Resurrected lots of elimination tests

release/4.3a0
Frank Dellaert 2019-05-15 20:10:46 -04:00
parent 464804d8f5
commit 110240aa4f
1 changed files with 93 additions and 157 deletions

View File

@ -169,241 +169,178 @@ TEST(GaussianFactorGraph, eliminateOne_l1_fast) {
EXPECT(assert_equal(expected, *actual, tol));
}
#if 0
// /* ************************************************************************* */
// TEST( GaussianFactorGraph, eliminateAll )
// {
// // create expected Chordal bayes Net
// Matrix I = I_2x2;
// Ordering ordering;
// ordering += X(2),L(1),X(1);
// Vector d1 = Vector2(-0.1,-0.1);
// GaussianBayesNet expected = simpleGaussian(X(1),d1,0.1);
// double sig1 = 0.149071;
// Vector d2 = Vector2(0.0, 0.2)/sig1, sigma2 = Vector::Ones(2);
// push_front(expected,L(1),d2, I/sig1,X(1), (-1)*I/sig1,sigma2);
// double sig2 = 0.0894427;
// Vector d3 = Vector2(0.2, -0.14)/sig2, sigma3 = Vector::Ones(2);
// push_front(expected,X(2),d3, I/sig2,L(1), (-0.2)*I/sig2, X(1), (-0.8)*I/sig2, sigma3);
// // Check one ordering
// GaussianFactorGraph fg1 = createGaussianFactorGraph();
// GaussianBayesNet actual = *fg1.eliminateSequential();
// EXPECT(assert_equal(expected,actual,tol));
// GaussianBayesNet actualQR = *fg1.eliminateSequential(, true);
// EXPECT(assert_equal(expected,actualQR,tol));
// }
/* ************************************************************************* */
TEST( GaussianFactorGraph, eliminateAll )
{
// create expected Chordal bayes Net
Matrix I = I_2x2;
Ordering ordering;
ordering += X(2),L(1),X(1);
Vector d1 = Vector2(-0.1,-0.1);
GaussianBayesNet expected = simpleGaussian(X(1),d1,0.1);
double sig1 = 0.149071;
Vector d2 = Vector2(0.0, 0.2)/sig1, sigma2 = Vector::Ones(2);
push_front(expected,L(1),d2, I/sig1,X(1), (-1)*I/sig1,sigma2);
double sig2 = 0.0894427;
Vector d3 = Vector2(0.2, -0.14)/sig2, sigma3 = Vector::Ones(2);
push_front(expected,X(2),d3, I/sig2,L(1), (-0.2)*I/sig2, X(1), (-0.8)*I/sig2, sigma3);
// Check one ordering
GaussianFactorGraph fg1 = createGaussianFactorGraph();
GaussianBayesNet actual = *GaussianSequentialSolver(fg1).eliminate();
EXPECT(assert_equal(expected,actual,tol));
GaussianBayesNet actualQR = *GaussianSequentialSolver(fg1, true).eliminate();
EXPECT(assert_equal(expected,actualQR,tol));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, copying )
{
TEST(GaussianFactorGraph, copying) {
// Create a graph
Ordering ordering; ordering += X(2),L(1),X(1);
GaussianFactorGraph actual = createGaussianFactorGraph();
// Copy the graph !
