Inline measurement, G, and State functions, use brace initialization
parent
925e94ecc2
commit
51e20eca58
|
@ -73,7 +73,7 @@ Matrix numericalDifferential(std::function<Vector(const Vector&)> f, const Vecto
|
|||
|
||||
|
||||
|
||||
/// Input class for the Biased Attitude System
|
||||
/// Input struct for the Biased Attitude System
|
||||
|
||||
struct Input {
|
||||
Vector3 w; /// Angular velocity (3-vector)
|
||||
|
@ -96,15 +96,22 @@ struct Input {
|
|||
}
|
||||
};
|
||||
|
||||
/// Measurement class
|
||||
/// Measurement struct
|
||||
|
||||
struct Measurement {
|
||||
Unit3 y; /// Measurement direction in sensor frame
|
||||
Unit3 d; /// Known direction in global frame
|
||||
Matrix3 Sigma; /// Covariance matrix of the measurement
|
||||
int cal_idx = -1; /// Calibration index (-1 for calibrated sensor)
|
||||
Measurement(const Vector3& y_vec, const Vector3& d_vec,
|
||||
const Matrix3& Sigma, int i = -1);
|
||||
static Measurement create(const Unit3& y_vec, const Unit3& d_vec, /// Initialize measurement
|
||||
const Matrix3& Sigma_in, int i) {
|
||||
/// Check positive semi-definite
|
||||
Eigen::SelfAdjointEigenSolver<Matrix3> eigensolver(Sigma_in);
|
||||
if (eigensolver.eigenvalues().minCoeff() < -1e-10) {
|
||||
throw std::invalid_argument("Covariance matrix must be semi-positive definite");
|
||||
}
|
||||
return Measurement{y_vec, Unit3(d_vec), Sigma_in, i}; // Brace initialization
|
||||
}
|
||||
};
|
||||
|
||||
/// State class representing the state of the Biased Attitude System
|
||||
|
@ -115,10 +122,17 @@ public:
|
|||
Vector3 b; // Gyroscope bias b
|
||||
std::vector<Rot3> S; // Sensor calibrations S
|
||||
|
||||
/// Constructor
|
||||
State(const Rot3& R = Rot3::Identity(),
|
||||
const Vector3& b = Vector3::Zero(),
|
||||
const std::vector<Rot3>& S = std::vector<Rot3>());
|
||||
const std::vector<Rot3>& S = std::vector<Rot3>())
|
||||
: R(R), b(b), S(S) {}
|
||||
|
||||
/// Identity function
|
||||
static State identity(int n) {
|
||||
std::vector<Rot3> calibrations(n, Rot3::Identity());
|
||||
return State(Rot3::Identity(), Vector3::Zero(), calibrations);
|
||||
}
|
||||
/**
|
||||
* Compute Local coordinates in the state relative to another state.
