Merge branch 'release/3.1.0'

release/4.3a0
cbeall3 2015-03-07 00:06:17 -05:00
commit 0ed343723f
107 changed files with 4712 additions and 2094 deletions

440
.cproject
View File

@ -732,46 +732,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testValues.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testValues.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testOrdering.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testOrdering.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testKey.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testKey.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLinearContainerFactor.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testLinearContainerFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testWhiteNoiseFactor.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j6 -j8</buildArguments>
<buildTarget>testWhiteNoiseFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -2015,6 +1975,134 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCal3Bundler.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCal3Bundler.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCal3DS2.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCal3DS2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCalibratedCamera.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCalibratedCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEssentialMatrix.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrix.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testHomography2.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j1 VERBOSE=1</buildArguments>
<buildTarget>testHomography2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPinholeCamera.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPinholeCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPoint2.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPoint2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPoint3.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPoint3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPose2.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPose2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPose3.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPose3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testRot3M.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testRot3M.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testSphere2.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testSphere2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testStereoCamera.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testStereoCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timeCalibratedCamera.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timeCalibratedCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timePinholeCamera.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timePinholeCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timeStereoCamera.run" path="build/gtsam/geometry/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timeStereoCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="release" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -2095,70 +2183,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGeneralSFMFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testGeneralSFMFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testProjectionFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testProjectionFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGeneralSFMFactor_Cal3Bundler.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testGeneralSFMFactor_Cal3Bundler.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testAntiFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j6 -j8</buildArguments>
<buildTarget>testAntiFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBetweenFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j6 -j8</buildArguments>
<buildTarget>testBetweenFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDataset.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDataset.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrixFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testRotateFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testRotateFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="check" path="build/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -2191,6 +2215,14 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testWrap.run" path="build/wrap/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testWrap.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDiscreteFactor.run" path="build/gtsam/discrete" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
@ -2263,6 +2295,22 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testMatrix.run" path="build/gtsam/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testMatrix.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testVector.run" path="build/gtsam/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="check.tests" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
@ -2535,146 +2583,66 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testStereoCamera.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testAntiFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testStereoCamera.run</buildTarget>
<buildTarget>testAntiFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testRot3M.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testBetweenFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testRot3M.run</buildTarget>
<buildTarget>testBetweenFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPoint3.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testDataset.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPoint3.run</buildTarget>
<buildTarget>testDataset.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCalibratedCamera.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCalibratedCamera.run</buildTarget>
<buildTarget>testEssentialMatrixFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timeStereoCamera.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testGeneralSFMFactor_Cal3Bundler.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timeStereoCamera.run</buildTarget>
<buildTarget>testGeneralSFMFactor_Cal3Bundler.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testHomography2.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j1 VERBOSE=1</buildArguments>
<buildTarget>testHomography2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPoint2.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testGeneralSFMFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPoint2.run</buildTarget>
<buildTarget>testGeneralSFMFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPose2.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testProjectionFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPose2.run</buildTarget>
<buildTarget>testProjectionFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPose3.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testRotateFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPose3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timeCalibratedCamera.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timeCalibratedCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testPinholeCamera.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testPinholeCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timePinholeCamera.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timePinholeCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCal3DS2.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCal3DS2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCal3Bundler.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCal3Bundler.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testSphere2.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testSphere2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEssentialMatrix.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrix.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testVector.run" path="build/gtsam/base" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testMatrix.run" path="build/gtsam/base" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testMatrix.run</buildTarget>
<buildTarget>testRotateFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
@ -2831,6 +2799,70 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="Pose2SLAMExample_lago.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>Pose2SLAMExample_lago.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="Pose2SLAMExample_g2o.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>Pose2SLAMExample_g2o.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLago.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testLago.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLinearContainerFactor.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testLinearContainerFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testOrdering.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testOrdering.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testValues.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testValues.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testWhiteNoiseFactor.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testWhiteNoiseFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timeLago.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timeLago.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testImuFactor.run" path="build-debug/gtsam_unstable/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j4</buildArguments>
@ -2958,14 +2990,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testWrap.run" path="build/wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testWrap.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="check.wrap" path="build/wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>

2
.gitignore vendored
View File

@ -2,3 +2,5 @@
/doc*
*.pyc
*.DS_Store
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
/examples/Data/pose2example-rewritten.txt

View File

@ -4,7 +4,7 @@ cmake_minimum_required(VERSION 2.6)
# Set the version number for the library
set (GTSAM_VERSION_MAJOR 3)
set (GTSAM_VERSION_MINOR 0)
set (GTSAM_VERSION_MINOR 1)
set (GTSAM_VERSION_PATCH 0)
math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}")
set (GTSAM_VERSION_STRING "${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}.${GTSAM_VERSION_PATCH}")
@ -91,10 +91,10 @@ set(CPACK_GENERATOR "TGZ" CACHE STRING "CPack Default Binary Generator")
# If using Boost shared libs, disable auto linking
if(MSVC)
# Some libraries, at least Boost Program Options, rely on this to export DLL symbols
add_definitions(-DBOOST_ALL_DYN_LINK)
# Disable autolinking
if(NOT Boost_USE_STATIC_LIBS)
add_definitions(-DBOOST_ALL_NO_LIB)
add_definitions(-DBOOST_ALL_DYN_LINK)
endif()
endif()
@ -273,6 +273,13 @@ if(MSVC)
add_definitions(/wd4251 /wd4275 /wd4251 /wd4661 /wd4344) # Disable non-DLL-exported base class and other warnings
endif()
# GCC 4.8+ complains about local typedefs which we use for shared_ptr etc.
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8)
add_definitions(-Wno-unused-local-typedefs)
endif()
endif()
if(GTSAM_ENABLE_CONSISTENCY_CHECKS)
add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS)
endif()

View File

@ -56,7 +56,7 @@ endif()
# Clang on Mac uses a template depth that is less than standard and is too small
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
if(NOT "${CMAKE_CXX_COMPILER_VERSION}" VERSION_LESS "5.0")
add_definitions(-ftemplate-depth=1024)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -ftemplate-depth=1024")
endif()
endif()

View File

@ -93,7 +93,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
# Paths for generated files
set(generated_files_path "${PROJECT_BINARY_DIR}/wrap/${moduleName}")
set(generated_cpp_file "${PROJECT_BINARY_DIR}/wrap/${moduleName}/${moduleName}_wrapper.cpp")
set(generated_cpp_file "${generated_files_path}/${moduleName}_wrapper.cpp")
set(compiled_mex_modules_root "${PROJECT_BINARY_DIR}/wrap/${moduleName}_mex")
message(STATUS "Building wrap module ${moduleName}")
@ -109,23 +109,86 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
set(matlab_h_path "${installed_includes_path}/wrap")
endif()
# Add -shared or -static suffix to targets
# If building a static mex module, add all cmake-linked libraries to the
# explicit link libraries list so that the next block of code can unpack
# any static libraries
set(automaticDependencies "")
foreach(lib ${moduleName} ${linkLibraries})
#message("MODULE NAME: ${moduleName}")
if(TARGET "${lib}")
get_target_property(dependentLibraries ${lib} INTERFACE_LINK_LIBRARIES)
# message("DEPENDENT LIBRARIES: ${dependentLibraries}")
if(dependentLibraries)
list(APPEND automaticDependencies ${dependentLibraries})
endif()
endif()
endforeach()
## CHRIS: Temporary fix. On my system the get_target_property above returned Not-found for gtsam module
## This needs to be fixed!!
if(UNIX AND NOT APPLE)
list(APPEND automaticDependencies ${Boost_SERIALIZATION_LIBRARY_RELEASE} ${Boost_FILESYSTEM_LIBRARY_RELEASE}
${Boost_SYSTEM_LIBRARY_RELEASE} ${Boost_THREAD_LIBRARY_RELEASE} ${Boost_DATE_TIME_LIBRARY_RELEASE}
${Boost_REGEX_LIBRARY_RELEASE})
if(Boost_TIMER_LIBRARY_RELEASE AND NOT GTSAM_DISABLE_NEW_TIMERS) # Only present in Boost >= 1.48.0
list(APPEND automaticDependencies ${Boost_TIMER_LIBRARY_RELEASE} ${Boost_CHRONO_LIBRARY_RELEASE})
if(GTSAM_MEX_BUILD_STATIC_MODULE)
#list(APPEND automaticDependencies -Wl,--no-as-needed -lrt)
endif()
endif()
endif()
#message("AUTOMATIC DEPENDENCIES: ${automaticDependencies}")
## CHRIS: End temporary fix
# Separate dependencies
set(correctedOtherLibraries "")
set(otherLibraryTargets "")
set(otherLibraryNontargets "")
foreach(lib ${moduleName} ${linkLibraries})
if(TARGET ${lib})
list(APPEND correctedOtherLibraries ${lib})
list(APPEND otherLibraryTargets ${lib})
elseif(TARGET ${lib}-shared) # Prefer the shared library if we have both shared and static)
list(APPEND correctedOtherLibraries ${lib}-shared)
list(APPEND otherLibraryTargets ${lib}-shared)
elseif(TARGET ${lib}-static)
list(APPEND correctedOtherLibraries ${lib}-static)
list(APPEND otherLibraryTargets ${lib}-static)
set(otherSourcesAndObjects "")
foreach(lib ${moduleName} ${linkLibraries} ${automaticDependencies})
if(TARGET "${lib}")
if(GTSAM_MEX_BUILD_STATIC_MODULE)
get_target_property(target_sources ${lib} SOURCES)
list(APPEND otherSourcesAndObjects ${target_sources})
else()
list(APPEND correctedOtherLibraries ${lib})
list(APPEND otherLibraryTargets ${lib})
endif()
else()
list(APPEND correctedOtherLibraries ${lib})
list(APPEND otherLibraryNontargets ${lib})
get_filename_component(file_extension "${lib}" EXT)
get_filename_component(lib_name "${lib}" NAME_WE)
if(file_extension STREQUAL ".a" AND GTSAM_MEX_BUILD_STATIC_MODULE)
# For building a static MEX module, unpack the static library
# and compile its object files into our module
file(MAKE_DIRECTORY "${generated_files_path}/${lib_name}_objects")
execute_process(COMMAND ar -x "${lib}"
WORKING_DIRECTORY "${generated_files_path}/${lib_name}_objects"
RESULT_VARIABLE ar_result)
if(NOT ar_result EQUAL 0)
message(FATAL_ERROR "Failed extracting ${lib}")
endif()
# Get list of object files
execute_process(COMMAND ar -t "${lib}"
OUTPUT_VARIABLE object_files
RESULT_VARIABLE ar_result)
if(NOT ar_result EQUAL 0)
message(FATAL_ERROR "Failed listing ${lib}")
endif()
# Add directory to object files
string(REPLACE "\n" ";" object_files_list "${object_files}")
foreach(object_file ${object_files_list})
get_filename_component(file_extension "${object_file}" EXT)
if(file_extension STREQUAL ".o")
list(APPEND otherSourcesAndObjects "${generated_files_path}/${lib_name}_objects/${object_file}")
endif()
endforeach()
else()
list(APPEND correctedOtherLibraries ${lib})
list(APPEND otherLibraryNontargets ${lib})
endif()
endif()
endforeach()
@ -144,7 +207,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
file(MAKE_DIRECTORY "${generated_files_path}")
add_custom_command(
OUTPUT ${generated_cpp_file}
DEPENDS ${interfaceHeader} wrap ${module_library_target} ${otherLibraryTargets}
DEPENDS ${interfaceHeader} wrap ${module_library_target} ${otherLibraryTargets} ${otherSourcesAndObjects}
COMMAND
wrap
${modulePath}
@ -157,7 +220,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
# Set up building of mex module
string(REPLACE ";" " " extraMexFlagsSpaced "${extraMexFlags}")
string(REPLACE ";" " " mexFlagsSpaced "${GTSAM_BUILD_MEX_BINARY_FLAGS}")
add_library(${moduleName}_wrapper MODULE ${generated_cpp_file} ${interfaceHeader})
add_library(${moduleName}_wrapper MODULE ${generated_cpp_file} ${interfaceHeader} ${otherSourcesAndObjects})
target_link_libraries(${moduleName}_wrapper ${correctedOtherLibraries})
set_target_properties(${moduleName}_wrapper PROPERTIES
OUTPUT_NAME "${moduleName}_wrapper"

View File

@ -1,80 +0,0 @@
3 7 19
0 0 -385.989990234375 387.1199951171875
1 0 -38.439998626708984375 492.1199951171875
2 0 -667.91998291015625 123.1100006103515625
0 1 383.8800048828125 -15.299989700317382812
1 1 559.75 -106.15000152587890625
0 2 591.54998779296875 136.44000244140625
1 2 863.8599853515625 -23.469970703125
2 2 494.720001220703125 112.51999664306640625
0 3 592.5 125.75
1 3 861.08001708984375 -35.219970703125
2 3 498.540008544921875 101.55999755859375
0 4 348.720001220703125 558.3800048828125
1 4 776.030029296875 483.529998779296875
2 4 7.7800288200378417969 326.350006103515625
0 5 14.010009765625 96.420013427734375
1 5 207.1300048828125 118.3600006103515625
0 6 202.7599945068359375 340.989990234375
1 6 543.18011474609375 294.80999755859375
2 6 -58.419979095458984375 110.8300018310546875
0.29656188120312942935
-0.035318354384285870207
0.31252101755032046793
0.47230274932665988752
-0.3572340863744113415
-2.0517704282499575896
1430.031982421875
-7.5572756941255647689e-08
3.2377570134516087119e-14
0.28532097381985194184
-0.27699838370789808817
0.048601169984112867206
-1.2598695987143850861
-0.049063798188844320869
-1.9586867140445654023
1432.137451171875
-7.3171918302250560373e-08
3.1759419042137054801e-14
0.057491325683772541433
0.34853090049579965592
0.47985129303736057116
8.1963904289063389541
6.5146840788718787252
-3.8392804395897406344
1572.047119140625
-1.5962623223231275915e-08
-1.6507904730136101212e-14
-11.317351620610928364
3.3594874875767186673
-42.755222607849105998
4.2648515634753199066
-8.4629358700849355301
-22.252086323427270997
10.996977688149536689
-9.2123370180278048025
-29.206739014051372294
10.935342607054865383
-9.4338917557810741954
-29.112263909175499776
15.714024935401759819
1.3745079651566265433
-59.286834979937104606
-1.3624227800805182031
-4.1979357415396094666
-21.034430148188398846
6.7690173115899296974
-4.7352452433700786827
-53.605307875695892506

View File

@ -0,0 +1,9 @@
VERTEX_SE2 0 0.000000 0.000000 0.000000
VERTEX_SE2 1 0.774115 1.183389 1.576173
VERTEX_SE2 2 -0.262420 2.047059 -3.127594
VERTEX_SE2 3 -1.605649 0.993891 -1.561134
EDGE_SE2 0 1 0.774115 1.183389 1.576173 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 1 2 0.869231 1.031877 1.579418 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 2 3 1.357840 1.034262 1.566460 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 2 0 0.303492 1.865011 -3.113898 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 0 3 -0.928526 0.993695 -1.563542 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000

View File

@ -0,0 +1,9 @@
VERTEX_SE2 0 0.000000 -0.000000 0.000000
VERTEX_SE2 1 0.955797 1.137643 1.543041
VERTEX_SE2 2 0.129867 1.989651 3.201259
VERTEX_SE2 3 -1.047715 0.933789 4.743682
EDGE_SE2 0 1 0.774115 1.183389 1.576173 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 1 2 0.869231 1.031877 1.579418 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 2 3 1.357840 1.034262 1.566460 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 2 0 0.303492 1.865011 -3.113898 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 0 3 -0.928526 0.993695 -1.563542 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000

View File

@ -0,0 +1,9 @@
VERTEX_SE2 0 0.000000 0.000000 0.000000
VERTEX_SE2 1 0.000000 0.000000 1.565449
VERTEX_SE2 2 0.000000 0.000000 3.134143
VERTEX_SE2 3 0.000000 0.000000 4.710123
EDGE_SE2 0 1 0.774115 1.183389 1.576173 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 1 2 0.869231 1.031877 1.579418 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 2 3 1.357840 1.034262 1.566460 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 2 0 0.303492 1.865011 -3.113898 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
EDGE_SE2 0 3 -0.928526 0.993695 -1.563542 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000

View File

@ -0,0 +1,23 @@
VERTEX_SE2 0 0.000000 0.000000 0.000000
VERTEX_SE2 1 1.030390 0.011350 -0.081596
VERTEX_SE2 2 2.036137 -0.129733 -0.301887
VERTEX_SE2 3 3.015097 -0.442395 -0.345514
VERTEX_SE2 4 3.343949 0.506678 1.214715
VERTEX_SE2 5 3.684491 1.464049 1.183785
VERTEX_SE2 6 4.064626 2.414783 1.176333
VERTEX_SE2 7 4.429778 3.300180 1.259169
VERTEX_SE2 8 4.128877 2.321481 -1.825391
VERTEX_SE2 9 3.884653 1.327509 -1.953016
VERTEX_SE2 10 3.531067 0.388263 -2.148934
EDGE_SE2 0 1 1.030390 0.011350 -0.081596 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 1 2 1.013900 -0.058639 -0.220291 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 2 3 1.027650 -0.007456 -0.043627 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 3 4 -0.012016 1.004360 1.560229 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 4 5 1.016030 0.014565 -0.030930 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 5 6 1.023890 0.006808 -0.007452 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 6 7 0.957734 0.003159 0.082836 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 7 8 -1.023820 -0.013668 -3.084560 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 8 9 1.023440 0.013984 -0.127624 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 9 10 1.003350 0.022250 -0.195918 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 5 9 0.033943 0.032439 3.073637 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
EDGE_SE2 3 10 0.044020 0.988477 -1.553511 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699

View File

@ -0,0 +1,62 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample_g2o.cpp
* @brief A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph and does the
* optimization. Output is written on a file, in g2o format
* Syntax for the script is ./Pose2SLAMExample_g2o input.g2o output.g2o
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <fstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char *argv[]) {
// Read graph from file
string g2oFile;
if (argc < 2)
g2oFile = "../../examples/Data/noisyToyGraph.txt";
else
g2oFile = argv[1];
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = *graph;
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
if (argc < 3) {
result.print("result");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(*graph, result, outputFile);
std::cout << "done! " << std::endl;
}
return 0;
}

View File

@ -0,0 +1,64 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample_lago.cpp
* @brief A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem
* using LAGO (Linear Approximation for Graph Optimization). See class lago.h
* Output is written on a file, in g2o format
* Syntax for the script is ./Pose2SLAMExample_lago input.g2o output.g2o
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/slam/lago.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/PriorFactor.h>
#include <fstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char *argv[]) {
// Read graph from file
string g2oFile;
if (argc < 2)
g2oFile = "../../examples/Data/noisyToyGraph.txt";
else
g2oFile = argv[1];
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = *graph;
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
graphWithPrior.print();
std::cout << "Computing LAGO estimate" << std::endl;
Values estimateLago = lago::initialize(graphWithPrior);
std::cout << "done!" << std::endl;
if (argc < 3) {
estimateLago.print("estimateLago");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(*graph, estimateLago, outputFile);
std::cout << "done! " << std::endl;
}
return 0;
}

View File

@ -0,0 +1,168 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMExample_SmartFactor.cpp
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
* @author Duy-Nguyen Ta
* @author Jing Dong
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// For loading the data
#include "SFMdata.h"
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'.
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
// The calibration should be known.
#include <gtsam/slam/SmartProjectionPoseFactor.h>
// Also, we will initialize the robot at some location using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
// trust-region method known as Powell's Degleg
#include <gtsam/nonlinear/DoglegOptimizer.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
#include <vector>
using namespace std;
using namespace gtsam;
// Make the typename short so it looks much cleaner
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2>
SmartFactor;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of ground-truth poses
vector<Pose3> poses = createPoses();
// Create a factor graph
NonlinearFactorGraph graph;
// A vector saved all Smart factors (for get landmark position after optimization)
vector<SmartFactor::shared_ptr> smartfactors_ptr;
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t i = 0; i < points.size(); ++i) {
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
SmartFactor::shared_ptr smartfactor(new SmartFactor());
for (size_t j = 0; j < poses.size(); ++j) {
// generate the 2D measurement
SimpleCamera camera(poses[j], *K);
Point2 measurement = camera.project(points[i]);
// call add() function to add measurment into a single factor, here we need to add:
// 1. the 2D measurement
// 2. the corresponding camera's key
// 3. camera noise model
// 4. camera calibration
smartfactor->add(measurement, Symbol('x', j), measurementNoise, K);
}
// save smartfactors to get landmark position
smartfactors_ptr.push_back(smartfactor);
// insert the smart factor in the graph
graph.push_back(smartfactor);
}
// Add a prior on pose x0. This indirectly specifies where the origin is.
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
// Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
// Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest poses will be alse fixed.
graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
graph.print("Factor Graph:\n");
// Create the data structure to hold the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate;
for (size_t i = 0; i < poses.size(); ++i)
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
initialEstimate.print("Initial Estimates:\n");
// Optimize the graph and print results
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
result.print("Final results:\n");
// Notice: Smart factor represent the 3D point as a factor, not a variable.
// The 3D position of the landmark is not explicitly calculated by the optimizer.
// If you do want to output the landmark's 3D position, you should use the internal function point()
// of the smart factor to get the 3D point.
Values landmark_result;
for (size_t i = 0; i < points.size(); ++i) {
// The output of point() is in boost::optional<gtsam::Point3>, since sometimes
// the triangulation opterations inside smart factor will encounter degeneracy.
// Check the manual of boost::optional for more details for the usages.
boost::optional<Point3> point;
// here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
point = smartfactors_ptr.at(i)->point(result);
// ignore if boost::optional return NULL
if (point)
landmark_result.insert(Symbol('l', i), *point);
}
landmark_result.print("Landmark results:\n");
return 0;
}
/* ************************************************************************* */