GaussianFactorGraph copy = actual;
// now eliminate the copy
GaussianBayesNet actual1 = *GaussianSequentialSolver(copy).eliminate();
GaussianBayesNet actual1 = *copy.eliminateSequential();
// Create the same graph, but not by copying
GaussianFactorGraph expected = createGaussianFactorGraph();
// and check that original is still the same graph
EXPECT(assert_equal(expected,actual));
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet )
{
Ordering ord;
ord += X(2),L(1),X(1);
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
TEST(GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet) {
GaussianFactorGraph fg = createGaussianFactorGraph();
// render with a given ordering
GaussianBayesNet CBN = *GaussianSequentialSolver(fg).eliminate();
GaussianBayesNet CBN = *fg.eliminateSequential();
// True GaussianFactorGraph
GaussianFactorGraph fg2(CBN);
GaussianBayesNet CBN2 = *GaussianSequentialSolver(fg2).eliminate();
EXPECT(assert_equal(CBN,CBN2));
GaussianBayesNet CBN2 = *fg2.eliminateSequential();
EXPECT(assert_equal(CBN, CBN2));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, getOrdering)
{
Ordering original; original += L(1),X(1),X(2);
FactorGraph<IndexFactor> symbolic(createGaussianFactorGraph(original));
Permutation perm(*inference::PermutationCOLAMD(VariableIndex(symbolic)));
Ordering actual = original; actual.permuteInPlace(perm);
Ordering expected; expected += L(1),X(2),X(1);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, optimize_Cholesky )
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
TEST(GaussianFactorGraph, optimize_Cholesky) {
// create a graph
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
GaussianFactorGraph fg = createGaussianFactorGraph();
// optimize the graph
VectorValues actual = *GaussianSequentialSolver(fg, false).optimize();
VectorValues actual = fg.optimize(boost::none, EliminateCholesky);
// verify
VectorValues expected = createCorrectDelta(ord);
EXPECT(assert_equal(expected,actual));
VectorValues expected = createCorrectDelta();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, optimize_QR )
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
// create a graph
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
GaussianFactorGraph fg = createGaussianFactorGraph();
// optimize the graph
VectorValues actual = *GaussianSequentialSolver(fg, true).optimize();
VectorValues actual = fg.optimize(boost::none, EliminateQR);
// verify
VectorValues expected = createCorrectDelta(ord);
VectorValues expected = createCorrectDelta();
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, combine)
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
TEST(GaussianFactorGraph, combine) {
// create a test graph
GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
GaussianFactorGraph fg1 = createGaussianFactorGraph();
// create another factor graph
GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
GaussianFactorGraph fg2 = createGaussianFactorGraph();
// get sizes
size_t size1 = fg1.size();
size_t size2 = fg2.size();
// combine them
fg1.combine(fg2);
fg1.push_back(fg2);
EXPECT(size1+size2 == fg1.size());
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, combine2)
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
// create a test graph
GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
// create another factor graph
GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
// get sizes
size_t size1 = fg1.size();
size_t size2 = fg2.size();
// combine them
GaussianFactorGraph fg3 = GaussianFactorGraph::combine2(fg1, fg2);
EXPECT(size1+size2 == fg3.size());
EXPECT(size1 + size2 == fg1.size());
}
/* ************************************************************************* */
// print a vector of ints if needed for debugging
void print(vector<int> v) {
for (size_t k = 0; k < v.size(); k++)
cout << v[k] << " ";
for (size_t k = 0; k < v.size(); k++) cout << v[k] << " ";
cout << endl;
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, createSmoother)
{
GaussianFactorGraph fg1 = createSmoother(2).first;
LONGS_EQUAL(3,fg1.size());
GaussianFactorGraph fg2 = createSmoother(3).first;
LONGS_EQUAL(5,fg2.size());
TEST(GaussianFactorGraph, createSmoother) {
GaussianFactorGraph fg1 = createSmoother(2);
LONGS_EQUAL(3, fg1.size());
GaussianFactorGraph fg2 = createSmoother(3);
LONGS_EQUAL(5, fg2.size());
}
/* ************************************************************************* */
double error(const VectorValues& x) {
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
GaussianFactorGraph fg = createGaussianFactorGraph(ord);
GaussianFactorGraph fg = createGaussianFactorGraph();
return fg.error(x);
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, multiplication )
{
// create an ordering