|
||||
* @param other The other state
|
||||
|
@ -165,34 +179,24 @@ public:
|
|||
|
||||
return State(newR, newB, newS);
|
||||
}
|
||||
|
||||
static State identity(int n);
|
||||
};
|
||||
|
||||
/// Data structure for ground-truth, input and output data
|
||||
|
||||
struct Data {
|
||||
State xi; // Ground-truth state
|
||||
int n_cal; // Number of calibration states
|
||||
Input u; // Input measurements
|
||||
std::vector<Measurement> y; // Output measurements
|
||||
int n_meas; // Number of measurements
|
||||
double t; // Time
|
||||
double dt; // Time step
|
||||
State xi; /// Ground-truth state
|
||||
int n_cal; /// Number of calibration states
|
||||
Input u; /// Input measurements
|
||||
std::vector<Measurement> y; /// Output measurements
|
||||
int n_meas; /// Number of measurements
|
||||
double t; /// Time
|
||||
double dt; /// Time step
|
||||
|
||||
/**
|
||||
* Initialize Data
|
||||
* @param xi Ground-truth state
|
||||
* @param n_cal Number of calibration states
|
||||
* @param u Input measurements
|
||||
* @param y Output measurements
|
||||
* @param n_meas Number of measurements
|
||||
* @param t Time
|
||||
* @param dt Time step
|
||||
*/
|
||||
Data(const State& xi, int n_cal, const Input& u,
|
||||
const std::vector<Measurement>& y, int n_meas,
|
||||
double t, double dt);
|
||||
static Data create(const State& xi, int n_cal, const Input& u, /// Initialize Data
|
||||
const std::vector<Measurement>& y, int n_meas,
|
||||
double t, double dt) {
|
||||
return Data{xi, n_cal, u, y, n_meas, t, dt}; /// Bracket initialization
|
||||
}
|
||||
};
|
||||
|
||||
//========================================================================
|
||||
|
@ -205,46 +209,70 @@ struct Data {
|
|||
*/
|
||||
class G {
|
||||
public:
|
||||
Rot3 A; // First SO(3) element
|
||||
Matrix3 a; // so(3) element (skew-symmetric matrix)
|
||||
std::vector<Rot3> B; // List of SO(3) elements for calibration
|
||||
Rot3 A; /// First SO(3) element
|
||||
Matrix3 a; /// so(3) element (skew-symmetric matrix)
|
||||
std::vector<Rot3> B; /// List of SO(3) elements for calibration
|
||||
|
||||
/**
|
||||
* Initialize the symmetry group G
|
||||
* @param A SO3 element
|
||||
* @param a so(3) element (skew symmetric matrix)
|
||||
* @param B list of SO3 elements
|
||||
*/
|
||||
/// Initialize the symmetry group G
|
||||
G(const Rot3& A = Rot3::Identity(),
|
||||
const Matrix3& a = Matrix3::Zero(),
|
||||
const std::vector<Rot3>& B = std::vector<Rot3>());
|
||||
const Matrix3& a = Matrix3::Zero(),
|
||||
const std::vector<Rot3>& B = std::vector<Rot3>())
|
||||
: A(A), a(a), B(B) {}
|
||||
|
||||
/**
|
||||
* Define the group operation (multiplication)
|
||||
* @param other Another group element
|
||||
* @return The product of this and other
|
||||
*/
|
||||
G operator*(const G& other) const;
|
||||
/// Group multiplication
|
||||
G operator*(const G& other) const {
|
||||
if (B.size() != other.B.size()) {
|
||||
throw std::invalid_argument("Group elements must have the same number of calibration elements");
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the inverse element of the symmetry group
|
||||
* @return The inverse of this group element
|
||||
*/
|
||||
G inv() const;
|
||||
std::vector<Rot3> new_B;
|
||||
for (size_t i = 0; i < B.size(); i++) {
|
||||
new_B.push_back(B[i] * other.B[i]);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the identity of the symmetry group
|
||||
* @param n Number of calibration elements
|
||||
* @return The identity element with n calibration components
|
||||
*/
|
||||
static G identity(int n);
|
||||
return G(A * other.A,
|
||||
a + Rot3::Hat(A.matrix() * Rot3::Vee(other.a)),