View File

@ -0,0 +1,75 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SteroVOExample.cpp
* @brief A stereo visual odometry example
* @date May 25, 2014
* @author Stephen Camp
*/
/**
* A 3D stereo visual odometry example
* - robot starts at origin
* -moves forward 1 meter
* -takes stereo readings on three landmarks
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Key.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/slam/StereoFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/inference/Symbol.h>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv){
//create graph object, add first pose at origin with key '1'
NonlinearFactorGraph graph;
Pose3 first_pose = Pose3();
graph.push_back(NonlinearEquality<Pose3>(1, first_pose));
//create factor noise model with 3 sigmas of value 1
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1);
//create stereo camera calibration object with .2m between cameras
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2));
//create and add stereo factors between first pose (key value 1) and the three landmarks
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(520, 480, 440), model, 1, 3, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(120, 80, 440), model, 1, 4, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(320, 280, 140), model, 1, 5, K));
//create and add stereo factors between second pose and the three landmarks
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(570, 520, 490), model, 2, 3, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(70, 20, 490), model, 2, 4, K));
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(320, 270, 115), model, 2, 5, K));
//create Values object to contain initial estimates of camera poses and landmark locations
Values initial_estimate = Values();
//create and add iniital estimates
initial_estimate.insert(1, first_pose);
initial_estimate.insert(2, Pose3(Rot3(), Point3(0.1, -0.1, 1.1)));
initial_estimate.insert(3, Point3(1, 1, 5));
initial_estimate.insert(4, Point3(-1, 1, 5));
initial_estimate.insert(5, Point3(0, -0.5, 5));
//create Levenberg-Marquardt optimizer for resulting factor graph, optimize
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
Values result = optimizer.optimize();
result.print("Final result:\n");
return 0;
}

View File

@ -0,0 +1,114 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SteroVOExample.cpp
* @brief A stereo visual odometry example
* @date May 25, 2014
* @author Stephen Camp
*/
/**
* A 3D stereo visual odometry example
* - robot starts at origin
* -moves forward, taking periodic stereo measurements
* -takes stereo readings of many landmarks
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/StereoFactor.h>
#include <gtsam/slam/dataset.h>
#include <string>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv){
Values initial_estimate;
NonlinearFactorGraph graph;
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1);
string calibration_loc = findExampleDataFile("VO_calibration.txt");
string pose_loc = findExampleDataFile("VO_camera_poses_large.txt");
string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt");
//read camera calibration info from file
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
double fx, fy, s, u0, v0, b;
ifstream calibration_file(calibration_loc.c_str());
cout << "Reading calibration info" << endl;
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
//create stereo camera calibration object
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u0,v0,b));
ifstream pose_file(pose_loc.c_str());
cout << "Reading camera poses" << endl;
int pose_id;
MatrixRowMajor m(4,4);
//read camera pose parameters and use to make initial estimates of camera poses
while (pose_file >> pose_id) {
for (int i = 0; i < 16; i++) {
pose_file >> m.data()[i];
}
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
}
// camera and landmark keys
size_t x, l;
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
double uL, uR, v, X, Y, Z;
ifstream factor_file(factor_loc.c_str());
cout << "Reading stereo factors" << endl;
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
graph.push_back(
GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model,
Symbol('x', x), Symbol('l', l), K));
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
if (!initial_estimate.exists(Symbol('l', l))) {
Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x));
//transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space
Point3 worldPoint = camPose.transform_from(Point3(X, Y, Z));
initial_estimate.insert(Symbol('l', l), worldPoint);
}
}
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
cout << "Optimizing" << endl;
//create Levenberg-Marquardt optimizer to optimize the factor graph
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
Values result = optimizer.optimize();
cout << "Final result sample:" << endl;
Values pose_values = result.filter<Pose3>();
pose_values.print("Final camera poses:\n");
return 0;
}

15
gtsam.h
View File

@ -2249,6 +2249,13 @@ pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
gtsam::noiseModel::Base* model);
void save2D(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& estimate, string filename);
//*************************************************************************
// Navigation
@ -2363,6 +2370,12 @@ virtual class CombinedImuFactor : gtsam::NonlinearFactor {
namespace utilities {
#include <matlab.h>
gtsam::KeyList createKeyList(Vector I);
gtsam::KeyList createKeyList(string s, Vector I);
gtsam::KeyVector createKeyVector(Vector I);
gtsam::KeyVector createKeyVector(string s, Vector I);
gtsam::KeySet createKeySet(Vector I);
gtsam::KeySet createKeySet(string s, Vector I);
Matrix extractPoint2(const gtsam::Values& values);
Matrix extractPoint3(const gtsam::Values& values);
Matrix extractPose2(const gtsam::Values& values);
@ -2375,6 +2388,8 @@ namespace utilities {
void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K);
void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K, const gtsam::Pose3& body_P_sensor);
Matrix reprojectionErrors(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values);
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base);
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base, const gtsam::KeyVector& keys);
} //\namespace utilities

View File

@ -617,11 +617,12 @@
#include "ccolamd.h"
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#ifdef MATLAB_MEX_FILE
#include <stdint.h>
typedef uint16_t char16_t;
#include "mex.h"
#include "matrix.h"
#endif

View File

@ -13,6 +13,9 @@
#ifndef NPRINT
#ifdef MATLAB_MEX_FILE
#include <stdlib.h>
#include <stdint.h>
typedef uint16_t char16_t;
#include "mex.h"
int (*ccolamd_printf) (const char *, ...) = mexPrintf ;
#else

View File

@ -16,13 +16,30 @@ if(NOT GTSAM_USE_SYSTEM_EIGEN)
endif()
endforeach(eigen_dir)
# do the same for the unsupported eigen folder
file(GLOB_RECURSE unsupported_eigen_headers "${CMAKE_CURRENT_SOURCE_DIR}/Eigen/unsupported/Eigen/*.h")
file(GLOB unsupported_eigen_dir_headers_all "Eigen/unsupported/Eigen/*")
foreach(unsupported_eigen_dir ${unsupported_eigen_dir_headers_all})
get_filename_component(filename ${unsupported_eigen_dir} NAME)
if (NOT ((${filename} MATCHES "CMakeLists.txt") OR (${filename} MATCHES "src") OR (${filename} MATCHES ".svn")))
list(APPEND unsupported_eigen_headers "${CMAKE_CURRENT_SOURCE_DIR}/Eigen/unsupported/Eigen/${filename}")
install(FILES Eigen/unsupported/Eigen/${filename} DESTINATION include/gtsam/3rdparty/Eigen/unsupported/Eigen)
endif()
endforeach(unsupported_eigen_dir)
# Add to project source
set(eigen_headers ${eigen_headers} PARENT_SCOPE)
# set(unsupported_eigen_headers ${unsupported_eigen_headers} PARENT_SCOPE)
# install Eigen - only the headers in our 3rdparty directory
install(DIRECTORY Eigen/Eigen
DESTINATION include/gtsam/3rdparty/Eigen
FILES_MATCHING PATTERN "*.h")
install(DIRECTORY Eigen/unsupported/Eigen
DESTINATION include/gtsam/3rdparty/Eigen/unsupported/
FILES_MATCHING PATTERN "*.h")
endif()
############ NOTE: When updating GeographicLib be sure to disable building their examples

View File

@ -591,41 +591,17 @@ Matrix3 skewSymmetric(double wx, double wy, double wz)
}
/* ************************************************************************* */
/** Numerical Recipes in C wrappers
* create Numerical Recipes in C structure
* pointers are subtracted by one to provide base 1 access
*/
/* ************************************************************************* */
// FIXME: assumes row major, rather than column major
//double** createNRC(Matrix& A) {
// const size_t m=A.rows();
// double** a = new double* [m];
// for(size_t i = 0; i < m; i++)
// a[i] = &A(i,0)-1;
// return a;
//}
/* ******************************************
*
* Modified from Justin's codebase
*
* Idea came from other public domain code. Takes a S.P.D. matrix
* and computes the LL^t decomposition. returns L, which is lower
* triangular. Note this is the opposite convention from Matlab,
* which calculates Q'Q where Q is upper triangular.
*
* ******************************************/
Matrix LLt(const Matrix& A)
{
Matrix L = zeros(A.rows(), A.rows());
Eigen::LLT<Matrix> llt;
llt.compute(A);
Eigen::LLT<Matrix> llt(A);
return llt.matrixL();
}
/* ************************************************************************* */
Matrix RtR(const Matrix &A)
{
return LLt(A).transpose();
Eigen::LLT<Matrix> llt(A);
return llt.matrixU();
}
/*
@ -633,13 +609,10 @@ Matrix RtR(const Matrix &A)
*/
Matrix cholesky_inverse(const Matrix &A)
{
// FIXME: replace with real algorithm
return A.inverse();
// Matrix L = LLt(A);
// Matrix inv(eye(A.rows()));
// inplace_solve (L, inv, BNU::lower_tag ());
// return BNU::prod(trans(inv), inv);
Eigen::LLT<Matrix> llt(A);
Matrix inv = eye(A.rows());
llt.matrixU().solveInPlace<Eigen::OnTheRight>(inv);
return inv*inv.transpose();
}
/* ************************************************************************* */
@ -648,9 +621,9 @@ Matrix cholesky_inverse(const Matrix &A)
// inv(B) * inv(B)' == A
// inv(B' * B) == A
Matrix inverse_square_root(const Matrix& A) {
Matrix R = RtR(A);
Eigen::LLT<Matrix> llt(A);
Matrix inv = eye(A.rows());
R.triangularView<Eigen::Upper>().solveInPlace<Eigen::OnTheRight>(inv);
llt.matrixU().solveInPlace<Eigen::OnTheRight>(inv);
return inv.transpose();
}

View File

@ -236,6 +236,10 @@ namespace gtsam {
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
// Fill in the lower triangle part of the matrix, so boost::serialization won't
// complain about uninitialized data with an input_stream_error exception
// http://www.boost.org/doc/libs/1_37_0/libs/serialization/doc/exceptions.html#stream_error
matrix_.triangularView<Eigen::Lower>() = matrix_.triangularView<Eigen::Upper>().transpose();
ar & BOOST_SERIALIZATION_NVP(matrix_);
ar & BOOST_SERIALIZATION_NVP(variableColOffsets_);
ar & BOOST_SERIALIZATION_NVP(blockStart_);

View File

@ -1022,22 +1022,32 @@ TEST( matrix, inverse_square_root )
/* *********************************************************************** */
// M was generated as the covariance of a set of random numbers. L that
// we are checking against was generated via chol(M)' on octave
namespace cholesky {
Matrix M = (Matrix(5, 5) << 0.0874197, -0.0030860, 0.0116969, 0.0081463,
0.0048741, -0.0030860, 0.0872727, 0.0183073, 0.0125325, -0.0037363,
0.0116969, 0.0183073, 0.0966217, 0.0103894, -0.0021113, 0.0081463,
0.0125325, 0.0103894, 0.0747324, 0.0036415, 0.0048741, -0.0037363,
-0.0021113, 0.0036415, 0.0909464);
Matrix expected = (Matrix(5, 5) <<
0.295668226226627, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000,
-0.010437374483502, 0.295235094820875, 0.000000000000000, 0.000000000000000, 0.000000000000000,
0.039560896175007, 0.063407813693827, 0.301721866387571, 0.000000000000000, 0.000000000000000,
0.027552165831157, 0.043423266737274, 0.021695600982708, 0.267613525371710, 0.000000000000000,
0.016485031422565, -0.012072546984405, -0.006621889326331, 0.014405837566082, 0.300462176944247);
}
TEST( matrix, LLt )
{
Matrix M = (Matrix(5, 5) << 0.0874197, -0.0030860, 0.0116969, 0.0081463,
0.0048741, -0.0030860, 0.0872727, 0.0183073, 0.0125325, -0.0037363,
0.0116969, 0.0183073, 0.0966217, 0.0103894, -0.0021113, 0.0081463,
0.0125325, 0.0103894, 0.0747324, 0.0036415, 0.0048741, -0.0037363,
-0.0021113, 0.0036415, 0.0909464);
EQUALITY(cholesky::expected, LLt(cholesky::M));
}
TEST( matrix, RtR )
{
EQUALITY(cholesky::expected.transpose(), RtR(cholesky::M));
}
Matrix expected = (Matrix(5, 5) <<
0.295668226226627, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000,
-0.010437374483502, 0.295235094820875, 0.000000000000000, 0.000000000000000, 0.000000000000000,
0.039560896175007, 0.063407813693827, 0.301721866387571, 0.000000000000000, 0.000000000000000,
0.027552165831157, 0.043423266737274, 0.021695600982708, 0.267613525371710, 0.000000000000000,
0.016485031422565, -0.012072546984405, -0.006621889326331, 0.014405837566082, 0.300462176944247);
EQUALITY(expected, LLt(M));
TEST( matrix, cholesky_inverse )
{
EQUALITY(cholesky::M.inverse(), cholesky_inverse(cholesky::M));
}
/* ************************************************************************* */

View File

@ -178,6 +178,7 @@ Pose2 Pose2::between(const Pose2& p2, boost::optional<Matrix&> H1,
// Calculate delta translation = unrotate(R1, dt);
Point2 dt = p2.t() - t_;
double x = dt.x(), y = dt.y();
// t = R1' * (t2-t1)
Point2 t(c1 * x + s1 * y, -s1 * x + c1 * y);
// FD: This is just -AdjointMap(between(p2,p1)) inlined and re-using above

View File

@ -151,9 +151,9 @@ Vector Unit3::localCoordinates(const Unit3& y) const {
double dot = p.dot(q);
// Check for special cases
if (std::abs(dot - 1.0) < 1e-20)
if (std::abs(dot - 1.0) < 1e-16)
return (Vector(2) << 0, 0);
else if (std::abs(dot + 1.0) < 1e-20)
else if (std::abs(dot + 1.0) < 1e-16)
return (Vector(2) << M_PI, 0);
else {
// no special case

View File

@ -398,7 +398,7 @@ TEST( Pose2, matrix )
TEST( Pose2, compose_matrix )
{
Pose2 gT1(M_PI/2.0, Point2(1,2)); // robot at (1,2) looking towards y
Pose2 _1T2(M_PI, Point2(-1,4)); // local robot at (-1,4) loooking at negative x
Pose2 _1T2(M_PI, Point2(-1,4)); // local robot at (-1,4) looking at negative x
Matrix gM1(matrix(gT1)),_1M2(matrix(_1T2));
EXPECT(assert_equal(gM1*_1M2,matrix(gT1.compose(_1T2)))); // RIGHT DOES NOT
}
@ -412,7 +412,7 @@ TEST( Pose2, between )
//
// *--0--*--*
Pose2 gT1(M_PI/2.0, Point2(1,2)); // robot at (1,2) looking towards y
Pose2 gT2(M_PI, Point2(-1,4)); // robot at (-1,4) loooking at negative x
Pose2 gT2(M_PI, Point2(-1,4)); // robot at (-1,4) looking at negative x
Matrix actualH1,actualH2;
Pose2 expected(M_PI/2.0, Point2(2,2));

View File

@ -16,7 +16,7 @@
* Author: cbeall3
*/
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <CppUnitLite/TestHarness.h>

View File

@ -16,7 +16,7 @@
* @author Chris Beall
*/
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>

View File

@ -18,8 +18,8 @@
#pragma once
#include <gtsam_unstable/base/dllexport.h>
#include <gtsam_unstable/geometry/TriangulationFactor.h>
#include <gtsam/geometry/TriangulationFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/PriorFactor.h>
@ -52,7 +52,7 @@ public:
* @param rank_tol SVD rank tolerance
* @return Triangulated Point3
*/
GTSAM_UNSTABLE_EXPORT Point3 triangulateDLT(
GTSAM_EXPORT Point3 triangulateDLT(
const std::vector<Matrix>& projection_matrices,
const std::vector<Point2>& measurements, double rank_tol);
@ -120,7 +120,7 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
* @param landmarkKey to refer to landmark
* @return refined Point3
*/
GTSAM_UNSTABLE_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
const Values& values, Key landmarkKey);
/**

View File

@ -23,43 +23,35 @@ namespace gtsam {
/* ************************************************************************* */
template<class FG>
void VariableIndex::augment(const FG& factors, boost::optional<const FastVector<size_t>&> newFactorIndices)
{
void VariableIndex::augment(const FG& factors,
boost::optional<const FastVector<size_t>&> newFactorIndices) {
gttic(VariableIndex_augment);
// Augment index for each factor
for(size_t i = 0; i < factors.size(); ++i)
{
if(factors[i])
{
for (size_t i = 0; i < factors.size(); ++i) {
if (factors[i]) {
const size_t globalI =
newFactorIndices ?
(*newFactorIndices)[i] :
nFactors_;
BOOST_FOREACH(const Key key, *factors[i])
{
newFactorIndices ? (*newFactorIndices)[i] : nFactors_;
BOOST_FOREACH(const Key key, *factors[i]) {
index_[key].push_back(globalI);
++ nEntries_;
++nEntries_;
}
}
// Increment factor count even if factors are null, to keep indices consistent
if(newFactorIndices)
{
if((*newFactorIndices)[i] >= nFactors_)
if (newFactorIndices) {
if ((*newFactorIndices)[i] >= nFactors_)
nFactors_ = (*newFactorIndices)[i] + 1;
}
else
{
++ nFactors_;
} else {
++nFactors_;
}
}
}
/* ************************************************************************* */
template<typename ITERATOR, class FG>
void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& factors)
{
void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor,
const FG& factors) {
gttic(VariableIndex_remove);
// NOTE: We intentionally do not decrement nFactors_ because the factor
@ -68,17 +60,20 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG&
// one greater than the highest-numbered factor referenced in a VariableIndex.
ITERATOR factorIndex = firstFactor;
size_t i = 0;
for( ; factorIndex != lastFactor; ++factorIndex, ++i) {
if(i >= factors.size())
throw std::invalid_argument("Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove");
if(factors[i]) {
for (; factorIndex != lastFactor; ++factorIndex, ++i) {
if (i >= factors.size())
throw std::invalid_argument(
"Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove");
if (factors[i]) {
BOOST_FOREACH(Key j, *factors[i]) {
Factors& factorEntries = internalAt(j);
Factors::iterator entry = std::find(factorEntries.begin(), factorEntries.end(), *factorIndex);
if(entry == factorEntries.end())
throw std::invalid_argument("Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index");
Factors::iterator entry = std::find(factorEntries.begin(),
factorEntries.end(), *factorIndex);
if (entry == factorEntries.end())
throw std::invalid_argument(
"Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index");
factorEntries.erase(entry);
-- nEntries_;
--nEntries_;
}
}
}
@ -87,10 +82,11 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG&
/* ************************************************************************* */
template<typename ITERATOR>
void VariableIndex::removeUnusedVariables(ITERATOR firstKey, ITERATOR lastKey) {
for(ITERATOR key = firstKey; key != lastKey; ++key) {
for (ITERATOR key = firstKey; key != lastKey; ++key) {
KeyMap::iterator entry = index_.find(*key);
if(!entry->second.empty())
throw std::invalid_argument("Asking to remove variables from the variable index that are not unused");
if (!entry->second.empty())
throw std::invalid_argument(
"Asking to remove variables from the variable index that are not unused");
index_.erase(entry);
}
}