Ordering ord; ord += X(2),L(1),X(1);
GaussianFactorGraph A = createGaussianFactorGraph(ord);
VectorValues x = createCorrectDelta(ord);
TEST(GaussianFactorGraph, multiplication) {
GaussianFactorGraph A = createGaussianFactorGraph();
VectorValues x = createCorrectDelta();
Errors actual = A * x;
Errors expected;
expected += Vector2(-1.0,-1.0);
expected += Vector2(2.0,-1.0);
expected += Vector2(-1.0, -1.0);
expected += Vector2(2.0, -1.0);
expected += Vector2(0.0, 1.0);
expected += Vector2(-1.0, 1.5);
EXPECT(assert_equal(expected,actual));
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
// Extra test on elimination prompted by Michael's email to Frank 1/4/2010
TEST( GaussianFactorGraph, elimination )
{
Ordering ord;
ord += X(1), X(2);
TEST(GaussianFactorGraph, elimination) {
// Create Gaussian Factor Graph
GaussianFactorGraph fg;
Matrix Ap = I_2x2, An = I_2x2 * -1;
Matrix Ap = I_1x1, An = I_1x1 * -1;
Vector b = (Vector(1) << 0.0).finished();
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1,2.0);
fg += ord[X(1)], An, ord[X(2)], Ap, b, sigma;
fg += ord[X(1)], Ap, b, sigma;
fg += ord[X(2)], Ap, b, sigma;
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1, 2.0);
fg += JacobianFactor(X(1), An, X(2), Ap, b, sigma);
fg += JacobianFactor(X(1), Ap, b, sigma);
fg += JacobianFactor(X(2), Ap, b, sigma);
// Eliminate
GaussianBayesNet bayesNet = *GaussianSequentialSolver(fg).eliminate();
// Check sigma
EXPECT_DOUBLES_EQUAL(1.0,bayesNet[ord[X(2)]]->get_sigmas()(0),1e-5);
Ordering ordering;
ordering += X(1), X(2);
GaussianBayesNet bayesNet = *fg.eliminateSequential();
// Check matrix
Matrix R;Vector d;
boost::tie(R,d) = matrix(bayesNet);
Matrix expected = (Matrix(2, 2) <<
0.707107, -0.353553,
0.0, 0.612372).finished();
Matrix expected2 = (Matrix(2, 2) <<
0.707107, -0.353553,
0.0, -0.612372).finished();
EXPECT(equal_with_abs_tol(expected, R, 1e-6) || equal_with_abs_tol(expected2, R, 1e-6));
Matrix R;
Vector d;
boost::tie(R, d) = bayesNet.matrix();
Matrix expected =
(Matrix(2, 2) << 0.707107, -0.353553, 0.0, 0.612372).finished();
Matrix expected2 =
(Matrix(2, 2) << 0.707107, -0.353553, 0.0, -0.612372).finished();
EXPECT(assert_equal(expected, R, 1e-6));
EXPECT(equal_with_abs_tol(expected, R, 1e-6) ||
equal_with_abs_tol(expected2, R, 1e-6));
}
/* ************************************************************************* */
#if 0
/* ************************************************************************* */
// Tests ported from ConstrainedGaussianFactorGraph
/* ************************************************************************* */
TEST( GaussianFactorGraph, constrained_simple )
@ -412,9 +349,8 @@ TEST( GaussianFactorGraph, constrained_simple )
GaussianFactorGraph fg = createSimpleConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
VectorValues actual = *fg.eliminateSequential().optimize();
// verify
VectorValues expected = createSimpleConstraintValues();
@ -429,7 +365,7 @@ TEST( GaussianFactorGraph, constrained_single )
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
VectorValues actual = *fg.eliminateSequential().optimize();
// verify
VectorValues expected = createSingleConstraintValues();
@ -444,7 +380,7 @@ TEST( GaussianFactorGraph, constrained_multi1 )
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
VectorValues actual = *fg.eliminateSequential().optimize();
// verify
VectorValues expected = createMultiConstraintValues();
@ -462,13 +398,13 @@ TEST(GaussianFactorGraph, replace)
SharedDiagonal noise(noiseModel::Isotropic::Sigma(3, 1.0));
GaussianFactorGraph::sharedFactor f1(new JacobianFactor(
ord[X(1)], I_3x3, ord[X(2)], I_3x3, Z_3x1, noise));
X(1), I_3x3, X(2), I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f2(new JacobianFactor(
ord[X(2)], I_3x3, ord[X(3)], I_3x3, Z_3x1, noise));
X(2), I_3x3, X(3), I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f3(new JacobianFactor(
ord[X(3)], I_3x3, ord[X(4)], I_3x3, Z_3x1, noise));
X(3), I_3x3, X(4), I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f4(new JacobianFactor(
ord[X(5)], I_3x3, ord[X(6)], I_3x3, Z_3x1, noise));
X(5), I_3x3, X(6), I_3x3, Z_3x1, noise));
GaussianFactorGraph actual;
actual.push_back(f1);
@ -497,9 +433,9 @@ TEST(GaussianFactorGraph, createSmoother2)
vector<Index> x3var; x3var.push_back(ordering[X(3)]);
vector<Index> x1var; x1var.push_back(X(1));
GaussianBayesNet p_x3 = *GaussianSequentialSolver(
*GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate();
*fg2.eliminateSequential().jointFactorGraph(x3var));
GaussianBayesNet p_x1 = *GaussianSequentialSolver(
*GaussianSequentialSolver(fg2).jointFactorGraph(x1var)).eliminate();
*fg2.eliminateSequential().jointFactorGraph(x1var));
CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry
}