|
||||
new_B);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a group element X given by X = exp(x)
|
||||
* @param x Vector representation of Lie algebra element
|
||||
* @return Group element given by the exponential of x
|
||||
*/
|
||||
static G exp(const Vector& x);
|
||||
/// Group inverse
|
||||
G inv() const {
|
||||
Matrix3 A_inv = A.inverse().matrix();
|
||||
std::vector<Rot3> B_inv;
|
||||
for (const auto& b : B) {
|
||||
B_inv.push_back(b.inverse());
|
||||
}
|
||||
|
||||
return G(A.inverse(),
|
||||
-Rot3::Hat(A_inv * Rot3::Vee(a)),
|
||||
B_inv);
|
||||
}
|
||||
|
||||
/// Identity element
|
||||
static G identity(int n) {
|
||||
std::vector<Rot3> B(n, Rot3::Identity());
|
||||
return G(Rot3::Identity(), Matrix3::Zero(), B);
|
||||
}
|
||||
|
||||
/// Exponential map of the tangent space elements to the group
|
||||
static G exp(const Vector& x) {
|
||||
if (x.size() < 6 || x.size() % 3 != 0) {
|
||||
throw std::invalid_argument("Wrong size, a vector with size multiple of 3 and at least 6 must be provided");
|
||||
}
|
||||
|
||||
int n = (x.size() - 6) / 3;
|
||||
Rot3 A = Rot3::Expmap(x.head<3>());
|
||||
|
||||
Vector3 a_vee = Rot3::ExpmapDerivative(-x.head<3>()) * x.segment<3>(3);
|
||||
Matrix3 a = Rot3::Hat(a_vee);
|
||||
|
||||
std::vector<Rot3> B;
|
||||
for (int i = 0; i < n; i++) {
|
||||
B.push_back(Rot3::Expmap(x.segment<3>(6 + 3 * i)));
|
||||
}
|
||||
|
||||
return G(A, a, B);
|
||||
}
|
||||
};
|
||||
|
||||
//========================================================================
|
||||
|
@ -464,213 +492,6 @@ Matrix numericalDifferential(std::function<Vector(const Vector&)> f, const Vecto
|
|||
return Df;
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// Direction Class Implementation
|
||||
//========================================================================
|
||||
|
||||
/**
|
||||
* @brief Initializes a direction object vector from a provided 3D vector input
|
||||
* @param d_vec A 3-D vector that should have a unit norm(This represents a
|
||||
* direction in 3D space) Uses Unit3's constructor which normalizes vectors
|
||||
*/
|
||||
|
||||
//========================================================================
|
||||
// Input Class Implementation
|
||||
//========================================================================
|
||||
/**
|
||||
* @brief Constructs an input object using the Angular velocity vector and the
|
||||
* covariance matrix
|
||||
* @param w Angular vector
|
||||
* @param Sigma 6X6 covariance matrix
|
||||
* Uses Matrix's rows(), cols() and Eigen's SelfAdjointEigenSolver
|
||||
*/
|
||||
// Input::Input(const Vector3& w, const Matrix& Sigma) : w(w), Sigma(Sigma) {
|
||||
// if (Sigma.rows() != 6 || Sigma.cols() != 6) {
|
||||
// throw std::invalid_argument("Input measurement noise covariance must be 6x6");
|
||||
// }
|
||||
//
|
||||
// // Check positive semi-definite
|
||||
// Eigen::SelfAdjointEigenSolver<Matrix> eigensolver(Sigma);
|
||||
// if (eigensolver.eigenvalues().minCoeff() < -1e-10) {
|
||||
// throw std::invalid_argument("Covariance matrix must be semi-positive definite");
|
||||
// }
|
||||
// }
|
||||
/**
|
||||
*
|
||||
* @return 3X3 skey symmetric matrix when called
|
||||
* Uses Rot3's Hat() to create skew-symmetric matrix
|
||||
*/
|
||||
// Matrix3 Input::W() const {
|
||||
// return Rot3::Hat(w);
|
||||
// }
|
||||
|
||||
|
||||
//========================================================================
|
||||
// Measurement Class Implementation
|
||||
//========================================================================
|
||||
/**
|
||||
* @brief Constructs measurement with directions and covariance.