View File

@ -22,7 +22,7 @@
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wunneeded-internal-declaration"
//#pragma GCC diagnostic ignored "-Wunneeded-internal-declaration"
#endif
#include <boost/graph/breadth_first_search.hpp>
#ifdef __GNUC__
@ -73,34 +73,41 @@ SDGraph<KEY> toBoostGraph(const G& graph) {
SDGraph<KEY> g;
typedef typename boost::graph_traits<SDGraph<KEY> >::vertex_descriptor BoostVertex;
std::map<KEY, BoostVertex> key2vertex;
BoostVertex v1, v2;
typename G::const_iterator itFactor;
// Loop over the factors
for(itFactor=graph.begin(); itFactor!=graph.end(); itFactor++) {
if ((*itFactor)->keys().size() > 2)
throw(std::invalid_argument("toBoostGraph: only support factors with at most two keys"));
if ((*itFactor)->keys().size() == 1)
// Ignore factors that are not binary
if ((*itFactor)->keys().size() != 2)
continue;
// Cast the factor to the user-specified factor type F
boost::shared_ptr<F> factor = boost::dynamic_pointer_cast<F>(*itFactor);
// Ignore factors that are not of type F
if (!factor) continue;
KEY key1 = factor->key1();
KEY key2 = factor->key2();
// Retrieve the 2 keys (nodes) the factor (edge) is incident on
KEY key1 = factor->keys()[0];
KEY key2 = factor->keys()[1];
BoostVertex v1, v2;
// If key1 is a new key, add it to the key2vertex map, else get the corresponding vertex id
if (key2vertex.find(key1) == key2vertex.end()) {
v1 = add_vertex(key1, g);
key2vertex.insert(make_pair(key1, v1));
key2vertex.insert(std::pair<KEY,KEY>(key1, v1));
} else
v1 = key2vertex[key1];
// If key2 is a new key, add it to the key2vertex map, else get the corresponding vertex id
if (key2vertex.find(key2) == key2vertex.end()) {
v2 = add_vertex(key2, g);
key2vertex.insert(make_pair(key2, v2));
key2vertex.insert(std::pair<KEY,KEY>(key2, v2));
} else
v2 = key2vertex[key2];
// Add an edge with weight 1.0
boost::property<boost::edge_weight_t, double> edge_property(1.0); // assume constant edge weight here
boost::add_edge(v1, v2, edge_property, g);
}
@ -222,12 +229,11 @@ boost::shared_ptr<Values> composePoses(const G& graph, const PredecessorMap<KEY>
return config;
}
/* ************************************************************************* */
/* ************************************************************************* */
template<class G, class KEY, class FACTOR2>
PredecessorMap<KEY> findMinimumSpanningTree(const G& fg) {
// Convert to a graph that boost understands
SDGraph<KEY> g = gtsam::toBoostGraph<G, FACTOR2, KEY>(fg);
// find minimum spanning tree
@ -237,13 +243,12 @@ PredecessorMap<KEY> findMinimumSpanningTree(const G& fg) {
// convert edge to string pairs
PredecessorMap<KEY> tree;
typename SDGraph<KEY>::vertex_iterator itVertex = boost::vertices(g).first;
typename std::vector<typename SDGraph<KEY>::Vertex>::iterator vi;
for (vi = p_map.begin(); vi != p_map.end(); itVertex++, vi++) {
BOOST_FOREACH(const typename SDGraph<KEY>::Vertex& vi, p_map){
KEY key = boost::get(boost::vertex_name, g, *itVertex);
KEY parent = boost::get(boost::vertex_name, g, *vi);
KEY parent = boost::get(boost::vertex_name, g, vi);
tree.insert(key, parent);
itVertex++;
}
return tree;
}

View File

@ -130,6 +130,9 @@ namespace gtsam {
/// A'*b for Jacobian, eta for Hessian
virtual VectorValues gradientAtZero() const = 0;
/// A'*b for Jacobian, eta for Hessian (raw memory version)
virtual void gradientAtZero(double* d) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;

View File

@ -70,11 +70,18 @@ namespace gtsam {
vector<size_t> dims_accumulated;
dims_accumulated.resize(dims.size()+1,0);
dims_accumulated[0]=0;
for (int i=1; i<dims_accumulated.size(); i++)
for (size_t i=1; i<dims_accumulated.size(); i++)
dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1];
return dims_accumulated;
}
/* ************************************************************************* */
GaussianFactorGraph::shared_ptr GaussianFactorGraph::cloneToPtr() const {
gtsam::GaussianFactorGraph::shared_ptr result(new GaussianFactorGraph());
*result = *this;
return result;
}
/* ************************************************************************* */
GaussianFactorGraph GaussianFactorGraph::clone() const {
GaussianFactorGraph result;

View File

@ -160,7 +160,13 @@ namespace gtsam {
* Cloning preserves null factors so indices for the original graph are still
* valid for the cloned graph.
*/
GaussianFactorGraph clone() const;
virtual GaussianFactorGraph clone() const;
/**
* CloneToPtr() performs a simple assignment to a new graph and returns it.
* There is no preservation of null factors!
*/
virtual GaussianFactorGraph::shared_ptr cloneToPtr() const;
/**
* Returns the negation of all factors in this graph - corresponds to antifactors.
@ -257,7 +263,7 @@ namespace gtsam {
* @param [output] g A VectorValues to store the gradient, which must be preallocated,
* see allocateVectorValues
* @return The gradient as a VectorValues */
VectorValues gradientAtZero() const;
virtual VectorValues gradientAtZero() const;
/** Optimize along the gradient direction, with a closed-form computation to perform the line
* search. The gradient is computed about \f$ \delta x=0 \f$.

View File

@ -599,6 +599,23 @@ VectorValues HessianFactor::gradientAtZero() const {
return g;
}
/* ************************************************************************* */
// TODO: currently assumes all variables of the same size 9 and keys arranged from 0 to n
void HessianFactor::gradientAtZero(double* d) const {
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, 9, 1> DVector;
typedef Eigen::Map<DVector> DMap;
// Loop over all variables in the factor
for (DenseIndex pos = 0; pos < (DenseIndex)size(); ++pos) {
Key j = keys_[pos];
// Get the diagonal block, and insert its diagonal
DVector dj = -info_(pos,size()).knownOffDiagonal();
DMap(d + 9 * j) += dj;
}
}
/* ************************************************************************* */
std::pair<boost::shared_ptr<GaussianConditional>, boost::shared_ptr<HessianFactor> >
EliminateCholesky(const GaussianFactorGraph& factors, const Ordering& keys)

View File

@ -387,6 +387,8 @@ namespace gtsam {
/// eta for Hessian
VectorValues gradientAtZero() const;
virtual void gradientAtZero(double* d) const;
/**
* Densely partially eliminate with Cholesky factorization. JacobianFactors are
* left-multiplied with their transpose to form the Hessian using the conversion constructor

View File

@ -573,6 +573,11 @@ VectorValues JacobianFactor::gradientAtZero() const {
return g;
}
/* ************************************************************************* */
void JacobianFactor::gradientAtZero(double* d) const {
//throw std::runtime_error("gradientAtZero not implemented for Jacobian factor");
}
/* ************************************************************************* */
pair<Matrix, Vector> JacobianFactor::jacobian() const {
pair<Matrix, Vector> result = jacobianUnweighted();

View File

@ -286,6 +286,9 @@ namespace gtsam {
/// A'*b for Jacobian
VectorValues gradientAtZero() const;
/* ************************************************************************* */
virtual void gradientAtZero(double* d) const;
/** Return a whitened version of the factor, i.e. with unit diagonal noise model. */
JacobianFactor whiten() const;

View File

@ -47,22 +47,73 @@ void updateAb(MATRIX& Ab, int j, const Vector& a, const Vector& rd) {
Ab.middleCols(j+1,n-j) -= a * rd.segment(j+1, n-j).transpose();
}
/* ************************************************************************* */
// check *above the diagonal* for non-zero entries
boost::optional<Vector> checkIfDiagonal(const Matrix M) {
size_t m = M.rows(), n = M.cols();
// check all non-diagonal entries
bool full = false;
size_t i, j;
for (i = 0; i < m; i++)
if (!full)
for (j = i + 1; j < n; j++)
if (fabs(M(i, j)) > 1e-9) {
full = true;
break;
}
if (full) {
return boost::none;
} else {
Vector diagonal(n);
for (j = 0; j < n; j++)
diagonal(j) = M(j, j);
return diagonal;
}
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, bool smart) {
size_t m = covariance.rows(), n = covariance.cols();
if (m != n) throw invalid_argument("Gaussian::Covariance: covariance not square");
if (smart) {
// check all non-diagonal entries
size_t i,j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
if (i != j && fabs(covariance(i, j)) > 1e-9) goto full;
Vector variances(n);
for (j = 0; j < n; j++) variances(j) = covariance(j,j);
return Diagonal::Variances(variances,true);
Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) {
size_t m = R.rows(), n = R.cols();
if (m != n)
throw invalid_argument("Gaussian::SqrtInformation: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(R);
if (diagonal)
return Diagonal::Sigmas(reciprocal(*diagonal), true);
else
return shared_ptr(new Gaussian(R.rows(), R));
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Information(const Matrix& M, bool smart) {
size_t m = M.rows(), n = M.cols();
if (m != n)
throw invalid_argument("Gaussian::Information: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(M);
if (diagonal)
return Diagonal::Precisions(*diagonal, true);
else {
Matrix R = RtR(M);
return shared_ptr(new Gaussian(R.rows(), R));
}
full: return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance,
bool smart) {
size_t m = covariance.rows(), n = covariance.cols();
if (m != n)
throw invalid_argument("Gaussian::Covariance: covariance not square");
boost::optional<Vector> variances = boost::none;
if (smart)
variances = checkIfDiagonal(covariance);
if (variances)
return Diagonal::Variances(*variances, true);
else
return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
}
/* ************************************************************************* */
@ -166,7 +217,7 @@ void Gaussian::WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const
// Diagonal
/* ************************************************************************* */
Diagonal::Diagonal() :
Gaussian(1)//, sigmas_(ones(1)), invsigmas_(ones(1)), precisions_(ones(1))
Gaussian(1) // TODO: Frank asks: really sure about this?
{
}
@ -180,8 +231,8 @@ Diagonal::Diagonal(const Vector& sigmas) :
Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
if (smart) {
// check whether all the same entry
DenseIndex j, n = variances.size();
for (j = 1; j < n; j++)
size_t n = variances.size();
for (size_t j = 1; j < n; j++)
if (variances(j) != variances(0)) goto full;
return Isotropic::Variance(n, variances(0), true);
}
@ -191,12 +242,18 @@ Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
/* ************************************************************************* */
Diagonal::shared_ptr Diagonal::Sigmas(const Vector& sigmas, bool smart) {
if (smart) {
size_t n = sigmas.size();
if (n==0) goto full;
// look for zeros to make a constraint
for (size_t i=0; i< (size_t) sigmas.size(); ++i)
if (sigmas(i)<1e-8)
for (size_t j=0; j< n; ++j)
if (sigmas(j)<1e-8)
return Constrained::MixedSigmas(sigmas);
// check whether all the same entry
for (size_t j = 1; j < n; j++)
if (sigmas(j) != sigmas(0)) goto full;
return Isotropic::Sigma(n, sigmas(0), true);
}
return Diagonal::shared_ptr(new Diagonal(sigmas));
full: return Diagonal::shared_ptr(new Diagonal(sigmas));
}
/* ************************************************************************* */

View File

@ -159,10 +159,17 @@ namespace gtsam {
/**
* A Gaussian noise model created by specifying a square root information matrix.
* @param R The (upper-triangular) square root information matrix
* @param smart check if can be simplified to derived class
*/
static shared_ptr SqrtInformation(const Matrix& R) {
return shared_ptr(new Gaussian(R.rows(),R));
}
static shared_ptr SqrtInformation(const Matrix& R, bool smart = true);
/**
* A Gaussian noise model created by specifying an information matrix.
* @param M The information matrix
* @param smart check if can be simplified to derived class
*/
static shared_ptr Information(const Matrix& M, bool smart = true);
/**
* A Gaussian noise model created by specifying a covariance matrix.
@ -865,6 +872,9 @@ namespace gtsam {
}
};
// Helper function
GTSAM_EXPORT boost::optional<Vector> checkIfDiagonal(const Matrix M);
} // namespace noiseModel
/** Note, deliberately not in noiseModel namespace.

View File

@ -267,6 +267,35 @@ TEST(NoiseModel, QRNan )
EXPECT(assert_equal(expectedAb,Ab));
}
/* ************************************************************************* */
TEST(NoiseModel, SmartSqrtInformation )
{
bool smart = true;
gtsam::SharedGaussian expected = Unit::Create(3);
gtsam::SharedGaussian actual = Gaussian::SqrtInformation(eye(3), smart);
EXPECT(assert_equal(*expected,*actual));
}
/* ************************************************************************* */
TEST(NoiseModel, SmartSqrtInformation2 )
{
bool smart = true;
gtsam::SharedGaussian expected = Unit::Isotropic::Sigma(3,2);
gtsam::SharedGaussian actual = Gaussian::SqrtInformation(0.5*eye(3), smart);
EXPECT(assert_equal(*expected,*actual));
}
/* ************************************************************************* */
TEST(NoiseModel, SmartInformation )
{
bool smart = true;
gtsam::SharedGaussian expected = Unit::Isotropic::Variance(3,2);
Matrix M = 0.5*eye(3);
EXPECT(checkIfDiagonal(M));
gtsam::SharedGaussian actual = Gaussian::Information(M, smart);
EXPECT(assert_equal(*expected,*actual));
}
/* ************************************************************************* */
TEST(NoiseModel, SmartCovariance )
{

View File

@ -34,6 +34,11 @@ namespace gtsam {
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
* REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built

View File

@ -33,7 +33,13 @@ namespace gtsam {
/**
*
* @addtogroup SLAM
* * REFERENCES:
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
** REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.

View File

@ -54,8 +54,11 @@ public:
static Point3 unrotate(const Rot2& R, const Point3& p,
boost::optional<Matrix&> HR = boost::none) {
Point3 q = Rot3::yaw(R.theta()).unrotate(p, HR);
if (HR)
*HR = HR->col(2);
if (HR) {
// assign to temporary first to avoid error in Win-Debug mode
Matrix H = HR->col(2);
*HR = H;
}
return q;
}

View File

@ -191,7 +191,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
if(mode == ONE_STEP_PER_ITERATION || mode == SEARCH_REDUCE_ONLY)
stay = false; // If not searching, just return with the new Delta
else if(mode == SEARCH_EACH_ITERATION) {
if(newDelta == Delta || lastAction == DECREASED_DELTA)
if(fabs(newDelta - Delta) < 1e-15 || lastAction == DECREASED_DELTA)
stay = false; // Searching, but Newton's solution is within trust region so keep the same trust region
else {
stay = true; // Searching and increased Delta, so try again to increase Delta

View File

@ -138,7 +138,7 @@ void LevenbergMarquardtOptimizer::decreaseLambda(double stepQuality) {
}
/* ************************************************************************* */
GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem(
GaussianFactorGraph::shared_ptr LevenbergMarquardtOptimizer::buildDampedSystem(
const GaussianFactorGraph& linear) {
gttic(damp);
@ -159,7 +159,8 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem(
// for each of the variables, add a prior
double sigma = 1.0 / std::sqrt(state_.lambda);
GaussianFactorGraph damped = linear;
GaussianFactorGraph::shared_ptr dampedPtr = linear.cloneToPtr();
GaussianFactorGraph &damped = (*dampedPtr);
damped.reserve(damped.size() + state_.values.size());
if (params_.diagonalDamping) {
BOOST_FOREACH(const VectorValues::KeyValuePair& key_vector, state_.hessianDiagonal) {
@ -188,7 +189,20 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem(
}
}
gttoc(damp);
return damped;
return dampedPtr;
}
/* ************************************************************************* */
// Log current error/lambda to file
inline void LevenbergMarquardtOptimizer::writeLogFile(double currentError){
if (!params_.logFile.empty()) {
ofstream os(params_.logFile.c_str(), ios::app);
boost::posix_time::ptime currentTime = boost::posix_time::microsec_clock::universal_time();
os << /*inner iterations*/ state_.totalNumberInnerIterations << ","
<< 1e-6 * (currentTime - state_.startTime).total_microseconds() << ","
<< /*current error*/ currentError << "," << state_.lambda << ","
<< /*outer iterations*/ state_.iterations << endl;
}
}
/* ************************************************************************* */
@ -205,6 +219,9 @@ void LevenbergMarquardtOptimizer::iterate() {
cout << "linearizing = " << endl;
GaussianFactorGraph::shared_ptr linear = linearize();
if(state_.totalNumberInnerIterations==0) // write initial error
writeLogFile(state_.error);
// Keep increasing lambda until we make make progress
while (true) {
@ -212,21 +229,8 @@ void LevenbergMarquardtOptimizer::iterate() {
cout << "trying lambda = " << state_.lambda << endl;
// Build damped system for this lambda (adds prior factors that make it like gradient descent)
GaussianFactorGraph dampedSystem = buildDampedSystem(*linear);
// Log current error/lambda to file
if (!params_.logFile.empty()) {
ofstream os(params_.logFile.c_str(), ios::app);
boost::posix_time::ptime currentTime =
boost::posix_time::microsec_clock::universal_time();
os << state_.totalNumberInnerIterations << ","
<< 1e-6 * (currentTime - state_.startTime).total_microseconds() << ","
<< state_.error << "," << state_.lambda << endl;
}
++state_.totalNumberInnerIterations;
GaussianFactorGraph::shared_ptr dampedSystemPtr = buildDampedSystem(*linear);
GaussianFactorGraph &dampedSystem = (*dampedSystemPtr);
// Try solving
double modelFidelity = 0.0;
@ -240,7 +244,7 @@ void LevenbergMarquardtOptimizer::iterate() {
try {
delta = solve(dampedSystem, state_.values, params_);
systemSolvedSuccessfully = true;
} catch (IndeterminantLinearSystemException& e) {
} catch (IndeterminantLinearSystemException) {
systemSolvedSuccessfully = false;
}
@ -256,6 +260,9 @@ void LevenbergMarquardtOptimizer::iterate() {
double newlinearizedError = linear->error(delta);
double linearizedCostChange = state_.error - newlinearizedError;
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "newlinearizedError = " << newlinearizedError <<
" linearizedCostChange = " << linearizedCostChange << endl;
if (linearizedCostChange >= 0) { // step is valid
// update values
@ -266,50 +273,62 @@ void LevenbergMarquardtOptimizer::iterate() {
// compute new error
gttic(compute_error);
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "calculating error" << endl;
cout << "calculating error:" << endl;
newError = graph_.error(newValues);
gttoc(compute_error);
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "old error (" << state_.error
<< ") new (tentative) error (" << newError << ")" << endl;
// cost change in the original, nonlinear system (old - new)
double costChange = state_.error - newError;
if (linearizedCostChange > 1e-15) { // the error has to decrease to satify this condition
if (linearizedCostChange > 1e-20) { // the (linear) error has to decrease to satisfy this condition
// fidelity of linearized model VS original system between
modelFidelity = costChange / linearizedCostChange;
// if we decrease the error in the nonlinear system and modelFidelity is above threshold
step_is_successful = modelFidelity > params_.minModelFidelity;
} else {
step_is_successful = true; // linearizedCostChange close to zero
}
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "modelFidelity: " << modelFidelity << endl;
} // else we consider the step non successful and we either increase lambda or stop if error change is small
double minAbsoluteTolerance = params_.relativeErrorTol * state_.error;
// if the change is small we terminate
if (fabs(costChange) < minAbsoluteTolerance)
if (fabs(costChange) < minAbsoluteTolerance){
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "fabs(costChange)="<<fabs(costChange) << " minAbsoluteTolerance="<< minAbsoluteTolerance
<< " (relativeErrorTol=" << params_.relativeErrorTol << ")" << endl;
stopSearchingLambda = true;
}
}
}
++state_.totalNumberInnerIterations;
if (step_is_successful) { // we have successfully decreased the cost and we have good modelFidelity
state_.values.swap(newValues);
state_.error = newError;
decreaseLambda(modelFidelity);
writeLogFile(state_.error);
break;
} else if (!stopSearchingLambda) { // we failed to solved the system or we had no decrease in cost
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "increasing lambda: old error (" << state_.error
<< ") new error (" << newError << ")" << endl;
cout << "increasing lambda" << endl;
increaseLambda();
writeLogFile(state_.error);
// check if lambda is too big
if (state_.lambda >= params_.lambdaUpperBound) {
if (nloVerbosity >= NonlinearOptimizerParams::TERMINATION)
cout
<< "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda"
<< endl;
cout << "Warning: Levenberg-Marquardt giving up because "
"cannot decrease error with maximum lambda" << endl;
break;
}
} else { // the change in the cost is very small and it is not worth trying bigger lambdas
writeLogFile(state_.error);
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "Levenberg-Marquardt: stopping as relative cost reduction is small" << endl;
break;
}
} // end while

View File

@ -113,7 +113,6 @@ public:
inline void setDiagonalDamping(bool flag) {
diagonalDamping = flag;
}
inline void setUseFixedLambdaFactor(bool flag) {
useFixedLambdaFactor_ = flag;
}
@ -255,9 +254,11 @@ public:
}
/** Build a damped system for a specific lambda */
GaussianFactorGraph buildDampedSystem(const GaussianFactorGraph& linear);
GaussianFactorGraph::shared_ptr buildDampedSystem(const GaussianFactorGraph& linear);
friend class ::NonlinearOptimizerMoreOptimizationTest;
void writeLogFile(double currentError);
/// @}
protected:

