vs Ground Truth --" << std::endl;
std::cout << "Attitude (RPY) - Estimate: "
<< (final_estimate.R.rpy() * RAD_TO_DEG).transpose()
<< "° | Truth: " << (final_data.xi.R.rpy() * RAD_TO_DEG).transpose()
<< "°" << std::endl;
std::cout << "Bias - Estimate: " << final_estimate.b.transpose()
<< " | Truth: " << final_data.xi.b.transpose() << std::endl;
if (!final_estimate.S.empty() && !final_data.xi.S.empty()) {
std::cout << "Calibration (RPY) - Estimate: "
<< (final_estimate.S[0].rpy() * RAD_TO_DEG).transpose()
<< "° | Truth: "
<< (final_data.xi.S[0].rpy() * RAD_TO_DEG).transpose() << "°"
<< std::endl;
}
}
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
std::cout << "ABC-EqF: Attitude-Bias-Calibration Equivariant Filter Demo" << std::endl; std::cout << "ABC-EqF: Attitude-Bias-Calibration Equivariant Filter Demo"
std::cout << "==============================================================" << std::endl; << std::endl;
std::cout << "=============================================================="
<< std::endl;
try { try {
// Parse command line options // Parse command line options
std::string csvFilePath; std::string csvFilePath;
int maxRows = -1; // Process all rows by default int maxRows = -1; // Process all rows by default
int downsample = 1; // No downsampling by default int downsample = 1; // No downsampling by default
if (argc > 1) { if (argc > 1) {
csvFilePath = argv[1]; csvFilePath = argv[1];
} else { } else {
// Try to find the EQFdata file in the GTSAM examples directory // Try to find the EQFdata file in the GTSAM examples directory
try { try {
csvFilePath = findExampleDataFile("EqFdata.csv"); csvFilePath = findExampleDataFile("EqFdata.csv");
} catch (const std::exception& e) { } catch (const std::exception& e) {
std::cerr << "Error: Could not find EqFdata.csv" << std::endl; std::cerr << "Error: Could not find EqFdata.csv" << std::endl;
std::cerr << "Usage: " << argv[0] << " [csv_file_path] [max_rows] [downsample]" << std::endl; std::cerr << "Usage: " << argv[0]
return 1; << " [csv_file_path] [max_rows] [downsample]" << std::endl;
}
}
// Optional command line parameters
if (argc > 2) {
maxRows = std::stoi(argv[2]);
}
if (argc > 3) {
downsample = std::stoi(argv[3]);
}
// Load data from CSV file
std::vector<Data> data = loadDataFromCSV(csvFilePath, 0, maxRows, downsample);
if (data.empty()) {
std::cerr << "No data available to process. Exiting." << std::endl;
return 1;
}
// Initialize the EqF filter with one calibration state
int n_cal = 1;
int n_sensors = 2;
// Initial covariance - larger values allow faster convergence
Matrix initialSigma = Matrix::Identity(6 + 3*n_cal, 6 + 3*n_cal);
initialSigma.diagonal().head<3>() = Vector3::Constant(0.1); // Attitude uncertainty
initialSigma.diagonal().segment<3>(3) = Vector3::Constant(0.01); // Bias uncertainty
initialSigma.diagonal().tail<3>() = Vector3::Constant(0.1); // Calibration uncertainty
// Create filter
EqF filter(initialSigma, n_cal, n_sensors);
// Process data
processDataWithEqF(filter, data);
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1; return 1;
}
} }
std::cout << "\nEqF demonstration completed successfully." << std::endl; // Optional command line parameters
return 0; if (argc > 2) {
maxRows = std::stoi(argv[2]);
}
if (argc > 3) {
downsample = std::stoi(argv[3]);
}
// Load data from CSV file
std::vector<Data> data =
loadDataFromCSV(csvFilePath, 0, maxRows, downsample);
if (data.empty()) {
std::cerr << "No data available to process. Exiting." << std::endl;
return 1;
}
// Initialize the EqF filter with one calibration state
int n_sensors = 2;
// Initial covariance - larger values allow faster convergence
Matrix initialSigma = Matrix::Identity(6 + 3 * N, 6 + 3 * N);
initialSigma.diagonal().head<3>() =
Vector3::Constant(0.1); // Attitude uncertainty
initialSigma.diagonal().segment<3>(3) =
Vector3::Constant(0.01); // Bias uncertainty
initialSigma.diagonal().tail<3>() =
Vector3::Constant(0.1); // Calibration uncertainty
// Create filter
EqFilter filter(initialSigma, n_sensors);
// Process data
processDataWithEqF(filter, data);
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
std::cout << "\nEqF demonstration completed successfully." << std::endl;
return 0;
} }