|
||||
* @param y_vec A 3D vector representing the measured direction in the sensor frame
|
||||
* @param d_vec A 3D vector representing the known reference direction in the global frame aka ground truth direction
|
||||
* @param Sigma 3x3 positive definite covariance vector representing the uncertainty in the measurements
|
||||
* @param i Calibration index - A non-negative integer specifies the element in the calibration vector
|
||||
* that corresponds to the sensor of interest. A value of -1 indicates that all the sensors have been calibrated
|
||||
*
|
||||
* Creates a measurement object that stores the measured direction(y), reference direction(d), measurement noise covariance(Sigma)
|
||||
* and Calibration Index cal_idx
|
||||
*
|
||||
* Uses Eigen's SelfAdjointEigenSolver
|
||||
*
|
||||
*/
|
||||
|
||||
Measurement::Measurement(const Vector3& y_vec, const Vector3& d_vec,
|
||||
const Matrix3& Sigma, int i)
|
||||
: y(y_vec), d(d_vec), Sigma(Sigma), cal_idx(i) {
|
||||
|
||||
// Check positive semi-definite
|
||||
Eigen::SelfAdjointEigenSolver<Matrix3> eigensolver(Sigma);
|
||||
if (eigensolver.eigenvalues().minCoeff() < -1e-10) {
|
||||
throw std::invalid_argument("Covariance matrix must be semi-positive definite");
|
||||
}
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// State Class Implementation
|
||||
//========================================================================
|
||||
/**
|
||||
*
|
||||
* @param R Rot3 (Attitude)
|
||||
* @param b Vector (Bias)
|
||||
* @param S Vector (Rot 3 calibration states)
|
||||
* Combines the navigation and the calibration states together and provides a
|
||||
* mechanism to represent the complete system
|
||||
*
|
||||
*/
|
||||
State::State(const Rot3& R, const Vector3& b, const std::vector<Rot3>& S)
|
||||
: R(R), b(b), S(S) {}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param n Number of Calibration states
|
||||
* @return State object intitialized to identity
|
||||
* Creates a default/ initial state
|
||||
* Uses GTSAM's Rot3::identity and Vector3 zero function
|
||||
*/
|
||||
State State::identity(int n) {
|
||||
std::vector<Rot3> calibrations(n, Rot3::Identity());
|
||||
return State(Rot3::Identity(), Vector3::Zero(), calibrations);
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// Data Struct Implementation
|
||||
//========================================================================
|
||||
|
||||
/**
|
||||
*
|
||||
* @param xi Ground Truth state
|
||||
* @param n_cal Number of calibration states
|
||||
* @param u Input measurements
|
||||
* @param y Vector of y measurements
|
||||
* @param n_meas number of measurements
|
||||
* @param t timestamp
|
||||
* @param dt time step
|
||||
* Used to organize the state, input and measurement data with timestamps for
|
||||
* testing Uses Rot3, Vector 3 and Unit3 classes
|
||||
*/
|
||||
Data::Data(const State& xi, int n_cal, const Input& u,
|
||||
const std::vector<Measurement>& y, int n_meas,
|
||||
double t, double dt)
|
||||
: xi(xi), n_cal(n_cal), u(u), y(y), n_meas(n_meas), t(t), dt(dt) {}
|
||||
|
||||
//========================================================================
|
||||
// Symmetry Group Implementation - Group Elements and actions
|
||||
//========================================================================
|
||||
/**
|
||||
*
|
||||
* @param A Attitude element of Rot3 type
|
||||
* @param a Matrix3 bias element
|
||||
* @param B Rot3 vector containing calibration elements
|
||||
* Ouptuts a G object using Rot3 for rotation representation
|
||||
*/
|
||||
G::G(const Rot3& A, const Matrix3& a, const std::vector<Rot3>& B)
|
||||
: A(A), a(a), B(B) {}