View File

@ -24,7 +24,6 @@ class ImplicitSchurFactor: public GaussianFactor {
public:
typedef ImplicitSchurFactor This; ///< Typedef to this class
typedef JacobianFactor Base; ///< Typedef to base class
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
protected:
@ -87,7 +86,8 @@ public:
}
/// print
void print(const std::string& s, const KeyFormatter& formatter) const {
void print(const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << " ImplicitSchurFactor " << std::endl;
Factor::print(s);
std::cout << " PointCovariance_ \n" << PointCovariance_ << std::endl;
@ -188,19 +188,24 @@ public:
/// Return the block diagonal of the Hessian for this factor
virtual std::map<Key, Matrix> hessianBlockDiagonal() const {
std::map<Key, Matrix> blocks;
// F'*(I - E*P*E')*F
for (size_t pos = 0; pos < size(); ++pos) {
Key j = keys_[pos];
const Matrix2D& Fj = Fblocks_[pos].second;
// F'*F - F'*E*P*E'*F (9*2)*(2*9) - (9*2)*(2*3)*(3*3)*(3*2)*(2*9)
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
* E_.block<2, 3>(2 * pos, 0);
blocks[j] = Fj.transpose() * Fj
- FtE * PointCovariance_ * FtE.transpose();
const Matrix2D& Fj = Fblocks_[pos].second;
// Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
// * E_.block<2, 3>(2 * pos, 0);
// blocks[j] = Fj.transpose() * Fj
// - FtE * PointCovariance_ * FtE.transpose();
const Matrix23& Ej = E_.block<2, 3>(2 * pos, 0);
blocks[j] = Fj.transpose() * (Fj - Ej * PointCovariance_ * Ej.transpose() * Fj);
// F'*(I - E*P*E')*F, TODO: this should work, but it does not :-(
// static const Eigen::Matrix<double, 2, 2> I2 = eye(2);
// Eigen::Matrix<double, 2, 2> Q = //
// I2 - E_.block<2, 3>(2 * pos, 0) * PointCovariance_ * E_.block<2, 3>(2 * pos, 0).transpose();
// blocks[j] = Fj.transpose() * Q * Fj;
// static const Eigen::Matrix<double, 2, 2> I2 = eye(2);
// Eigen::Matrix<double, 2, 2> Q = //
// I2 - E_.block<2, 3>(2 * pos, 0) * PointCovariance_ * E_.block<2, 3>(2 * pos, 0).transpose();
// blocks[j] = Fj.transpose() * Q * Fj;
}
return blocks;
}
@ -235,25 +240,33 @@ public:
typedef std::vector<Vector2> Error2s;
/**
* @brief Calculate corrected error Q*e = (I - E*P*E')*e
* @brief Calculate corrected error Q*(e-2*b) = (I - E*P*E')*(e-2*b)
*/
void projectError(const Error2s& e1, Error2s& e2) const {
void projectError2(const Error2s& e1, Error2s& e2) const {
// d1 = E.transpose() * e1 = (3*2m)*2m
// d1 = E.transpose() * (e1-2*b) = (3*2m)*2m
Vector3 d1;
d1.setZero();
for (size_t k = 0; k < size(); k++)
d1 += E_.block < 2, 3 > (2 * k, 0).transpose() * e1[k];
d1 += E_.block < 2, 3 > (2 * k, 0).transpose() * (e1[k] - 2 * b_.segment < 2 > (k * 2));
// d2 = E.transpose() * e1 = (3*2m)*2m
Vector3 d2 = PointCovariance_ * d1;
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
for (size_t k = 0; k < size(); k++)
e2[k] = e1[k] - E_.block < 2, 3 > (2 * k, 0) * d2;
e2[k] = e1[k] - 2 * b_.segment < 2 > (k * 2) - E_.block < 2, 3 > (2 * k, 0) * d2;
}
/// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
/*
* This definition matches the linearized error in the Hessian Factor:
* LinError(x) = x'*H*x - 2*x'*eta + f
* with:
* H = F' * (I-E'*P*E) * F = F' * Q * F
* eta = F' * (I-E'*P*E) * b = F' * Q * b
* f = nonlinear error
* (x'*H*x - 2*x'*eta + f) = x'*F'*Q*F*x - 2*x'*F'*Q *b + f = x'*F'*Q*(F*x - 2*b) + f
*/
virtual double error(const VectorValues& x) const {
// resize does not do malloc if correct size
@ -262,15 +275,56 @@ public:
// e1 = F * x - b = (2m*dm)*dm
for (size_t k = 0; k < size(); ++k)
e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
projectError(e1, e2);
e1[k] = Fblocks_[k].second * x.at(keys_[k]);
projectError2(e1, e2);
double result = 0;
for (size_t k = 0; k < size(); ++k)
result += dot(e2[k], e2[k]);
return 0.5 * result;
result += dot(e1[k], e2[k]);
double f = b_.squaredNorm();
return 0.5 * (result + f);
}
/// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
// This is wrong and does not match the definition in Hessian
// virtual double error(const VectorValues& x) const {
//
// // resize does not do malloc if correct size
// e1.resize(size());
// e2.resize(size());
//
// // e1 = F * x - b = (2m*dm)*dm
// for (size_t k = 0; k < size(); ++k)
// e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
// projectError(e1, e2);
//
// double result = 0;
// for (size_t k = 0; k < size(); ++k)
// result += dot(e2[k], e2[k]);
//
// std::cout << "implicitFactor::error result " << result << std::endl;
// return 0.5 * result;
// }
/**
* @brief Calculate corrected error Q*e = (I - E*P*E')*e
*/
void projectError(const Error2s& e1, Error2s& e2) const {
// d1 = E.transpose() * e1 = (3*2m)*2m
Vector3 d1;
d1.setZero();
for (size_t k = 0; k < size(); k++)
d1 += E_.block < 2, 3 > (2 * k, 0).transpose() * e1[k];
// d2 = E.transpose() * e1 = (3*2m)*2m
Vector3 d2 = PointCovariance_ * d1;
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
for (size_t k = 0; k < size(); k++)
e2[k] = e1[k] - E_.block < 2, 3 > (2 * k, 0) * d2;
}
/// Scratch space for multiplyHessianAdd
mutable Error2s e1, e2;
@ -377,6 +431,28 @@ public:
return g;
}
/**
* Calculate gradient, which is -F'Q*b, see paper - RAW MEMORY ACCESS
*/
void gradientAtZero(double* d) const {
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
// calculate Q*b
e1.resize(size());
e2.resize(size());
for (size_t k = 0; k < size(); k++)
e1[k] = b_.segment < 2 > (2 * k);
projectError(e1, e2);
for (size_t k = 0; k < size(); ++k) { // for each camera in the factor
Key j = keys_[k];
DMap(d + D * j) += -Fblocks_[k].second.transpose() * e2[k];
}
}
};
// ImplicitSchurFactor

View File

@ -23,6 +23,19 @@ public:
JacobianFactorQ() {
}
/// Empty constructor with keys
JacobianFactorQ(const FastVector<Key>& keys,
const SharedDiagonal& model = SharedDiagonal()) : JacobianSchurFactor<D>() {
Matrix zeroMatrix = Matrix::Zero(0,D);
Vector zeroVector = Vector::Zero(0);
typedef std::pair<Key, Matrix> KeyMatrix;
std::vector<KeyMatrix> QF;
QF.reserve(keys.size());
BOOST_FOREACH(const Key& key, keys)
QF.push_back(KeyMatrix(key, zeroMatrix));
JacobianFactor::fillTerms(QF, zeroVector, model);
}
/// Constructor
JacobianFactorQ(const std::vector<typename Base::KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix3& P, const Vector& b,

View File

@ -6,7 +6,7 @@
*/
#pragma once
#include <gtsam_unstable/slam/JacobianSchurFactor.h>
#include <gtsam/slam/JacobianSchurFactor.h>
namespace gtsam {
/**

View File

@ -5,7 +5,7 @@
*/
#pragma once
#include "gtsam_unstable/slam/JacobianSchurFactor.h"
#include "gtsam/slam/JacobianSchurFactor.h"
namespace gtsam {
/**
@ -18,10 +18,23 @@ public:
typedef Eigen::Matrix<double, 2, D> Matrix2D;
typedef std::pair<Key, Matrix2D> KeyMatrix2D;
typedef std::pair<Key, Matrix> KeyMatrix;
/// Default constructor
JacobianFactorSVD() {}
/// Empty constructor with keys
JacobianFactorSVD(const FastVector<Key>& keys,
const SharedDiagonal& model = SharedDiagonal()) : JacobianSchurFactor<D>() {
Matrix zeroMatrix = Matrix::Zero(0,D);
Vector zeroVector = Vector::Zero(0);
std::vector<KeyMatrix> QF;
QF.reserve(keys.size());
BOOST_FOREACH(const Key& key, keys)
QF.push_back(KeyMatrix(key, zeroMatrix));
JacobianFactor::fillTerms(QF, zeroVector, model);
}
/// Constructor
JacobianFactorSVD(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& Enull, const Vector& b,
const SharedDiagonal& model = SharedDiagonal()) : JacobianSchurFactor<D>() {
@ -32,7 +45,6 @@ public:
// BOOST_FOREACH(const KeyMatrix2D& it, Fblocks)
// QF.push_back(KeyMatrix(it.first, Q.block(0, 2 * j++, m2, 2) * it.second));
// JacobianFactor factor(QF, Q * b);
typedef std::pair<Key, Matrix> KeyMatrix;
std::vector<KeyMatrix> QF;
QF.reserve(numKeys);
BOOST_FOREACH(const KeyMatrix2D& it, Fblocks)

View File

@ -20,6 +20,7 @@
#pragma once
#include "JacobianFactorQ.h"
#include "JacobianFactorSVD.h"
#include "ImplicitSchurFactor.h"
#include "RegularHessianFactor.h"
@ -135,12 +136,12 @@ public:
}
/** return the measurements */
const Vector& measured() const {
const std::vector<Point2>& measured() const {
return measured_;
}
/** return the noise model */
const SharedNoiseModel& noise() const {
const std::vector<SharedNoiseModel>& noise() const {
return noise_;
}
@ -192,7 +193,7 @@ public:
b[2 * i + 1] = e.y();
} catch (CheiralityException& e) {
std::cout << "Cheirality exception " << std::endl;
exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
}
i += 1;
}
@ -222,7 +223,7 @@ public:
* this->noise_.at(i)->distance(reprojectionError.vector());
} catch (CheiralityException&) {
std::cout << "Cheirality exception " << std::endl;
exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
}
i += 1;
}
@ -244,7 +245,7 @@ public:
cameras[i].project(point, boost::none, Ei);
} catch (CheiralityException& e) {
std::cout << "Cheirality exception " << std::endl;
exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
}
this->noise_.at(i)->WhitenSystem(Ei, b);
E.block<2, 3>(2 * i, 0) = Ei;
@ -274,7 +275,7 @@ public:
-(cameras[i].project(point, Fi, Ei, Hcali) - this->measured_.at(i)).vector();
} catch (CheiralityException&) {
std::cout << "Cheirality exception " << std::endl;
exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
}
this->noise_.at(i)->WhitenSystem(Fi, Ei, Hcali, bi);
@ -302,15 +303,18 @@ public:
// Point covariance inv(E'*E)
Matrix3 EtE = E.transpose() * E;
Matrix3 DMatrix = eye(E.cols()); // damping matrix
if (diagonalDamping) { // diagonal of the hessian
DMatrix(0, 0) = EtE(0, 0);
DMatrix(1, 1) = EtE(1, 1);
DMatrix(2, 2) = EtE(2, 2);
EtE(0, 0) += lambda * EtE(0, 0);
EtE(1, 1) += lambda * EtE(1, 1);
EtE(2, 2) += lambda * EtE(2, 2);
}else{
EtE(0, 0) += lambda;
EtE(1, 1) += lambda;
EtE(2, 2) += lambda;
}
PointCov.noalias() = (EtE + lambda * DMatrix).inverse();
PointCov.noalias() = (EtE).inverse();
return f;
}
@ -322,7 +326,7 @@ public:
const double lambda = 0.0) const {
size_t numKeys = this->keys_.size();
std::vector < KeyMatrix2D > Fblocks;
std::vector<KeyMatrix2D> Fblocks;
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point,
lambda);
F = zeros(2 * numKeys, D * numKeys);
@ -345,10 +349,10 @@ public:
diagonalDamping); // diagonalDamping should have no effect (only on PointCov)
// Do SVD on A
Eigen::JacobiSVD < Matrix > svd(E, Eigen::ComputeFullU);
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
Vector s = svd.singularValues();
// Enull = zeros(2 * numKeys, 2 * numKeys - 3);
int numKeys = this->keys_.size();
size_t numKeys = this->keys_.size();
Enull = svd.matrixU().block(0, 3, 2 * numKeys, 2 * numKeys - 3); // last 2m-3 columns
return f;
@ -361,7 +365,7 @@ public:
const Cameras& cameras, const Point3& point) const {
int numKeys = this->keys_.size();
std::vector < KeyMatrix2D > Fblocks;
std::vector<KeyMatrix2D> Fblocks;
double f = computeJacobiansSVD(Fblocks, Enull, b, cameras, point);
F.resize(2 * numKeys, D * numKeys);
F.setZero();
@ -380,14 +384,14 @@ public:
int numKeys = this->keys_.size();
std::vector < KeyMatrix2D > Fblocks;
std::vector<KeyMatrix2D> Fblocks;
Matrix E;
Matrix3 PointCov;
Vector b;
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
diagonalDamping);
//#define HESSIAN_BLOCKS
//#define HESSIAN_BLOCKS // slower, as internally the Hessian factor will transform the blocks into SymmetricBlockMatrix
#ifdef HESSIAN_BLOCKS
// Create structures for Hessian Factors
std::vector < Matrix > Gs(numKeys * (numKeys + 1) / 2);
@ -400,46 +404,23 @@ public:
//std::vector < Vector > gs2(gs.begin(), gs.end());
return boost::make_shared < RegularHessianFactor<D>
> (this->keys_, Gs, gs, f);
#else
> (this->keys_, Gs, gs, f);
#else // we create directly a SymmetricBlockMatrix
size_t n1 = D * numKeys + 1;
std::vector<DenseIndex> dims(numKeys + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, D);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(n1, n1)); // for 10 cameras, size should be (10*D+1 x 10*D+1)
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(n1, n1)); // for 10 cameras, size should be (10*D+1 x 10*D+1)
sparseSchurComplement(Fblocks, E, PointCov, b, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
augmentedHessian(numKeys,numKeys)(0,0) = f;
return boost::make_shared<RegularHessianFactor<D> >(
this->keys_, augmentedHessian);
augmentedHessian(numKeys, numKeys)(0, 0) = f;
return boost::make_shared<RegularHessianFactor<D> >(this->keys_,
augmentedHessian);
#endif
}
// ****************************************************************************************************
boost::shared_ptr<RegularHessianFactor<D> > updateAugmentedHessian(
const Cameras& cameras, const Point3& point, const double lambda,
bool diagonalDamping, SymmetricBlockMatrix& augmentedHessian) const {
int numKeys = this->keys_.size();
std::vector < KeyMatrix2D > Fblocks;
Matrix E;
Matrix3 PointCov;
Vector b;
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
diagonalDamping);
std::vector<DenseIndex> dims(numKeys + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, D);
dims.back() = 1;
updateSparseSchurComplement(Fblocks, E, PointCov, b, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
std::cout << "f "<< f <<std::endl;
augmentedHessian(numKeys,numKeys)(0,0) += f;
}
// ****************************************************************************************************
// slow version - works on full (sparse) matrices
void schurComplement(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
const Matrix& PointCov, const Vector& b,
/*output ->*/std::vector<Matrix>& Gs, std::vector<Vector>& gs) const {
@ -466,7 +447,7 @@ public:
int GsCount2 = 0;
for (DenseIndex i1 = 0; i1 < numKeys; i1++) { // for each camera
DenseIndex i1D = i1 * D;
gs.at(i1) = gs_vector.segment < D > (i1D);
gs.at(i1) = gs_vector.segment<D>(i1D);
for (DenseIndex i2 = 0; i2 < numKeys; i2++) {
if (i2 >= i1) {
Gs.at(GsCount2) = H.block<D, D>(i1D, i2 * D);
@ -476,53 +457,6 @@ public:
}
}
// ****************************************************************************************************
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
// Schur complement trick
// Gs = F' * F - F' * E * P * E' * F
// gs = F' * (b - E * P * E' * b)
// a single point is observed in numKeys cameras
size_t numKeys = this->keys_.size(); // cameras observing current point
size_t aug_numKeys = augmentedHessian.rows() - 1; // all cameras in the group
// Blockwise Schur complement
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P;
// D = (Dx2) * (2)
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
size_t aug_i1 = this->keys_[i1];
std::cout << "i1 "<< i1 <<std::endl;
std::cout << "aug_i1 "<< aug_i1 <<std::endl;
std::cout << "aug_numKeys "<< aug_numKeys <<std::endl;
augmentedHessian(aug_i1,aug_numKeys) = //augmentedHessian(aug_i1,aug_numKeys) +
Fi1.transpose() * b.segment < 2 > (2 * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
std::cout << "filled 1 " <<std::endl;
augmentedHessian(aug_i1,aug_i1) = //augmentedHessian(aug_i1,aug_i1) +
Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
// upper triangular part of the hessian
for (size_t i2 = i1+1; i2 < numKeys; i2++) { // for each camera
const Matrix2D& Fi2 = Fblocks.at(i2).second;
size_t aug_i2 = this->keys_[i2];
std::cout << "i2 "<< i2 <<std::endl;
std::cout << "aug_i2 "<< aug_i2 <<std::endl;
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian(aug_i1, aug_i2) = //augmentedHessian(aug_i1, aug_i2)
- Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
}
} // end of for over cameras
}
// ****************************************************************************************************
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
@ -542,20 +476,20 @@ public:
// D = (Dx2) * (2)
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
augmentedHessian(i1,numKeys) = Fi1.transpose() * b.segment < 2 > (2 * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
augmentedHessian(i1, numKeys) = Fi1.transpose() * b.segment<2>(2 * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
augmentedHessian(i1,i1) =
Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
augmentedHessian(i1, i1) = Fi1.transpose()
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
// upper triangular part of the hessian
for (size_t i2 = i1+1; i2 < numKeys; i2++) { // for each camera
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
const Matrix2D& Fi2 = Fblocks.at(i2).second;
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian(i1,i2) =
-Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
augmentedHessian(i1, i2) = -Fi1.transpose()
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
}
} // end of for over cameras
}
@ -586,24 +520,109 @@ public:
{ // for i1 = i2
// D = (Dx2) * (2)
gs.at(i1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
// D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
gs.at(i1) -= Fi1.transpose() * (Ei1_P * (E.transpose() * b));
gs.at(i1) = Fi1.transpose() * b.segment<2>(2 * i1) // F' * b
-Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
Gs.at(GsIndex) = Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
Gs.at(GsIndex) = Fi1.transpose()
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
GsIndex++;
}
// upper triangular part of the hessian
for (size_t i2 = i1+1; i2 < numKeys; i2++) { // for each camera
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
const Matrix2D& Fi2 = Fblocks.at(i2).second;
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
Gs.at(GsIndex) = -Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
Gs.at(GsIndex) = -Fi1.transpose()
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
GsIndex++;
}
} // end of for over cameras
}
// ****************************************************************************************************
void updateAugmentedHessian(const Cameras& cameras, const Point3& point,
const double lambda, bool diagonalDamping,
SymmetricBlockMatrix& augmentedHessian,
const FastVector<Key> allKeys) const {
// int numKeys = this->keys_.size();
std::vector<KeyMatrix2D> Fblocks;
Matrix E;
Matrix3 PointCov;
Vector b;
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
diagonalDamping);
updateSparseSchurComplement(Fblocks, E, PointCov, b, f, allKeys, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
}
// ****************************************************************************************************
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
const double f, const FastVector<Key> allKeys,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
// Schur complement trick
// Gs = F' * F - F' * E * P * E' * F
// gs = F' * (b - E * P * E' * b)
MatrixDD matrixBlock;
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
FastMap<Key,size_t> KeySlotMap;
for (size_t slot=0; slot < allKeys.size(); slot++)
KeySlotMap.insert(std::make_pair<Key,size_t>(allKeys[slot],slot));
// a single point is observed in numKeys cameras
size_t numKeys = this->keys_.size(); // cameras observing current point
size_t aug_numKeys = (augmentedHessian.rows() - 1) / D; // all cameras in the group
// Blockwise Schur complement
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor
const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P;
// D = (Dx2) * (2)
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
// Key cameraKey_i1 = this->keys_[i1];
DenseIndex aug_i1 = KeySlotMap[this->keys_[i1]];
// information vector - store previous vector
// vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i1, aug_numKeys) = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal()
+ Fi1.transpose() * b.segment<2>(2 * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
// main block diagonal - store previous block
matrixBlock = augmentedHessian(aug_i1, aug_i1);
// add contribution of current factor
augmentedHessian(aug_i1, aug_i1) = matrixBlock +
( Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1) );
// upper triangular part of the hessian
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
const Matrix2D& Fi2 = Fblocks.at(i2).second;
//Key cameraKey_i2 = this->keys_[i2];
DenseIndex aug_i2 = KeySlotMap[this->keys_[i2]];
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
// off diagonal block - store previous block
// matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i1, aug_i2) = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal()
- Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
}
} // end of for over cameras
augmentedHessian(aug_numKeys, aug_numKeys)(0, 0) += f;
}
// ****************************************************************************************************
boost::shared_ptr<ImplicitSchurFactor<D> > createImplicitSchurFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0,
@ -620,13 +639,24 @@ public:
boost::shared_ptr<JacobianFactorQ<D> > createJacobianQFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0,
bool diagonalDamping = false) const {
std::vector < KeyMatrix2D > Fblocks;
std::vector<KeyMatrix2D> Fblocks;
Matrix E;
Matrix3 PointCov;
Vector b;
computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
diagonalDamping);
return boost::make_shared < JacobianFactorQ<D> > (Fblocks, E, PointCov, b);
return boost::make_shared<JacobianFactorQ<D> >(Fblocks, E, PointCov, b);
}
// ****************************************************************************************************
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0) const {
size_t numKeys = this->keys_.size();
std::vector < KeyMatrix2D > Fblocks;
Vector b;
Matrix Enull(2*numKeys, 2*numKeys-3);
computeJacobiansSVD(Fblocks, Enull, b, cameras, point, lambda);
return boost::make_shared< JacobianFactorSVD<6> >(Fblocks, Enull, b);
}
private:

View File

@ -21,11 +21,10 @@
#include "SmartFactorBase.h"
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h>
#include <gtsam_unstable/geometry/triangulation.h>
#include <boost/optional.hpp>
#include <boost/make_shared.hpp>
@ -54,6 +53,10 @@ public:
double f;
};
enum LinearizationMode {
HESSIAN, JACOBIAN_SVD, JACOBIAN_Q
};
/**
* SmartProjectionFactor: triangulates point
* TODO: why LANDMARK parameter?
@ -91,6 +94,13 @@ protected:
/// shorthand for base class type
typedef SmartFactorBase<POSE, CALIBRATION, D> Base;
double landmarkDistanceThreshold_; // if the landmark is triangulated at a
// distance larger than that the factor is considered degenerate
double dynamicOutlierRejectionThreshold_; // if this is nonnegative the factor will check if the
// average reprojection error is smaller than this threshold after triangulation,
// and the factor is disregarded if the error is large
/// shorthand for this class
typedef SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, D> This;
@ -115,12 +125,15 @@ public:
SmartProjectionFactor(const double rankTol, const double linThreshold,
const bool manageDegeneracy, const bool enableEPI,
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(
new SmartProjectionFactorState())) :
double landmarkDistanceThreshold = 1e10,
double dynamicOutlierRejectionThreshold = -1,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
Base(body_P_sensor), rankTolerance_(rankTol), retriangulationThreshold_(
1e-5), manageDegeneracy_(manageDegeneracy), enableEPI_(enableEPI), linearizationThreshold_(
linThreshold), degenerate_(false), cheiralityException_(false), throwCheirality_(
false), verboseCheirality_(false), state_(state) {
false), verboseCheirality_(false), state_(state),
landmarkDistanceThreshold_(landmarkDistanceThreshold),
dynamicOutlierRejectionThreshold_(dynamicOutlierRejectionThreshold) {
}
/** Virtual destructor */
@ -234,6 +247,31 @@ public:
rankTolerance_, enableEPI_);
degenerate_ = false;
cheiralityException_ = false;
// Check landmark distance and reprojection errors to avoid outliers
double totalReprojError = 0.0;
size_t i=0;
BOOST_FOREACH(const Camera& camera, cameras) {
Point3 cameraTranslation = camera.pose().translation();
// we discard smart factors corresponding to points that are far away
if(cameraTranslation.distance(point_) > landmarkDistanceThreshold_){
degenerate_ = true;
break;
}
const Point2& zi = this->measured_.at(i);
try {
Point2 reprojectionError(camera.project(point_) - zi);
totalReprojError += reprojectionError.vector().norm();
} catch (CheiralityException) {
cheiralityException_ = true;
}
i += 1;
}
// we discard smart factors that have large reprojection error
if(dynamicOutlierRejectionThreshold_ > 0 &&
totalReprojError/m > dynamicOutlierRejectionThreshold_)
degenerate_ = true;
} catch (TriangulationUnderconstrainedException&) {
// if TriangulationUnderconstrainedException can be
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
@ -385,7 +423,7 @@ public:
if (triangulateForLinearize(cameras))
return Base::createJacobianQFactor(cameras, point_, lambda);
else
return boost::shared_ptr<JacobianFactorQ<D> >();
return boost::make_shared< JacobianFactorQ<D> >(this->keys_);
}
/// Create a factor, takes values
@ -397,7 +435,16 @@ public:
if (nonDegenerate)
return createJacobianQFactor(myCameras, lambda);
else
return boost::shared_ptr<JacobianFactorQ<D> >();
return boost::make_shared< JacobianFactorQ<D> >(this->keys_);
}
/// different (faster) way to compute Jacobian factor
boost::shared_ptr< JacobianFactor > createJacobianSVDFactor(const Cameras& cameras,
double lambda) const {
if (triangulateForLinearize(cameras))
return Base::createJacobianSVDFactor(cameras, point_, lambda);
else
return boost::make_shared< JacobianFactorSVD<D> >(this->keys_);
}
/// Returns true if nonDegenerate

View File

@ -22,6 +22,16 @@
#include "SmartProjectionFactor.h"
namespace gtsam {
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
*/
/**
* The calibration is known here. The factor only constraints poses (variable dimension is 6)
@ -31,7 +41,8 @@ template<class POSE, class LANDMARK, class CALIBRATION>
class SmartProjectionPoseFactor: public SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, 6> {
protected:
// Known calibration
LinearizationMode linearizeTo_; ///< How to linearize the factor (HESSIAN, JACOBIAN_SVD, JACOBIAN_Q)
std::vector<boost::shared_ptr<CALIBRATION> > K_all_; ///< shared pointer to calibration object (one for each camera)
public:
@ -56,8 +67,11 @@ public:
*/
SmartProjectionPoseFactor(const double rankTol = 1,
const double linThreshold = -1, const bool manageDegeneracy = false,
const bool enableEPI = false, boost::optional<POSE> body_P_sensor = boost::none) :
Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor) {}
const bool enableEPI = false, boost::optional<POSE> body_P_sensor = boost::none,
LinearizationMode linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10,
double dynamicOutlierRejectionThreshold = -1) :
Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor,
landmarkDistanceThreshold, dynamicOutlierRejectionThreshold), linearizeTo_(linearizeTo) {}
/** Virtual destructor */
virtual ~SmartProjectionPoseFactor() {}
@ -65,7 +79,7 @@ public:
/**
* add a new measurement and pose key
* @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKey is the index corresponding to the camera observing the same landmark
* @param poseKey is key corresponding to the camera observing the same landmark
* @param noise_i is the measurement noise
* @param K_i is the (known) camera calibration
*/
@ -77,8 +91,11 @@ public:
}
/**
* add a new measurements and pose keys
* Variant of the previous one in which we include a set of measurements
* Variant of the previous one in which we include a set of measurements
* @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
* @param noises vector of measurement noises
* @param Ks vector of calibration objects
*/
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
std::vector<SharedNoiseModel> noises,
@ -90,8 +107,11 @@ public:
}
/**
* add a new measurements and pose keys
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
* @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
* @param noise measurement noise (same for all measurements)
* @param K the (known) camera calibration (same for all measurements)
*/
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
const SharedNoiseModel noise, const boost::shared_ptr<CALIBRATION> K) {
@ -126,7 +146,12 @@ public:
return 6 * this->keys_.size();
}
// Collect all cameras
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses corresponding
* to keys involved in this factor
* @return vector of Values
*/
typename Base::Cameras cameras(const Values& values) const {
typename Base::Cameras cameras;
size_t i=0;
@ -139,11 +164,24 @@ public:
}
/**
* linearize returns a Hessian factor contraining the poses
* Linearize to Gaussian Factor
* @param values Values structure which must contain camera poses for this factor
* @return
*/
virtual boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const {
return this->createHessianFactor(cameras(values));
// depending on flag set on construction we may linearize to different linear factors
switch(linearizeTo_){
case JACOBIAN_SVD :
return this->createJacobianSVDFactor(cameras(values), 0.0);
break;
case JACOBIAN_Q :
return this->createJacobianQFactor(cameras(values), 0.0);
break;
default:
return this->createHessianFactor(cameras(values));
break;
}
}
/**
@ -158,7 +196,7 @@ public:
}
/** return the calibration object */
inline const boost::shared_ptr<CALIBRATION> calibration() const {
inline const std::vector<boost::shared_ptr<CALIBRATION> > calibration() const {
return K_all_;
}