|
||||
|
||||
/**
|
||||
* Defines the group operation (multiplication)
|
||||
* @param other Another Group element
|
||||
* @return G a product of two group elements
|
||||
* Uses Rot3 Hat, Rot3 Vee for multiplication
|
||||
*
|
||||
*/
|
||||
G G::operator*(const G& other) const {
|
||||
if (B.size() != other.B.size()) {
|
||||
throw std::invalid_argument("Group elements must have the same number of calibration elements");
|
||||
}
|
||||
|
||||
std::vector<Rot3> new_B;
|
||||
for (size_t i = 0; i < B.size(); i++) {
|
||||
new_B.push_back(B[i] * other.B[i]);
|
||||
}
|
||||
|
||||
return G(A * other.A,
|
||||
a + Rot3::Hat(A.matrix() * Rot3::Vee(other.a)),
|
||||
new_B);
|
||||
}
|
||||
|
||||
/**
|
||||
* Used to compute the Group inverse
|
||||
* @return The inverse of group element
|
||||
* Uses Rot3 inverse, Rot3 matrix, hat and vee functions
|
||||
* The left invariant property of the semi-direct product group structure is implemented here by using the -ve sign
|
||||
*/
|
||||
G G::inv() const {
|
||||
Matrix3 A_inv = A.inverse().matrix();
|
||||
|
||||
std::vector<Rot3> B_inv;
|
||||
for (const auto& b : B) {
|
||||
B_inv.push_back(b.inverse());
|
||||
}
|
||||
|
||||
return G(A.inverse(),
|
||||
-Rot3::Hat(A_inv * Rot3::Vee(a)),
|
||||
B_inv);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates the identity element of the group
|
||||
* @param n Number of calibration elements
|
||||
* @return the identity element
|
||||
* Uses Rot3 Identity and Matrix zero
|
||||
*/
|
||||
G G::identity(int n) {
|
||||
std::vector<Rot3> B(n, Rot3::Identity());
|
||||
return G(Rot3::Identity(), Matrix3::Zero(), B);
|
||||
}
|
||||
/**
|
||||
* Maps the tangent space elements to the group
|
||||
* @param x Vector in lie algebra
|
||||
* @return the group element G
|
||||
* Uses Rot3 expmap and Expmapderivative function
|
||||
*/
|
||||
G G::exp(const Vector& x) {
|
||||
if (x.size() < 6 || x.size() % 3 != 0) {
|
||||
throw std::invalid_argument("Wrong size, a vector with size multiple of 3 and at least 6 must be provided");
|
||||
}
|
||||
|
||||
int n = (x.size() - 6) / 3;
|
||||
Rot3 A = Rot3::Expmap(x.head<3>());
|
||||
|
||||
Vector3 a_vee = Rot3::ExpmapDerivative(-x.head<3>()) * x.segment<3>(3);
|
||||
Matrix3 a = Rot3::Hat(a_vee);
|
||||
|
||||
std::vector<Rot3> B;
|
||||
for (int i = 0; i < n; i++) {
|
||||
B.push_back(Rot3::Expmap(x.segment<3>(6 + 3*i)));
|
||||
}
|
||||
|
||||
return G(A, a, B);
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// Helper Functions Implementation
|
||||
//========================================================================
|
||||
|
|
|
@ -174,7 +174,7 @@ std::vector<Data> loadDataFromCSV(const std::string& filename,
|
|||
covY0(2, 2) = values[29] * values[29]; // std_y_z_0^2
|
||||
|
||||
// Create measurement
|
||||
measurements.push_back(Measurement(y0, d0, covY0, 0));
|
||||
measurements.push_back(Measurement{Unit3(y0), Unit3(d0), covY0, 0});
|
||||
|
||||
// Second measurement (calibrated sensor, cal_idx = -1)
|
||||
Vector3 y1(values[24], values[25], values[26]);
|
||||
|
@ -191,10 +191,10 @@ std::vector<Data> loadDataFromCSV(const std::string& filename,
|
|||
covY1(2, 2) = values[32] * values[32]; // std_y_z_1^2
|
||||
|
||||
// Create measurement
|
||||
measurements.push_back(Measurement(y1, d1, covY1, -1));
|
||||
measurements.push_back(Measurement{Unit3(y1), Unit3(d1), covY1, -1});
|
||||
|
||||
// Create Data object and add to list
|
||||
data_list.push_back(Data(xi, 1, u, measurements, 2, t, dt));
|
||||
data_list.push_back(Data{xi, 1, u, measurements, 2, t, dt});
|
||||
|
||||
rowCount++;
|
||||
|
||||
|
|
Loading…
Reference in New Issue