View File

@ -16,18 +16,18 @@
* @brief utility functions for loading datasets
*/
#include <fstream>
#include <sstream>
#include <cstdlib>
#include <boost/filesystem.hpp>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/linear/Sampler.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/BearingRangeFactor.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/linear/Sampler.h>
#include <gtsam/inference/Symbol.h>
#include <boost/filesystem.hpp>
#include <fstream>
#include <sstream>
#include <cstdlib>
using namespace std;
namespace fs = boost::filesystem;
@ -43,7 +43,7 @@ string findExampleDataFile(const string& name) {
// Search source tree and installed location
vector<string> rootsToSearch;
rootsToSearch.push_back(GTSAM_SOURCE_TREE_DATASET_DIR); // Defined by CMake, see gtsam/gtsam/CMakeLists.txt
rootsToSearch.push_back(GTSAM_INSTALLED_DATASET_DIR); // Defined by CMake, see gtsam/gtsam/CMakeLists.txt
rootsToSearch.push_back(GTSAM_INSTALLED_DATASET_DIR); // Defined by CMake, see gtsam/gtsam/CMakeLists.txt
// Search for filename as given, and with .graph and .txt extensions
vector<string> namesToSearch;
@ -55,35 +55,122 @@ string findExampleDataFile(const string& name) {
// Find first name that exists
BOOST_FOREACH(const fs::path& root, rootsToSearch) {
BOOST_FOREACH(const fs::path& name, namesToSearch) {
if(fs::is_regular_file(root / name))
if (fs::is_regular_file(root / name))
return (root / name).string();
}
}
// If we did not return already, then we did not find the file
throw std::invalid_argument(
"gtsam::findExampleDataFile could not find a matching file in\n"
SOURCE_TREE_DATASET_DIR " or\n"
INSTALLED_DATASET_DIR " named\n" +
name + ", " + name + ".graph, or " + name + ".txt");
throw
invalid_argument(
"gtsam::findExampleDataFile could not find a matching file in\n"
SOURCE_TREE_DATASET_DIR " or\n"
INSTALLED_DATASET_DIR " named\n" +
name + ", " + name + ".graph, or " + name + ".txt");
}
/* ************************************************************************* */
string createRewrittenFileName(const string& name) {
// Search source tree and installed location
if (!exists(fs::path(name))) {
throw invalid_argument(
"gtsam::createRewrittenFileName could not find a matching file in\n"
+ name);
}
fs::path p(name);
fs::path newpath = fs::path(p.parent_path().string())
/ fs::path(p.stem().string() + "-rewritten.txt");
return newpath.string();
}
/* ************************************************************************* */
#endif
/* ************************************************************************* */
pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
pair<string, boost::optional<noiseModel::Diagonal::shared_ptr> > dataset,
int maxID, bool addNoise, bool smart) {
return load2D(dataset.first, dataset.second, maxID, addNoise, smart);
GraphAndValues load2D(pair<string, SharedNoiseModel> dataset, int maxID,
bool addNoise, bool smart, NoiseFormat noiseFormat,
KernelFunctionType kernelFunctionType) {
return load2D(dataset.first, dataset.second, maxID, addNoise, smart,
noiseFormat, kernelFunctionType);
}
/* ************************************************************************* */
pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
const string& filename, boost::optional<noiseModel::Diagonal::shared_ptr> model, int maxID,
bool addNoise, bool smart) {
cout << "Will try to read " << filename << endl;
// Read noise parameters and interpret them according to flags
static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
NoiseFormat noiseFormat, KernelFunctionType kernelFunctionType) {
double v1, v2, v3, v4, v5, v6;
is >> v1 >> v2 >> v3 >> v4 >> v5 >> v6;
// Read matrix and check that diagonal entries are non-zero
Matrix M(3, 3);
switch (noiseFormat) {
case NoiseFormatG2O:
case NoiseFormatCOV:
// i.e., [ v1 v2 v3; v2' v4 v5; v3' v5' v6 ]
if (v1 == 0.0 || v4 == 0.0 || v6 == 0.0)
throw runtime_error(
"load2D::readNoiseModel looks like this is not G2O matrix order");
M << v1, v2, v3, v2, v4, v5, v3, v5, v6;
break;
case NoiseFormatTORO:
case NoiseFormatGRAPH:
// http://www.openslam.org/toro.html
// inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
// i.e., [ v1 v2 v5; v2' v3 v6; v5' v6' v4 ]
if (v1 == 0.0 || v3 == 0.0 || v4 == 0.0)
throw invalid_argument(
"load2D::readNoiseModel looks like this is not TORO matrix order");
M << v1, v2, v5, v2, v3, v6, v5, v6, v4;
break;
default:
throw runtime_error("load2D: invalid noise format");
}
// Now, create a Gaussian noise model
// The smart flag will try to detect a simpler model, e.g., unit
SharedNoiseModel model;
switch (noiseFormat) {
case NoiseFormatG2O:
case NoiseFormatTORO:
// In both cases, what is stored in file is the information matrix
model = noiseModel::Gaussian::Information(M, smart);
break;
case NoiseFormatGRAPH:
case NoiseFormatCOV:
// These cases expect covariance matrix
model = noiseModel::Gaussian::Covariance(M, smart);
break;
default:
throw invalid_argument("load2D: invalid noise format");
}
switch (kernelFunctionType) {
case KernelFunctionTypeNONE:
return model;
break;
case KernelFunctionTypeHUBER:
return noiseModel::Robust::Create(
noiseModel::mEstimator::Huber::Create(1.345), model);
break;
case KernelFunctionTypeTUKEY:
return noiseModel::Robust::Create(
noiseModel::mEstimator::Tukey::Create(4.6851), model);
break;
default:
throw invalid_argument("load2D: invalid kernel function type");
}
}
/* ************************************************************************* */
GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
bool addNoise, bool smart, NoiseFormat noiseFormat,
KernelFunctionType kernelFunctionType) {
ifstream is(filename.c_str());
if (!is)
throw std::invalid_argument("load2D: can not find the file!");
throw invalid_argument("load2D: can not find file " + filename);
Values::shared_ptr initial(new Values);
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
@ -92,16 +179,18 @@ pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
// load the poses
while (is) {
if(! (is >> tag))
if (!(is >> tag))
break;
if ((tag == "VERTEX2") || (tag == "VERTEX")) {
if ((tag == "VERTEX2") || (tag == "VERTEX_SE2") || (tag == "VERTEX")) {
int id;
double x, y, yaw;
is >> id >> x >> y >> yaw;
// optional filter
if (maxID && id >= maxID)
continue;
initial->insert(id, Pose2(x, y, yaw));
}
is.ignore(LINESIZE, '\n');
@ -109,54 +198,47 @@ pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
is.clear(); /* clears the end-of-file and error flags */
is.seekg(0, ios::beg);
// Create a sampler with random number generator
Sampler sampler(42u);
// If asked, create a sampler with random number generator
Sampler sampler;
if (addNoise) {
noiseModel::Diagonal::shared_ptr noise;
if (model)
noise = boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!noise)
throw invalid_argument(
"gtsam::load2D: invalid noise model for adding noise"
"(current version assumes diagonal noise model)!");
sampler = Sampler(noise);
}
// load the factors
// Parse the pose constraints
int id1, id2;
bool haveLandmark = false;
while (is) {
if(! (is >> tag))
if (!(is >> tag))
break;
if ((tag == "EDGE2") || (tag == "EDGE") || (tag == "ODOMETRY")) {
int id1, id2;
if ((tag == "EDGE2") || (tag == "EDGE") || (tag == "EDGE_SE2")
|| (tag == "ODOMETRY")) {
// Read transform
double x, y, yaw;
double v1, v2, v3, v4, v5, v6;
is >> id1 >> id2 >> x >> y >> yaw;
is >> v1 >> v2 >> v3 >> v4 >> v5 >> v6;
Pose2 l1Xl2(x, y, yaw);
// Try to guess covariance matrix layout
Matrix m(3,3);
if(v1 != 0.0 && v2 == 0.0 && v3 != 0.0 && v4 != 0.0 && v5 == 0.0 && v6 == 0.0)
{
// Looks like [ v1 v2 v5; v2' v3 v6; v5' v6' v4 ]
m << v1, v2, v5, v2, v3, v6, v5, v6, v4;
}
else if(v1 != 0.0 && v2 == 0.0 && v3 == 0.0 && v4 != 0.0 && v5 == 0.0 && v6 != 0.0)
{
// Looks like [ v1 v2 v3; v2' v4 v5; v3' v5' v6 ]
m << v1, v2, v3, v2, v4, v5, v3, v5, v6;
}
else
{
throw std::invalid_argument("load2D: unrecognized covariance matrix format in dataset file");
}
// read noise model
SharedNoiseModel modelInFile = readNoiseModel(is, smart, noiseFormat,
kernelFunctionType);
// optional filter
if (maxID && (id1 >= maxID || id2 >= maxID))
continue;
Pose2 l1Xl2(x, y, yaw);
// SharedNoiseModel noise = noiseModel::Gaussian::Covariance(m, smart);
if (!model) {
Vector variances = (Vector(3) << m(0, 0), m(1, 1), m(2, 2));
model = noiseModel::Diagonal::Variances(variances, smart);
}
if (!model)
model = modelInFile;
if (addNoise)
l1Xl2 = l1Xl2.retract(sampler.sampleNewModel(*model));
l1Xl2 = l1Xl2.retract(sampler.sample());
// Insert vertices if pure odometry file
if (!initial->exists(id1))
@ -165,75 +247,84 @@ pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
initial->insert(id2, initial->at<Pose2>(id1) * l1Xl2);
NonlinearFactor::shared_ptr factor(
new BetweenFactor<Pose2>(id1, id2, l1Xl2, *model));
new BetweenFactor<Pose2>(id1, id2, l1Xl2, model));
graph->push_back(factor);
}
// Parse measurements
double bearing, range, bearing_std, range_std;
// A bearing-range measurement
if (tag == "BR") {
int id1, id2;
double bearing, range, bearing_std, range_std;
is >> id1 >> id2 >> bearing >> range >> bearing_std >> range_std;
// optional filter
if (maxID && (id1 >= maxID || id2 >= maxID))
continue;
noiseModel::Diagonal::shared_ptr measurementNoise =
noiseModel::Diagonal::Sigmas((Vector(2) << bearing_std, range_std));
*graph += BearingRangeFactor<Pose2, Point2>(id1, id2, bearing, range, measurementNoise);
// Insert poses or points if they do not exist yet
if (!initial->exists(id1))
initial->insert(id1, Pose2());
if (!initial->exists(id2)) {
Pose2 pose = initial->at<Pose2>(id1);
Point2 local(cos(bearing)*range,sin(bearing)*range);
Point2 global = pose.transform_from(local);
initial->insert(id2, global);
}
}
// A landmark measurement, TODO Frank says: don't know why is converted to bearing-range
if (tag == "LANDMARK") {
int id1, id2;
double lmx, lmy;
double v1, v2, v3;
is >> id1 >> id2 >> lmx >> lmy >> v1 >> v2 >> v3;
// Convert x,y to bearing,range
double bearing = std::atan2(lmy, lmx);
double range = std::sqrt(lmx*lmx + lmy*lmy);
bearing = atan2(lmy, lmx);
range = sqrt(lmx * lmx + lmy * lmy);
// In our experience, the x-y covariance on landmark sightings is not very good, so assume
// that it describes the uncertainty at a range of 10m, and convert that to bearing/range
// uncertainty.
SharedDiagonal measurementNoise;
if(std::abs(v1 - v3) < 1e-4)
{
double rangeVar = v1;
double bearingVar = v1 / 10.0;
measurementNoise = noiseModel::Diagonal::Sigmas((Vector(2) << bearingVar, rangeVar));
}
else
{
if(!haveLandmark) {
cout << "Warning: load2D is a very simple dataset loader and is ignoring the\n"
"non-uniform covariance on LANDMARK measurements in this file." << endl;
// it describes the uncertainty at a range of 10m, and convert that to bearing/range uncertainty.
if (std::abs(v1 - v3) < 1e-4) {
bearing_std = sqrt(v1 / 10.0);
range_std = sqrt(v1);
} else {
bearing_std = 1;
range_std = 1;
if (!haveLandmark) {
cout
<< "Warning: load2D is a very simple dataset loader and is ignoring the\n"
"non-uniform covariance on LANDMARK measurements in this file."
<< endl;
haveLandmark = true;
}
}
}
// Do some common stuff for bearing-range measurements
if (tag == "LANDMARK" || tag == "BR") {
// optional filter
if (maxID && id1 >= maxID)
continue;
// Create noise model
noiseModel::Diagonal::shared_ptr measurementNoise =
noiseModel::Diagonal::Sigmas((Vector(2) << bearing_std, range_std));
// Add to graph
*graph += BearingRangeFactor<Pose2, Point2>(id1, L(id2), bearing, range, measurementNoise);
*graph += BearingRangeFactor<Pose2, Point2>(id1, L(id2), bearing, range,
measurementNoise);
// Insert poses or points if they do not exist yet
if (!initial->exists(id1))
initial->insert(id1, Pose2());
if (!initial->exists(L(id2))) {
Pose2 pose = initial->at<Pose2>(id1);
Point2 local(cos(bearing) * range, sin(bearing) * range);
Point2 global = pose.transform_from(local);
initial->insert(L(id2), global);
}
}
is.ignore(LINESIZE, '\n');
}
cout << "load2D read a graph file with " << initial->size()
<< " vertices and " << graph->nrFactors() << " factors" << endl;
return make_pair(graph, initial);
}
/* ************************************************************************* */
GraphAndValues load2D_robust(const string& filename,
noiseModel::Base::shared_ptr& model, int maxID) {
return load2D(filename, model, maxID);
}
/* ************************************************************************* */
void save2D(const NonlinearFactorGraph& graph, const Values& config,
const noiseModel::Diagonal::shared_ptr model, const string& filename) {
@ -241,18 +332,16 @@ void save2D(const NonlinearFactorGraph& graph, const Values& config,
fstream stream(filename.c_str(), fstream::out);
// save poses
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, config)
{
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, config) {
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.value);
stream << "VERTEX2 " << key_value.key << " " << pose.x() << " "
<< pose.y() << " " << pose.theta() << endl;
stream << "VERTEX2 " << key_value.key << " " << pose.x() << " " << pose.y()
<< " " << pose.theta() << endl;
}
// save edges
Matrix R = model->R();
Matrix RR = trans(R) * R; //prod(trans(R),R);
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph)
{
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
boost::shared_ptr<BetweenFactor<Pose2> > factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
if (!factor)
@ -260,14 +349,62 @@ void save2D(const NonlinearFactorGraph& graph, const Values& config,
Pose2 pose = factor->measured().inverse();
stream << "EDGE2 " << factor->key2() << " " << factor->key1() << " "
<< pose.x() << " " << pose.y() << " " << pose.theta() << " "
<< RR(0, 0) << " " << RR(0, 1) << " " << RR(1, 1) << " "
<< RR(2, 2) << " " << RR(0, 2) << " " << RR(1, 2) << endl;
<< pose.x() << " " << pose.y() << " " << pose.theta() << " " << RR(0, 0)
<< " " << RR(0, 1) << " " << RR(1, 1) << " " << RR(2, 2) << " "
<< RR(0, 2) << " " << RR(1, 2) << endl;
}
stream.close();
}
/* ************************************************************************* */
GraphAndValues readG2o(const string& g2oFile,
KernelFunctionType kernelFunctionType) {
// just call load2D
int maxID = 0;
bool addNoise = false;
bool smart = true;
return load2D(g2oFile, SharedNoiseModel(), maxID, addNoise, smart,
NoiseFormatG2O, kernelFunctionType);
}
/* ************************************************************************* */
void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
const string& filename) {
fstream stream(filename.c_str(), fstream::out);
// save poses
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, estimate) {
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.value);
stream << "VERTEX_SE2 " << key_value.key << " " << pose.x() << " "
<< pose.y() << " " << pose.theta() << endl;
}
// save edges
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
boost::shared_ptr<BetweenFactor<Pose2> > factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
if (!factor)
continue;
SharedNoiseModel model = factor->get_noiseModel();
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw invalid_argument(
"writeG2o: invalid noise model (current version assumes diagonal noise model)!");
Pose2 pose = factor->measured(); //.inverse();
stream << "EDGE_SE2 " << factor->key1() << " " << factor->key2() << " "
<< pose.x() << " " << pose.y() << " " << pose.theta() << " "
<< diagonalModel->precision(0) << " " << 0.0 << " " << 0.0 << " "
<< diagonalModel->precision(1) << " " << 0.0 << " "
<< diagonalModel->precision(2) << endl;
}
stream.close();
}
/* ************************************************************************* */
bool load3D(const string& filename) {
ifstream is(filename.c_str());
@ -311,161 +448,60 @@ bool load3D(const string& filename) {
}
/* ************************************************************************* */
pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D_robust(
const string& filename, noiseModel::Base::shared_ptr& model, int maxID) {
cout << "Will try to read " << filename << endl;
ifstream is(filename.c_str());
if (!is)
throw std::invalid_argument("load2D: can not find the file!");
Values::shared_ptr initial(new Values);
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
string tag;
// load the poses
while (is) {
is >> tag;
if ((tag == "VERTEX2") || (tag == "VERTEX")) {
int id;
double x, y, yaw;
is >> id >> x >> y >> yaw;
// optional filter
if (maxID && id >= maxID)
continue;
initial->insert(id, Pose2(x, y, yaw));
}
is.ignore(LINESIZE, '\n');
}
is.clear(); /* clears the end-of-file and error flags */
is.seekg(0, ios::beg);
// Create a sampler with random number generator
Sampler sampler(42u);
// load the factors
while (is) {
is >> tag;
if ((tag == "EDGE2") || (tag == "EDGE") || (tag == "ODOMETRY")) {
int id1, id2;
double x, y, yaw;
is >> id1 >> id2 >> x >> y >> yaw;
Matrix m = eye(3);
is >> m(0, 0) >> m(0, 1) >> m(1, 1) >> m(2, 2) >> m(0, 2) >> m(1, 2);
m(2, 0) = m(0, 2);
m(2, 1) = m(1, 2);
m(1, 0) = m(0, 1);
// optional filter
if (maxID && (id1 >= maxID || id2 >= maxID))
continue;
Pose2 l1Xl2(x, y, yaw);
// Insert vertices if pure odometry file
if (!initial->exists(id1))
initial->insert(id1, Pose2());
if (!initial->exists(id2))
initial->insert(id2, initial->at<Pose2>(id1) * l1Xl2);
NonlinearFactor::shared_ptr factor(
new BetweenFactor<Pose2>(id1, id2, l1Xl2, model));
graph->push_back(factor);
}
if (tag == "BR") {
int id1, id2;
double bearing, range, bearing_std, range_std;
is >> id1 >> id2 >> bearing >> range >> bearing_std >> range_std;
// optional filter
if (maxID && (id1 >= maxID || id2 >= maxID))
continue;
noiseModel::Diagonal::shared_ptr measurementNoise =
noiseModel::Diagonal::Sigmas((Vector(2) << bearing_std, range_std));
*graph += BearingRangeFactor<Pose2, Point2>(id1, id2, bearing, range, measurementNoise);
// Insert poses or points if they do not exist yet
if (!initial->exists(id1))
initial->insert(id1, Pose2());
if (!initial->exists(id2)) {
Pose2 pose = initial->at<Pose2>(id1);
Point2 local(cos(bearing)*range,sin(bearing)*range);
Point2 global = pose.transform_from(local);
initial->insert(id2, global);
}
}
is.ignore(LINESIZE, '\n');
}
cout << "load2D read a graph file with " << initial->size()
<< " vertices and " << graph->nrFactors() << " factors" << endl;
return make_pair(graph, initial);
}
/* ************************************************************************* */
Rot3 openGLFixedRotation(){ // this is due to different convention for cameras in gtsam and openGL
Rot3 openGLFixedRotation() { // this is due to different convention for cameras in gtsam and openGL
/* R = [ 1 0 0
* 0 -1 0
* 0 0 -1]
*/
Matrix3 R_mat = Matrix3::Zero(3,3);
R_mat(0,0) = 1.0; R_mat(1,1) = -1.0; R_mat(2,2) = -1.0;
Matrix3 R_mat = Matrix3::Zero(3, 3);
R_mat(0, 0) = 1.0;
R_mat(1, 1) = -1.0;
R_mat(2, 2) = -1.0;
return Rot3(R_mat);
}
/* ************************************************************************* */
Pose3 openGL2gtsam(const Rot3& R, double tx, double ty, double tz)
{
Pose3 openGL2gtsam(const Rot3& R, double tx, double ty, double tz) {
Rot3 R90 = openGLFixedRotation();
Rot3 wRc = ( R.inverse() ).compose(R90);
Rot3 wRc = (R.inverse()).compose(R90);
// Our camera-to-world translation wTc = -R'*t
return Pose3 (wRc, R.unrotate(Point3(-tx,-ty,-tz)));
return Pose3(wRc, R.unrotate(Point3(-tx, -ty, -tz)));
}
/* ************************************************************************* */
Pose3 gtsam2openGL(const Rot3& R, double tx, double ty, double tz)
{
Pose3 gtsam2openGL(const Rot3& R, double tx, double ty, double tz) {
Rot3 R90 = openGLFixedRotation();
Rot3 cRw_openGL = R90.compose( R.inverse() );
Point3 t_openGL = cRw_openGL.rotate(Point3(-tx,-ty,-tz));
Rot3 cRw_openGL = R90.compose(R.inverse());
Point3 t_openGL = cRw_openGL.rotate(Point3(-tx, -ty, -tz));
return Pose3(cRw_openGL, t_openGL);
}
/* ************************************************************************* */
Pose3 gtsam2openGL(const Pose3& PoseGTSAM)
{
return gtsam2openGL(PoseGTSAM.rotation(), PoseGTSAM.x(), PoseGTSAM.y(), PoseGTSAM.z());
Pose3 gtsam2openGL(const Pose3& PoseGTSAM) {
return gtsam2openGL(PoseGTSAM.rotation(), PoseGTSAM.x(), PoseGTSAM.y(),
PoseGTSAM.z());
}
/* ************************************************************************* */
bool readBundler(const string& filename, SfM_data &data)
{
bool readBundler(const string& filename, SfM_data &data) {
// Load the data file
ifstream is(filename.c_str(),ifstream::in);
if(!is)
{
ifstream is(filename.c_str(), ifstream::in);
if (!is) {
cout << "Error in readBundler: can not find the file!!" << endl;
return false;
}
// Ignore the first line
char aux[500];
is.getline(aux,500);
is.getline(aux, 500);
// Get the number of camera poses and 3D points
size_t nrPoses, nrPoints;
is >> nrPoses >> nrPoints;
// Get the information for the camera poses
for( size_t i = 0; i < nrPoses; i++ )
{
for (size_t i = 0; i < nrPoses; i++) {
// Get the focal length and the radial distortion parameters
float f, k1, k2;
is >> f >> k1 >> k2;
@ -475,20 +511,15 @@ bool readBundler(const string& filename, SfM_data &data)
float r11, r12, r13;
float r21, r22, r23;
float r31, r32, r33;
is >> r11 >> r12 >> r13
>> r21 >> r22 >> r23
>> r31 >> r32 >> r33;
is >> r11 >> r12 >> r13 >> r21 >> r22 >> r23 >> r31 >> r32 >> r33;
// Bundler-OpenGL rotation matrix
Rot3 R(
r11, r12, r13,
r21, r22, r23,
r31, r32, r33);
Rot3 R(r11, r12, r13, r21, r22, r23, r31, r32, r33);
// Check for all-zero R, in which case quit
if(r11==0 && r12==0 && r13==0)
{
cout << "Error in readBundler: zero rotation matrix for pose " << i << endl;
if (r11 == 0 && r12 == 0 && r13 == 0) {
cout << "Error in readBundler: zero rotation matrix for pose " << i
<< endl;
return false;
}
@ -496,38 +527,36 @@ bool readBundler(const string& filename, SfM_data &data)
float tx, ty, tz;
is >> tx >> ty >> tz;
Pose3 pose = openGL2gtsam(R,tx,ty,tz);
Pose3 pose = openGL2gtsam(R, tx, ty, tz);
data.cameras.push_back(SfM_Camera(pose,K));
data.cameras.push_back(SfM_Camera(pose, K));
}
// Get the information for the 3D points
for( size_t j = 0; j < nrPoints; j++ )
{
for (size_t j = 0; j < nrPoints; j++) {
SfM_Track track;
// Get the 3D position
float x, y, z;
is >> x >> y >> z;
track.p = Point3(x,y,z);
track.p = Point3(x, y, z);
// Get the color information
float r, g, b;
is >> r >> g >> b;
track.r = r/255.f;
track.g = g/255.f;
track.b = b/255.f;
track.r = r / 255.f;
track.g = g / 255.f;
track.b = b / 255.f;
// Now get the visibility information
size_t nvisible = 0;
is >> nvisible;
for( size_t k = 0; k < nvisible; k++ )
{
for (size_t k = 0; k < nvisible; k++) {
size_t cam_idx = 0, point_idx = 0;
float u, v;
is >> cam_idx >> point_idx >> u >> v;
track.measurements.push_back(make_pair(cam_idx,Point2(u,-v)));
track.measurements.push_back(make_pair(cam_idx, Point2(u, -v)));
}
data.tracks.push_back(track);
@ -538,12 +567,10 @@ bool readBundler(const string& filename, SfM_data &data)
}
/* ************************************************************************* */
bool readBAL(const string& filename, SfM_data &data)
{
bool readBAL(const string& filename, SfM_data &data) {
// Load the data file
ifstream is(filename.c_str(),ifstream::in);
if(!is)
{
ifstream is(filename.c_str(), ifstream::in);
if (!is) {
cout << "Error in readBAL: can not find the file!!" << endl;
return false;
}
@ -555,44 +582,41 @@ bool readBAL(const string& filename, SfM_data &data)
data.tracks.resize(nrPoints);
// Get the information for the observations
for( size_t k = 0; k < nrObservations; k++ )
{
for (size_t k = 0; k < nrObservations; k++) {
size_t i = 0, j = 0;
float u, v;
is >> i >> j >> u >> v;
data.tracks[j].measurements.push_back(make_pair(i,Point2(u,-v)));
data.tracks[j].measurements.push_back(make_pair(i, Point2(u, -v)));
}
// Get the information for the camera poses
for( size_t i = 0; i < nrPoses; i++ )
{
for (size_t i = 0; i < nrPoses; i++) {
// Get the rodriguez vector
float wx, wy, wz;
is >> wx >> wy >> wz;
Rot3 R = Rot3::rodriguez(wx, wy, wz);// BAL-OpenGL rotation matrix
Rot3 R = Rot3::rodriguez(wx, wy, wz); // BAL-OpenGL rotation matrix
// Get the translation vector
float tx, ty, tz;
is >> tx >> ty >> tz;
Pose3 pose = openGL2gtsam(R,tx,ty,tz);
Pose3 pose = openGL2gtsam(R, tx, ty, tz);
// Get the focal length and the radial distortion parameters
float f, k1, k2;
is >> f >> k1 >> k2;
Cal3Bundler K(f, k1, k2);
data.cameras.push_back(SfM_Camera(pose,K));
data.cameras.push_back(SfM_Camera(pose, K));
}
// Get the information for the 3D points
for( size_t j = 0; j < nrPoints; j++ )
{
for (size_t j = 0; j < nrPoints; j++) {
// Get the 3D position
float x, y, z;
is >> x >> y >> z;
SfM_Track& track = data.tracks[j];
track.p = Point3(x,y,z);
track.p = Point3(x, y, z);
track.r = 0.4f;
track.g = 0.4f;
track.b = 0.4f;
@ -603,8 +627,7 @@ bool readBAL(const string& filename, SfM_data &data)
}
/* ************************************************************************* */
bool writeBAL(const string& filename, SfM_data &data)
{
bool writeBAL(const string& filename, SfM_data &data) {
// Open the output file
ofstream os;
os.open(filename.c_str());
@ -615,49 +638,55 @@ bool writeBAL(const string& filename, SfM_data &data)
}
// Write the number of camera poses and 3D points
size_t nrObservations=0;
for (size_t j = 0; j < data.number_tracks(); j++){
size_t nrObservations = 0;
for (size_t j = 0; j < data.number_tracks(); j++) {
nrObservations += data.tracks[j].number_measurements();
}
// Write observations
os << data.number_cameras() << " " << data.number_tracks() << " " << nrObservations << endl;
os << data.number_cameras() << " " << data.number_tracks() << " "
<< nrObservations << endl;
os << endl;
for (size_t j = 0; j < data.number_tracks(); j++){ // for each 3D point j
for (size_t j = 0; j < data.number_tracks(); j++) { // for each 3D point j
SfM_Track track = data.tracks[j];
for(size_t k = 0; k < track.number_measurements(); k++){ // for each observation of the 3D point j
for (size_t k = 0; k < track.number_measurements(); k++) { // for each observation of the 3D point j
size_t i = track.measurements[k].first; // camera id
double u0 = data.cameras[i].calibration().u0();
double v0 = data.cameras[i].calibration().v0();
if(u0 != 0 || v0 != 0){cout<< "writeBAL has not been tested for calibration with nonzero (u0,v0)"<< endl;}
if (u0 != 0 || v0 != 0) {
cout
<< "writeBAL has not been tested for calibration with nonzero (u0,v0)"
<< endl;
}
double pixelBALx = track.measurements[k].second.x() - u0; // center of image is the origin
double pixelBALy = - (track.measurements[k].second.y() - v0); // center of image is the origin
double pixelBALy = -(track.measurements[k].second.y() - v0); // center of image is the origin
Point2 pixelMeasurement(pixelBALx, pixelBALy);
os << i /*camera id*/ << " " << j /*point id*/ << " "
<< pixelMeasurement.x() /*u of the pixel*/ << " " << pixelMeasurement.y() /*v of the pixel*/ << endl;
os << i /*camera id*/<< " " << j /*point id*/<< " "
<< pixelMeasurement.x() /*u of the pixel*/<< " "
<< pixelMeasurement.y() /*v of the pixel*/<< endl;
}
}
os << endl;
// Write cameras
for (size_t i = 0; i < data.number_cameras(); i++){ // for each camera
for (size_t i = 0; i < data.number_cameras(); i++) { // for each camera
Pose3 poseGTSAM = data.cameras[i].pose();
Cal3Bundler cameraCalibration = data.cameras[i].calibration();
Pose3 poseOpenGL = gtsam2openGL(poseGTSAM);
os << Rot3::Logmap(poseOpenGL.rotation()) << endl;
os << poseOpenGL.translation().vector() << endl;
os << cameraCalibration.fx() << endl;
os << cameraCalibration.k1() << endl;
os << cameraCalibration.k2() << endl;
os << Rot3::Logmap(poseOpenGL.rotation()) << endl;
os << poseOpenGL.translation().vector() << endl;
os << cameraCalibration.fx() << endl;
os << cameraCalibration.k1() << endl;
os << cameraCalibration.k2() << endl;
os << endl;
}
// Write the points
for (size_t j = 0; j < data.number_tracks(); j++){ // for each 3D point j
for (size_t j = 0; j < data.number_tracks(); j++) { // for each 3D point j
Point3 point = data.tracks[j].p;
os << point.x() << endl;
os << point.y() << endl;
@ -669,48 +698,55 @@ bool writeBAL(const string& filename, SfM_data &data)
return true;
}
bool writeBALfromValues(const string& filename, const SfM_data &data, Values& values){
bool writeBALfromValues(const string& filename, const SfM_data &data,
Values& values) {
SfM_data dataValues = data;
// Store poses or cameras in SfM_data
Values valuesPoses = values.filter<Pose3>();
if( valuesPoses.size() == dataValues.number_cameras() ){ // we only estimated camera poses
for (size_t i = 0; i < dataValues.number_cameras(); i++){ // for each camera
Key poseKey = symbol('x',i);
if (valuesPoses.size() == dataValues.number_cameras()) { // we only estimated camera poses
for (size_t i = 0; i < dataValues.number_cameras(); i++) { // for each camera
Key poseKey = symbol('x', i);
Pose3 pose = values.at<Pose3>(poseKey);
Cal3Bundler K = dataValues.cameras[i].calibration();
PinholeCamera<Cal3Bundler> camera(pose, K);
dataValues.cameras[i] = camera;
}
} else {
Values valuesCameras = values.filter< PinholeCamera<Cal3Bundler> >();
if ( valuesCameras.size() == dataValues.number_cameras() ){ // we only estimated camera poses and calibration
for (size_t i = 0; i < dataValues.number_cameras(); i++){ // for each camera
Values valuesCameras = values.filter<PinholeCamera<Cal3Bundler> >();
if (valuesCameras.size() == dataValues.number_cameras()) { // we only estimated camera poses and calibration
for (size_t i = 0; i < dataValues.number_cameras(); i++) { // for each camera
Key cameraKey = i; // symbol('c',i);
PinholeCamera<Cal3Bundler> camera = values.at<PinholeCamera<Cal3Bundler> >(cameraKey);
PinholeCamera<Cal3Bundler> camera =
values.at<PinholeCamera<Cal3Bundler> >(cameraKey);
dataValues.cameras[i] = camera;
}
}else{
cout << "writeBALfromValues: different number of cameras in SfM_dataValues (#cameras= " << dataValues.number_cameras()
<<") and values (#cameras " << valuesPoses.size() << ", #poses " << valuesCameras.size() << ")!!" << endl;
} else {
cout
<< "writeBALfromValues: different number of cameras in SfM_dataValues (#cameras= "
<< dataValues.number_cameras() << ") and values (#cameras "
<< valuesPoses.size() << ", #poses " << valuesCameras.size() << ")!!"
<< endl;
return false;
}
}
// Store 3D points in SfM_data
Values valuesPoints = values.filter<Point3>();
if( valuesPoints.size() != dataValues.number_tracks()){
cout << "writeBALfromValues: different number of points in SfM_dataValues (#points= " << dataValues.number_tracks()
<<") and values (#points " << valuesPoints.size() << ")!!" << endl;
if (valuesPoints.size() != dataValues.number_tracks()) {
cout
<< "writeBALfromValues: different number of points in SfM_dataValues (#points= "
<< dataValues.number_tracks() << ") and values (#points "
<< valuesPoints.size() << ")!!" << endl;
}
for (size_t j = 0; j < dataValues.number_tracks(); j++){ // for each point
Key pointKey = symbol('l',j);
if(values.exists(pointKey)){
for (size_t j = 0; j < dataValues.number_tracks(); j++) { // for each point
Key pointKey = P(j);
if (values.exists(pointKey)) {
Point3 point = values.at<Point3>(pointKey);
dataValues.tracks[j].p = point;
}else{
} else {
dataValues.tracks[j].r = 1.0;
dataValues.tracks[j].g = 0.0;
dataValues.tracks[j].b = 0.0;
@ -726,7 +762,7 @@ Values initialCamerasEstimate(const SfM_data& db) {
Values initial;
size_t i = 0; // NO POINTS: j = 0;
BOOST_FOREACH(const SfM_Camera& camera, db.cameras)
initial.insert(i++, camera);
initial.insert(i++, camera);
return initial;
}
@ -734,9 +770,9 @@ Values initialCamerasAndPointsEstimate(const SfM_data& db) {
Values initial;
size_t i = 0, j = 0;
BOOST_FOREACH(const SfM_Camera& camera, db.cameras)
initial.insert((i++), camera);
initial.insert((i++), camera);
BOOST_FOREACH(const SfM_Track& track, db.tracks)
initial.insert(P(j++), track.p);
initial.insert(P(j++), track.p);
return initial;
}

View File

@ -35,7 +35,7 @@ namespace gtsam {
/**
* Find the full path to an example dataset distributed with gtsam. The name
* may be specified with or without a file extension - if no extension is
* give, this function first looks for the .graph extension, then .txt. We
* given, this function first looks for the .graph extension, then .txt. We
* first check the gtsam source tree for the file, followed by the installed
* example dataset location. Both the source tree and installed locations
* are obtained from CMake during compilation.
@ -44,8 +44,30 @@ namespace gtsam {
* search process described above.
*/
GTSAM_EXPORT std::string findExampleDataFile(const std::string& name);
/**
* Creates a temporary file name that needs to be ignored in .gitingnore
* for checking read-write oprations
*/
GTSAM_EXPORT std::string createRewrittenFileName(const std::string& name);
#endif
/// Indicates how noise parameters are stored in file
enum NoiseFormat {
NoiseFormatG2O, ///< Information matrix I11, I12, I13, I22, I23, I33
NoiseFormatTORO, ///< Information matrix, but inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
NoiseFormatGRAPH, ///< default: toro-style order, but covariance matrix !
NoiseFormatCOV ///< Covariance matrix C11, C12, C13, C22, C23, C33
};
/// Robust kernel type to wrap around quadratic noise model
enum KernelFunctionType {
KernelFunctionTypeNONE, KernelFunctionTypeHUBER, KernelFunctionTypeTUKEY
};
/// Return type for load functions
typedef std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> GraphAndValues;
/**
* Load TORO 2D Graph
* @param dataset/model pair as constructed by [dataset]
@ -53,31 +75,57 @@ GTSAM_EXPORT std::string findExampleDataFile(const std::string& name);
* @param addNoise add noise to the edges
* @param smart try to reduce complexity of covariance to cheapest model
*/
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
std::pair<std::string, boost::optional<noiseModel::Diagonal::shared_ptr> > dataset,
int maxID = 0, bool addNoise = false, bool smart = true);
GTSAM_EXPORT GraphAndValues load2D(
std::pair<std::string, SharedNoiseModel> dataset, int maxID = 0,
bool addNoise = false,
bool smart = true, //
NoiseFormat noiseFormat = NoiseFormatGRAPH,
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
/**
* Load TORO 2D Graph
* Load TORO/G2O style graph files
* @param filename
* @param model optional noise model to use instead of one specified by file
* @param maxID if non-zero cut out vertices >= maxID
* @param addNoise add noise to the edges
* @param smart try to reduce complexity of covariance to cheapest model
* @param noiseFormat how noise parameters are stored
* @param kernelFunctionType whether to wrap the noise model in a robust kernel
* @return graph and initial values
*/
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
const std::string& filename,
boost::optional<gtsam::SharedDiagonal> model = boost::optional<
noiseModel::Diagonal::shared_ptr>(), int maxID = 0, bool addNoise = false,
bool smart = true);
GTSAM_EXPORT GraphAndValues load2D(const std::string& filename,
SharedNoiseModel model = SharedNoiseModel(), int maxID = 0, bool addNoise =
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatGRAPH, //
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D_robust(
const std::string& filename,
gtsam::noiseModel::Base::shared_ptr& model, int maxID = 0);
/// @deprecated load2D now allows for arbitrary models and wrapping a robust kernel
GTSAM_EXPORT GraphAndValues load2D_robust(const std::string& filename,
noiseModel::Base::shared_ptr& model, int maxID = 0);
/** save 2d graph */
GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, const Values& config,
const noiseModel::Diagonal::shared_ptr model, const std::string& filename);
GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph,
const Values& config, const noiseModel::Diagonal::shared_ptr model,
const std::string& filename);
/**
* @brief This function parses a g2o file and stores the measurements into a
* NonlinearFactorGraph and the initial guess in a Values structure
* @param filename The name of the g2o file
* @param kernelFunctionType whether to wrap the noise model in a robust kernel
* @return graph and initial values
*/
GTSAM_EXPORT GraphAndValues readG2o(const std::string& g2oFile,
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
/**
* @brief This function writes a g2o file from
* NonlinearFactorGraph and a Values structure
* @param filename The name of the g2o file to write
* @param graph NonlinearFactor graph storing the measurements
* @param estimate Values
*/
GTSAM_EXPORT void writeG2o(const NonlinearFactorGraph& graph,
const Values& estimate, const std::string& filename);
/**
* Load TORO 3D Graph
@ -85,27 +133,31 @@ GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, const Values& config
GTSAM_EXPORT bool load3D(const std::string& filename);
/// A measurement with its camera index
typedef std::pair<size_t,gtsam::Point2> SfM_Measurement;
typedef std::pair<size_t, Point2> SfM_Measurement;
/// Define the structure for the 3D points
struct SfM_Track
{
gtsam::Point3 p; ///< 3D position of the point
float r,g,b; ///< RGB color of the 3D point
struct SfM_Track {
Point3 p; ///< 3D position of the point
float r, g, b; ///< RGB color of the 3D point
std::vector<SfM_Measurement> measurements; ///< The 2D image projections (id,(u,v))
size_t number_measurements() const { return measurements.size();}
size_t number_measurements() const {
return measurements.size();
}
};
/// Define the structure for the camera poses
typedef gtsam::PinholeCamera<gtsam::Cal3Bundler> SfM_Camera;
typedef PinholeCamera<Cal3Bundler> SfM_Camera;
/// Define the structure for SfM data
struct SfM_data
{
std::vector<SfM_Camera> cameras; ///< Set of cameras
struct SfM_data {
std::vector<SfM_Camera> cameras; ///< Set of cameras
std::vector<SfM_Track> tracks; ///< Sparse set of points
size_t number_cameras() const { return cameras.size();} ///< The number of camera poses
size_t number_tracks() const { return tracks.size();} ///< The number of reconstructed 3D points
size_t number_cameras() const {
return cameras.size();
} ///< The number of camera poses
size_t number_tracks() const {
return tracks.size();
} ///< The number of reconstructed 3D points
};
/**
@ -146,7 +198,8 @@ GTSAM_EXPORT bool writeBAL(const std::string& filename, SfM_data &data);
* assumes that the keys are "x1" for pose 1 (or "c1" for camera 1) and "l1" for landmark 1
* @return true if the parsing was successful, false otherwise
*/
GTSAM_EXPORT bool writeBALfromValues(const std::string& filename, const SfM_data &data, Values& values);
GTSAM_EXPORT bool writeBALfromValues(const std::string& filename,
const SfM_data &data, Values& values);
/**
* @brief This function converts an openGL camera pose to an GTSAM camera pose
@ -189,5 +242,4 @@ GTSAM_EXPORT Values initialCamerasEstimate(const SfM_data& db);
*/
GTSAM_EXPORT Values initialCamerasAndPointsEstimate(const SfM_data& db);
} // namespace gtsam

399
gtsam/slam/lago.cpp Normal file
View File

@ -0,0 +1,399 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file lago.h
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#include <gtsam/slam/lago.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/base/timing.h>
#include <boost/math/special_functions.hpp>
using namespace std;
namespace gtsam {
namespace lago {
static const Matrix I = eye(1);
static const Matrix I3 = eye(3);
static const Key keyAnchor = symbol('Z', 9999999);
static const noiseModel::Diagonal::shared_ptr priorOrientationNoise =
noiseModel::Diagonal::Sigmas((Vector(1) << 0));
static const noiseModel::Diagonal::shared_ptr priorPose2Noise =
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
/* ************************************************************************* */
/**
* Compute the cumulative orientation (without wrapping) wrt the root of a
* spanning tree (tree) for a node (nodeKey). The function starts at the nodes and
* moves towards the root summing up the (directed) rotation measurements.
* Relative measurements are encoded in "deltaThetaMap".
* The root is assumed to have orientation zero.
*/
static double computeThetaToRoot(const Key nodeKey,
const PredecessorMap<Key>& tree, const key2doubleMap& deltaThetaMap,
const key2doubleMap& thetaFromRootMap) {
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
while (1) {
// We check if we reached the root
if (tree.at(key_child) == key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap.at(key_child);
// we get the parent
key_parent = tree.at(key_child); // the parent
// we check if we connected to some part of the tree we know
if (thetaFromRootMap.find(key_parent) != thetaFromRootMap.end()) {
nodeTheta += thetaFromRootMap.at(key_parent);
break;
}
key_child = key_parent; // we move upwards in the tree
}
return nodeTheta;
}
/* ************************************************************************* */
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
const PredecessorMap<Key>& tree) {
key2doubleMap thetaToRootMap;
// Orientation of the roo
thetaToRootMap.insert(pair<Key, double>(keyAnchor, 0.0));
// for all nodes in the tree
BOOST_FOREACH(const key2doubleMap::value_type& it, deltaThetaMap) {
// compute the orientation wrt root
Key nodeKey = it.first;
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
thetaToRootMap);
thetaToRootMap.insert(pair<Key, double>(nodeKey, nodeTheta));
}
return thetaToRootMap;
}
/* ************************************************************************* */
void getSymbolicGraph(
/*OUTPUTS*/vector<size_t>& spanningTreeIds, vector<size_t>& chordsIds,
key2doubleMap& deltaThetaMap,
/*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g) {
// Get keys for which you want the orientation
size_t id = 0;
// Loop over the factors
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g) {
if (factor->keys().size() == 2) {
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
// recast to a between
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (!pose2Between)
continue;
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// insert (directed) orientations in the map "deltaThetaMap"
bool inTree = false;
if (tree.at(key1) == key2) { // key2 -> key1
deltaThetaMap.insert(pair<Key, double>(key1, -deltaTheta));
inTree = true;
} else if (tree.at(key2) == key1) { // key1 -> key2
deltaThetaMap.insert(pair<Key, double>(key2, deltaTheta));
inTree = true;
}
// store factor slot, distinguishing spanning tree edges from chordsIds
if (inTree == true)
spanningTreeIds.push_back(id);
else
// it's a chord!
chordsIds.push_back(id);
}
id++;
}
}
/* ************************************************************************* */
// Retrieve the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
static void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
// Get the relative rotation measurement from the between factor
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (!pose2Between)
throw invalid_argument(
"buildLinearOrientationGraph: invalid between factor!");
deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve the noise model for the relative rotation
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw invalid_argument("buildLinearOrientationGraph: invalid noise model "
"(current version assumes diagonal noise model)!");
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2)); // std on the angular measurement
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
}
/* ************************************************************************* */
GaussianFactorGraph buildLinearOrientationGraph(
const vector<size_t>& spanningTreeIds, const vector<size_t>& chordsIds,
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot,
const PredecessorMap<Key>& tree) {
GaussianFactorGraph lagoGraph;
Vector deltaTheta;
noiseModel::Diagonal::shared_ptr model_deltaTheta;
// put original measurements in the spanning tree
BOOST_FOREACH(const size_t& factorId, spanningTreeIds) {
const FastVector<Key>& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
lagoGraph.add(key1, -I, key2, I, deltaTheta, model_deltaTheta);
}
// put regularized measurements in the chordsIds
BOOST_FOREACH(const size_t& factorId, chordsIds) {
const FastVector<Key>& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
double key1_DeltaTheta_key2 = deltaTheta(0);
///cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << endl;
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1)
- orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
double k = boost::math::round(k2pi_noise / (2 * M_PI));
//if (k2pi_noise - 2*k*M_PI > 1e-5) cout << k2pi_noise - 2*k*M_PI << endl; // for debug
Vector deltaThetaRegularized = (Vector(1)
<< key1_DeltaTheta_key2 - 2 * k * M_PI);
lagoGraph.add(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta);
}
// prior on the anchor orientation
lagoGraph.add(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise);
return lagoGraph;
}
/* ************************************************************************* */
// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
static NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph) {
gttic(lago_buildPose2graph);
NonlinearFactorGraph pose2Graph;
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph) {
// recast to a between on Pose2
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (pose2Between)
pose2Graph.add(pose2Between);
// recast PriorFactor<Pose2> to BetweenFactor<Pose2>
boost::shared_ptr<PriorFactor<Pose2> > pose2Prior =
boost::dynamic_pointer_cast<PriorFactor<Pose2> >(factor);
if (pose2Prior)
pose2Graph.add(
BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
pose2Prior->prior(), pose2Prior->get_noiseModel()));
}
return pose2Graph;
}
/* ************************************************************************* */
static PredecessorMap<Key> findOdometricPath(
const NonlinearFactorGraph& pose2Graph) {
PredecessorMap<Key> tree;
Key minKey;
bool minUnassigned = true;
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2Graph) {
Key key1 = std::min(factor->keys()[0], factor->keys()[1]);
Key key2 = std::max(factor->keys()[0], factor->keys()[1]);
if (minUnassigned) {
minKey = key1;
minUnassigned = false;
}
if (key2 - key1 == 1) { // consecutive keys
tree.insert(key2, key1);
if (key1 < minKey)
minKey = key1;
}
}
tree.insert(minKey, keyAnchor);
tree.insert(keyAnchor, keyAnchor); // root
return tree;
}
/* ************************************************************************* */
// Return the orientations of a graph including only BetweenFactors<Pose2>
static VectorValues computeOrientations(const NonlinearFactorGraph& pose2Graph,
bool useOdometricPath) {
gttic(lago_computeOrientations);
// Find a minimum spanning tree
PredecessorMap<Key> tree;
if (useOdometricPath)
tree = findOdometricPath(pose2Graph);
else
tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(pose2Graph);
// Create a linear factor graph (LFG) of scalars
key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
// temporary structure to correct wraparounds along loops
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
// regularize measurements and plug everything in a factor graph
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds,
chordsIds, pose2Graph, orientationsToRoot, tree);
// Solve the LFG
VectorValues orientationsLago = lagoGraph.optimize();
return orientationsLago;
}
/* ************************************************************************* */
VectorValues initializeOrientations(const NonlinearFactorGraph& graph,
bool useOdometricPath) {
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
// Get orientations from relative orientation measurements
return computeOrientations(pose2Graph, useOdometricPath);
}
/* ************************************************************************* */
Values computePoses(const NonlinearFactorGraph& pose2graph,
VectorValues& orientationsLago) {
gttic(lago_computePoses);
// Linearized graph on full poses
GaussianFactorGraph linearPose2graph;
// We include the linear version of each between factor
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2graph) {
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (pose2Between) {
Key key1 = pose2Between->keys()[0];
double theta1 = orientationsLago.at(key1)(0);
double s1 = sin(theta1);
double c1 = cos(theta1);
Key key2 = pose2Between->keys()[1];
double theta2 = orientationsLago.at(key2)(0);
double linearDeltaRot = theta2 - theta1
- pose2Between->measured().theta();
linearDeltaRot = Rot2(linearDeltaRot).theta(); // to normalize
double dx = pose2Between->measured().x();
double dy = pose2Between->measured().y();
Vector globalDeltaCart = //
(Vector(2) << c1 * dx - s1 * dy, s1 * dx + c1 * dy);
Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot); // rhs
Matrix J1 = -I3;
J1(0, 2) = s1 * dx + c1 * dy;
J1(1, 2) = -c1 * dx + s1 * dy;
// Retrieve the noise model for the relative rotation
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(
pose2Between->get_noiseModel());
linearPose2graph.add(key1, J1, key2, I3, b, diagonalModel);
} else {
throw invalid_argument(
"computeLagoPoses: cannot manage non between factor here!");
}
}
// add prior
linearPose2graph.add(keyAnchor, I3, (Vector(3) << 0.0, 0.0, 0.0),
priorPose2Noise);
// optimize
VectorValues posesLago = linearPose2graph.optimize();
// put into Values structure
Values initialGuessLago;
BOOST_FOREACH(const VectorValues::value_type& it, posesLago) {
Key key = it.first;
if (key != keyAnchor) {
const Vector& poseVector = it.second;
Pose2 poseLago = Pose2(poseVector(0), poseVector(1),
orientationsLago.at(key)(0) + poseVector(2));
initialGuessLago.insert(key, poseLago);
}
}
return initialGuessLago;
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph, bool useOdometricPath) {
gttic(lago_initialize);
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
// Get orientations from relative orientation measurements
VectorValues orientationsLago = computeOrientations(pose2Graph,
useOdometricPath);
// Compute the full poses
return computePoses(pose2Graph, orientationsLago);
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph,
const Values& initialGuess) {
Values initialGuessLago;
// get the orientation estimates from LAGO
VectorValues orientations = initializeOrientations(graph);
// for all nodes in the tree
BOOST_FOREACH(const VectorValues::value_type& it, orientations) {
Key key = it.first;
if (key != keyAnchor) {
const Pose2& pose = initialGuess.at<Pose2>(key);
const Vector& orientation = it.second;
Pose2 poseLago = Pose2(pose.x(), pose.y(), orientation(0));
initialGuessLago.insert(key, poseLago);
}
}
return initialGuessLago;
}
} // end of namespace lago
} // end of namespace gtsam

86
gtsam/slam/lago.h Normal file
View File

@ -0,0 +1,86 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file lago.h
* @brief Initialize Pose2 in a factor graph using LAGO
* (Linear Approximation for Graph Optimization). see papers:
*
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
* approximation for planar pose graph optimization, IJRR, 2014.
*
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
* for graph-based simultaneous localization and mapping, RSS, 2011.
*
* @param graph: nonlinear factor graph (can include arbitrary factors but we assume
* that there is a subgraph involving Pose2 and betweenFactors). Also in the current
* version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc)
* and a prior on x0. This assumption can be relaxed by using the extra argument
* useOdometricPath = false, although this part of code is not stable yet.
* @return Values: initial guess from LAGO (only pose2 are initialized)
*
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/graph.h>
namespace gtsam {
namespace lago {
typedef std::map<Key, double> key2doubleMap;
/**
* Compute the cumulative orientations (without wrapping)
* for all nodes wrt the root (root has zero orientation).
*/
GTSAM_EXPORT key2doubleMap computeThetasToRoot(
const key2doubleMap& deltaThetaMap, const PredecessorMap<Key>& tree);
/**
* Given a factor graph "g", and a spanning tree "tree", select the nodes belonging
* to the tree and to g, and stores the factor slots corresponding to edges in the
* tree and to chordsIds wrt this tree.
* Also it computes deltaThetaMap which is a fast way to encode relative
* orientations along the tree: for a node key2, s.t. tree[key2]=key1,
* the value deltaThetaMap[key2] is relative orientation theta[key2]-theta[key1]
*/
GTSAM_EXPORT void getSymbolicGraph(
/*OUTPUTS*/std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds,
key2doubleMap& deltaThetaMap,
/*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g);
/** Linear factor graph with regularized orientation measurements */
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(
const std::vector<size_t>& spanningTreeIds,
const std::vector<size_t>& chordsIds, const NonlinearFactorGraph& g,
const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree);
/** LAGO: Return the orientations of the Pose2 in a generic factor graph */
GTSAM_EXPORT VectorValues initializeOrientations(
const NonlinearFactorGraph& graph, bool useOdometricPath = true);
/** Return the values for the Pose2 in a generic factor graph */
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph,
bool useOdometricPath = true);
/** Only correct the orientation part in initialGuess */
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph,
const Values& initialGuess);
} // end of namespace lago
} // end of namespace gtsam

View File

@ -19,10 +19,14 @@
#include <boost/algorithm/string.hpp>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>
using namespace gtsam::symbol_shorthand;
using namespace std;
using namespace gtsam;
@ -35,6 +39,23 @@ TEST(dataSet, findExampleDataFile) {
EXPECT(assert_equal(expected_end, actual_end));
}
/* ************************************************************************* */
TEST( dataSet, load2D)
{
///< The structure where we will save the SfM data
const string filename = findExampleDataFile("w100.graph");
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = load2D(filename);
EXPECT_LONGS_EQUAL(300,graph->size());
EXPECT_LONGS_EQUAL(100,initial->size());
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(3);
BetweenFactor<Pose2> expected(1, 0, Pose2(-0.99879,0.0417574,-0.00818381), model);
BetweenFactor<Pose2>::shared_ptr actual = boost::dynamic_pointer_cast<
BetweenFactor<Pose2> >(graph->at(0));
EXPECT(assert_equal(expected, *actual));
}
/* ************************************************************************* */
TEST( dataSet, Balbianello)
{
@ -56,6 +77,117 @@ TEST( dataSet, Balbianello)
EXPECT(assert_equal(expected,actual,1));
}
/* ************************************************************************* */
TEST( dataSet, readG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile);
Values expectedValues;
expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000));
expectedValues.insert(1, Pose2(1.030390, 0.011350, -0.081596));
expectedValues.insert(2, Pose2(2.036137, -0.129733, -0.301887));
expectedValues.insert(3, Pose2(3.015097, -0.442395, -0.345514));
expectedValues.insert(4, Pose2(3.343949, 0.506678, 1.214715));
expectedValues.insert(5, Pose2(3.684491, 1.464049, 1.183785));
expectedValues.insert(6, Pose2(4.064626, 2.414783, 1.176333));
expectedValues.insert(7, Pose2(4.429778, 3.300180, 1.259169));
expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391));
expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016));
expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934));
EXPECT(assert_equal(expectedValues,*actualValues,1e-5));
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
NonlinearFactorGraph expectedGraph;
expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readG2oHuber)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeHUBER);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), baseModel);
NonlinearFactorGraph expectedGraph;
expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readG2oTukey)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeTUKEY);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);
NonlinearFactorGraph expectedGraph;
expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, writeG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr expectedGraph;
Values::shared_ptr expectedValues;
boost::tie(expectedGraph, expectedValues) = readG2o(g2oFile);
const string filenameToWrite = createRewrittenFileName(g2oFile);
writeG2o(*expectedGraph, *expectedValues, filenameToWrite);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(filenameToWrite);
EXPECT(assert_equal(*expectedValues,*actualValues,1e-5));
EXPECT(assert_equal(*expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readBAL_Dubrovnik)
{
@ -120,7 +252,7 @@ TEST( dataSet, writeBAL_Dubrovnik)
readBAL(filenameToRead, readData);
// Write readData to file filenameToWrite
const string filenameToWrite = findExampleDataFile("dubrovnik-3-7-pre-rewritten");
const string filenameToWrite = createRewrittenFileName(filenameToRead);
CHECK(writeBAL(filenameToWrite, readData));
// Read what we wrote
@ -176,13 +308,13 @@ TEST( dataSet, writeBALfromValues_Dubrovnik){
value.insert(poseKey, pose);
}
for(size_t j=0; j < readData.number_tracks(); j++){ // for each point
Key pointKey = symbol('l',j);
Key pointKey = P(j);
Point3 point = poseChange.transform_from( readData.tracks[j].p );
value.insert(pointKey, point);
}
// Write values and readData to a file
const string filenameToWrite = findExampleDataFile("dubrovnik-3-7-pre-rewritten");
const string filenameToWrite = createRewrittenFileName(filenameToRead);
writeBALfromValues(filenameToWrite, readData, value);
// Read the file we wrote
@ -208,7 +340,7 @@ TEST( dataSet, writeBALfromValues_Dubrovnik){
EXPECT(assert_equal(expectedPose,actualPose, 1e-7));
Point3 expectedPoint = track0.p;
Key pointKey = symbol('l',0);
Key pointKey = P(0);
Point3 actualPoint = value.at<Point3>(pointKey);
EXPECT(assert_equal(expectedPoint,actualPoint, 1e-6));
}

View File

@ -0,0 +1,326 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testPlanarSLAMExample_lago.cpp
* @brief Unit tests for planar SLAM example using the initialization technique
* LAGO (Linear Approximation for Graph Optimization)
*
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#include <gtsam/slam/lago.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/inference/Symbol.h>
#include <CppUnitLite/TestHarness.h>
#include <cmath>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
namespace simple {
// We consider a small graph:
// symbolic FG
// x2 0 1
// / | \ 1 2
// / | \ 2 3
// x3 | x1 2 0
// \ | / 0 3
// \ | /
// x0
//
static Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
static Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
static Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
static Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
NonlinearFactorGraph graph() {
NonlinearFactorGraph g;
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
g.add(PriorFactor<Pose2>(x0, pose0, model));
return g;
}
}
/* *************************************************************************** */
TEST( Lago, checkSTandChords ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
lago::key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
DOUBLES_EQUAL(spanningTreeIds[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
}
/* *************************************************************************** */
TEST( Lago, orientationsOverSpanningTree ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
// check the tree structure
EXPECT_LONGS_EQUAL(tree[x0], x0);
EXPECT_LONGS_EQUAL(tree[x1], x0);
EXPECT_LONGS_EQUAL(tree[x2], x0);
EXPECT_LONGS_EQUAL(tree[x3], x0);
lago::key2doubleMap expected;
expected[x0]= 0;
expected[x1]= M_PI/2; // edge x0->x1 (consistent with edge (x0,x1))
expected[x2]= -M_PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
expected[x3]= -M_PI/2; // edge x0->x3 (consistent with edge (x0,x3))
lago::key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
lago::key2doubleMap actual;
actual = lago::computeThetasToRoot(deltaThetaMap, tree);
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
}
/* *************************************************************************** */
TEST( Lago, regularizedMeasurements ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
lago::key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
lago::key2doubleMap orientationsToRoot = lago::computeThetasToRoot(deltaThetaMap, tree);
GaussianFactorGraph lagoGraph = lago::buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
// this is the whitened error, so we multiply by the std to unwhiten
actual = 0.1 * actual;
// Expected regularized measurements (same for the spanning tree, corrected for the chordsIds)
Vector expected = (Vector(5) << M_PI/2, M_PI, -M_PI/2, M_PI/2 - 2*M_PI , M_PI/2);
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValues ) {
bool useOdometricPath = false;
VectorValues initial = lago::initializeOrientations(simple::graph(), useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValuesSP ) {
VectorValues initial = lago::initializeOrientations(simple::graph());
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePosePriors ) {
bool useOdometricPath = false;
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePosePriorsSP ) {
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
VectorValues initial = lago::initializeOrientations(g);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePoseAndRotPriors ) {
bool useOdometricPath = false;
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePoseAndRotPriorsSP ) {
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
VectorValues initial = lago::initializeOrientations(g);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphValues ) {
// we set the orientations in the initial guess to zero
Values initialGuess;
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
// lago does not touch the Cartesian part and only fixed the orientations
Values actual = lago::initialize(simple::graph(), initialGuess);
// we are in a noiseless case
Values expected;
expected.insert(x0,simple::pose0);
expected.insert(x1,simple::pose1);
expected.insert(x2,simple::pose2);
expected.insert(x3,simple::pose3);
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraph2 ) {
// lago does not touch the Cartesian part and only fixed the orientations
Values actual = lago::initialize(simple::graph());
// we are in a noiseless case
Values expected;
expected.insert(x0,simple::pose0);
expected.insert(x1,simple::pose1);
expected.insert(x2,simple::pose2);
expected.insert(x3,simple::pose3);
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* *************************************************************************** */
TEST( Lago, largeGraphNoisy_orientations ) {
string inputFile = findExampleDataFile("noisyToyGraph");
NonlinearFactorGraph::shared_ptr g;
Values::shared_ptr initial;
boost::tie(g, initial) = readG2o(inputFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = *g;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
VectorValues actualVV = lago::initializeOrientations(graphWithPrior);
Values actual;
Key keyAnc = symbol('Z',9999999);
for(VectorValues::const_iterator it = actualVV.begin(); it != actualVV.end(); ++it ){
Key key = it->first;
if (key != keyAnc){
Vector orientation = actualVV.at(key);
Pose2 poseLago = Pose2(0.0,0.0,orientation(0));
actual.insert(key, poseLago);
}
}
string matlabFile = findExampleDataFile("orientationsNoisyToyGraph");
NonlinearFactorGraph::shared_ptr gmatlab;
Values::shared_ptr expected;
boost::tie(gmatlab, expected) = readG2o(matlabFile);
BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){
Key k = key_val.key;
EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-5));
}
}
/* *************************************************************************** */
TEST( Lago, largeGraphNoisy ) {
string inputFile = findExampleDataFile("noisyToyGraph");
NonlinearFactorGraph::shared_ptr g;
Values::shared_ptr initial;
boost::tie(g, initial) = readG2o(inputFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = *g;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
Values actual = lago::initialize(graphWithPrior);
string matlabFile = findExampleDataFile("optimizedNoisyToyGraph");
NonlinearFactorGraph::shared_ptr gmatlab;
Values::shared_ptr expected;
boost::tie(gmatlab, expected) = readG2o(matlabFile);
BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){
Key k = key_val.key;
EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-2));
}
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -52,9 +52,9 @@ using symbol_shorthand::X;
using symbol_shorthand::L;
// tests data
Symbol x1('X', 1);
Symbol x2('X', 2);
Symbol x3('X', 3);
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Key poseKey1(x1);
static Point2 measurement1(323.0, 240.0);
@ -369,6 +369,271 @@ TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ){
if(isDebugTest) tictoc_print_();
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, jacobianSVD ){
std::vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera cam1(pose1, *K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera cam2(pose2, *K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam3(pose3, *K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// 1. Project three landmarks into three cameras and triangulate
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD));
smartFactor1->add(measurements_cam1, views, model, K);
SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD));
smartFactor2->add(measurements_cam2, views, model, K);
SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD));
smartFactor3->add(measurements_cam3, views, model, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3*noise_pose);
LevenbergMarquardtParams params;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, landmarkDistance ){
double excludeLandmarksFutherThanDist = 2;
std::vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera cam1(pose1, *K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera cam2(pose2, *K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam3(pose3, *K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// 1. Project three landmarks into three cameras and triangulate
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist));
smartFactor1->add(measurements_cam1, views, model, K);
SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist));
smartFactor2->add(measurements_cam2, views, model, K);
SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist));
smartFactor3->add(measurements_cam3, views, model, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3*noise_pose);
// All factors are disabled and pose should remain where it is
LevenbergMarquardtParams params;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(values.at<Pose3>(x3),result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ){
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
std::vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera cam1(pose1, *K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera cam2(pose2, *K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam3(pose3, *K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
Point3 landmark4(5, -0.5, 1);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3, measurements_cam4;
// 1. Project three landmarks into three cameras and triangulate
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10,10); // add outlier
SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none,
JACOBIAN_SVD, excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor1->add(measurements_cam1, views, model, K);
SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor2->add(measurements_cam2, views, model, K);
SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor3->add(measurements_cam3, views, model, K);
SmartFactor::shared_ptr smartFactor4(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor4->add(measurements_cam4, views, model, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3);
// All factors are disabled and pose should remain where it is
LevenbergMarquardtParams params;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, jacobianQ ){
std::vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera cam1(pose1, *K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera cam2(pose2, *K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam3(pose3, *K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// 1. Project three landmarks into three cameras and triangulate
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
smartFactor1->add(measurements_cam1, views, model, K);
SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
smartFactor2->add(measurements_cam2, views, model, K);
SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
smartFactor3->add(measurements_cam3, views, model, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3*noise_pose);
LevenbergMarquardtParams params;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, 3poses_projection_factor ){
// cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;

View File

@ -0,0 +1,82 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file timeVirtual.cpp
* @brief Time the overhead of using virtual destructors and methods
* @author Richard Roberts
* @date Dec 3, 2010
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/lago.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/linear/Sampler.h>
#include <gtsam/base/timing.h>
#include <iostream>
using namespace std;
using namespace gtsam;
int main(int argc, char *argv[]) {
size_t trials = 1;
// read graph
Values::shared_ptr solution;
NonlinearFactorGraph::shared_ptr g;
string inputFile = findExampleDataFile("w10000");
SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.05, 0.05, 5.0 * M_PI / 180.0));
boost::tie(g, solution) = load2D(inputFile, model);
// add noise to create initial estimate
Values initial;
Sampler sampler(42u);
Values::ConstFiltered<Pose2> poses = solution->filter<Pose2>();
SharedDiagonal noise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.5, 0.5, 15.0 * M_PI / 180.0));
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& it, poses)
initial.insert(it.key, it.value.retract(sampler.sampleNewModel(noise)));
// Add prior on the pose having index (key) = 0
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Sigmas(Vector3(1e-6, 1e-6, 1e-8));
g->add(PriorFactor<Pose2>(0, Pose2(), priorModel));
// LAGO
for (size_t i = 0; i < trials; i++) {
{
gttic_(lago);
gttic_(init);
Values lagoInitial = lago::initialize(*g);
gttoc_(init);
gttic_(refine);
GaussNewtonOptimizer optimizer(*g, lagoInitial);
Values result = optimizer.optimize();
gttoc_(refine);
}
{
gttic_(optimize);
GaussNewtonOptimizer optimizer(*g, initial);
Values result = optimizer.optimize();
}
tictoc_finishedIteration_();
}
tictoc_print_();
return 0;
}

View File

@ -0,0 +1,121 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionFactorExample.cpp
* @brief A stereo visual odometry example
* @date May 30, 2014
* @author Stephen Camp
* @author Chris Beall
*/
/**
* A smart projection factor example based on stereo data, throwing away the
* measurement from the right camera
* -robot starts at origin
* -moves forward, taking periodic stereo measurements
* -makes monocular observations of many landmarks
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/SmartProjectionPoseFactor.h>
#include <string>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv){
typedef SmartProjectionPoseFactor<Pose3, Point3, Cal3_S2> SmartFactor;
Values initial_estimate;
NonlinearFactorGraph graph;
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,1);
string calibration_loc = findExampleDataFile("VO_calibration.txt");
string pose_loc = findExampleDataFile("VO_camera_poses_large.txt");
string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt");
//read camera calibration info from file
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
cout << "Reading calibration info" << endl;
ifstream calibration_file(calibration_loc.c_str());
double fx, fy, s, u0, v0, b;
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
const Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u0, v0));
cout << "Reading camera poses" << endl;
ifstream pose_file(pose_loc.c_str());
int pose_id;
MatrixRowMajor m(4,4);
//read camera pose parameters and use to make initial estimates of camera poses
while (pose_file >> pose_id) {
for (int i = 0; i < 16; i++) {
pose_file >> m.data()[i];
}
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
}
// camera and landmark keys
size_t x, l;
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
double uL, uR, v, X, Y, Z;
ifstream factor_file(factor_loc.c_str());
cout << "Reading stereo factors" << endl;
//read stereo measurements and construct smart factors
SmartFactor::shared_ptr factor(new SmartFactor());
size_t current_l = 3; // hardcoded landmark ID from first measurement
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
if(current_l != l) {
graph.push_back(factor);
factor = SmartFactor::shared_ptr(new SmartFactor());
current_l = l;
}
factor->add(Point2(uL,v), Symbol('x',x), model, K);
}
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
cout << "Optimizing" << endl;
//create Levenberg-Marquardt optimizer to optimize the factor graph
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
Values result = optimizer.optimize();
cout << "Final result sample:" << endl;
Values pose_values = result.filter<Pose3>();
pose_values.print("Final camera poses:\n");
return 0;
}

338
matlab.h
View File

@ -28,130 +28,228 @@
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <boost/foreach.hpp>
#include <exception>
namespace gtsam {
namespace utilities {
/// Extract all Point2 values into a single matrix [x y]
Matrix extractPoint2(const Values& values) {
size_t j=0;
Values::ConstFiltered<Point2> points = values.filter<Point2>();
Matrix result(points.size(),2);
BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& key_value, points)
result.row(j++) = key_value.value.vector();
return result;
}
/// Extract all Point3 values into a single matrix [x y z]
Matrix extractPoint3(const Values& values) {
Values::ConstFiltered<Point3> points = values.filter<Point3>();
Matrix result(points.size(),3);
size_t j=0;
BOOST_FOREACH(const Values::ConstFiltered<Point3>::KeyValuePair& key_value, points)
result.row(j++) = key_value.value.vector();
return result;
}
/// Extract all Pose2 values into a single matrix [x y theta]
Matrix extractPose2(const Values& values) {
Values::ConstFiltered<Pose2> poses = values.filter<Pose2>();
Matrix result(poses.size(),3);
size_t j=0;
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& key_value, poses)
result.row(j++) << key_value.value.x(), key_value.value.y(), key_value.value.theta();
return result;
}
/// Extract all Pose3 values
Values allPose3s(const Values& values) {
return values.filter<Pose3>();
}
/// Extract all Pose3 values into a single matrix [r11 r12 r13 r21 r22 r23 r31 r32 r33 x y z]
Matrix extractPose3(const Values& values) {
Values::ConstFiltered<Pose3> poses = values.filter<Pose3>();
Matrix result(poses.size(),12);
size_t j=0;
BOOST_FOREACH(const Values::ConstFiltered<Pose3>::KeyValuePair& key_value, poses) {
result.row(j).segment(0, 3) << key_value.value.rotation().matrix().row(0);
result.row(j).segment(3, 3) << key_value.value.rotation().matrix().row(1);
result.row(j).segment(6, 3) << key_value.value.rotation().matrix().row(2);
result.row(j).tail(3) = key_value.value.translation().vector();
j++;
}
return result;
}
/// Perturb all Point2 values using normally distributed noise
void perturbPoint2(Values& values, double sigma, int32_t seed = 42u) {
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,sigma);
Sampler sampler(model, seed);
BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& key_value, values.filter<Point2>()) {
values.update(key_value.key, key_value.value.retract(sampler.sample()));
}
}
/// Perturb all Pose2 values using normally distributed noise
void perturbPose2(Values& values, double sigmaT, double sigmaR, int32_t seed = 42u) {
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(
Vector3(sigmaT, sigmaT, sigmaR));
Sampler sampler(model, seed);
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& key_value, values.filter<Pose2>()) {
values.update(key_value.key, key_value.value.retract(sampler.sample()));
}
}
/// Perturb all Point3 values using normally distributed noise
void perturbPoint3(Values& values, double sigma, int32_t seed = 42u) {
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,sigma);
Sampler sampler(model, seed);
BOOST_FOREACH(const Values::ConstFiltered<Point3>::KeyValuePair& key_value, values.filter<Point3>()) {
values.update(key_value.key, key_value.value.retract(sampler.sample()));
}
}
/// Insert a number of initial point values by backprojecting
void insertBackprojections(Values& values, const SimpleCamera& camera, const Vector& J, const Matrix& Z, double depth) {
if (Z.rows() != 2) throw std::invalid_argument("insertBackProjections: Z must be 2*K");
if (Z.cols() != J.size()) throw std::invalid_argument("insertBackProjections: J and Z must have same number of entries");
for(int k=0;k<Z.cols();k++) {
Point2 p(Z(0,k),Z(1,k));
Point3 P = camera.backproject(p, depth);
values.insert(J(k), P);
}
}
/// Insert multiple projection factors for a single pose key
void insertProjectionFactors(NonlinearFactorGraph& graph, Key i, const Vector& J, const Matrix& Z,
const SharedNoiseModel& model, const Cal3_S2::shared_ptr K, const Pose3& body_P_sensor = Pose3()) {
if (Z.rows() != 2) throw std::invalid_argument("addMeasurements: Z must be 2*K");
if (Z.cols() != J.size()) throw std::invalid_argument(
"addMeasurements: J and Z must have same number of entries");
for (int k = 0; k < Z.cols(); k++) {
graph.push_back(
boost::make_shared<GenericProjectionFactor<Pose3, Point3> >
(Point2(Z(0, k), Z(1, k)), model, i, Key(J(k)), K, body_P_sensor));
}
}
/// Calculate the errors of all projection factors in a graph
Matrix reprojectionErrors(const NonlinearFactorGraph& graph, const Values& values) {
// first count
size_t K = 0, k=0;
BOOST_FOREACH(const NonlinearFactor::shared_ptr& f, graph)
if (boost::dynamic_pointer_cast<const GenericProjectionFactor<Pose3, Point3> >(f)) ++K;
// now fill
Matrix errors(2,K);
BOOST_FOREACH(const NonlinearFactor::shared_ptr& f, graph) {
boost::shared_ptr<const GenericProjectionFactor<Pose3, Point3> > p = boost::dynamic_pointer_cast<const GenericProjectionFactor<Pose3, Point3> >(f);
if (p) errors.col(k++) = p->unwhitenedError(values);
}
return errors;
}
}
namespace utilities {
// Create a KeyList from indices
FastList<Key> createKeyList(const Vector& I) {
FastList<Key> set;
for (int i = 0; i < I.size(); i++)
set.push_back(I[i]);
return set;
}
// Create a KeyList from indices using symbol
FastList<Key> createKeyList(string s, const Vector& I) {
FastList<Key> set;
char c = s[0];
for (int i = 0; i < I.size(); i++)
set.push_back(Symbol(c, I[i]));
return set;
}
// Create a KeyVector from indices
FastVector<Key> createKeyVector(const Vector& I) {
FastVector<Key> set;
for (int i = 0; i < I.size(); i++)
set.push_back(I[i]);
return set;
}
// Create a KeyVector from indices using symbol
FastVector<Key> createKeyVector(string s, const Vector& I) {
FastVector<Key> set;
char c = s[0];
for (int i = 0; i < I.size(); i++)
set.push_back(Symbol(c, I[i]));
return set;
}
// Create a KeySet from indices
FastSet<Key> createKeySet(const Vector& I) {
FastSet<Key> set;
for (int i = 0; i < I.size(); i++)
set.insert(I[i]);
return set;
}
// Create a KeySet from indices using symbol
FastSet<Key> createKeySet(string s, const Vector& I) {
FastSet<Key> set;
char c = s[0];
for (int i = 0; i < I.size(); i++)
set.insert(symbol(c, I[i]));
return set;
}
/// Extract all Point2 values into a single matrix [x y]
Matrix extractPoint2(const Values& values) {
size_t j = 0;
Values::ConstFiltered<Point2> points = values.filter<Point2>();
Matrix result(points.size(), 2);
BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& key_value, points)
result.row(j++) = key_value.value.vector();
return result;
}
/// Extract all Point3 values into a single matrix [x y z]
Matrix extractPoint3(const Values& values) {
Values::ConstFiltered<Point3> points = values.filter<Point3>();
Matrix result(points.size(), 3);
size_t j = 0;
BOOST_FOREACH(const Values::ConstFiltered<Point3>::KeyValuePair& key_value, points)
result.row(j++) = key_value.value.vector();
return result;
}
/// Extract all Pose2 values into a single matrix [x y theta]
Matrix extractPose2(const Values& values) {
Values::ConstFiltered<Pose2> poses = values.filter<Pose2>();
Matrix result(poses.size(), 3);
size_t j = 0;
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& key_value, poses)
result.row(j++) << key_value.value.x(), key_value.value.y(), key_value.value.theta();
return result;
}
/// Extract all Pose3 values
Values allPose3s(const Values& values) {
return values.filter<Pose3>();
}
/// Extract all Pose3 values into a single matrix [r11 r12 r13 r21 r22 r23 r31 r32 r33 x y z]
Matrix extractPose3(const Values& values) {
Values::ConstFiltered<Pose3> poses = values.filter<Pose3>();
Matrix result(poses.size(), 12);
size_t j = 0;
BOOST_FOREACH(const Values::ConstFiltered<Pose3>::KeyValuePair& key_value, poses) {
result.row(j).segment(0, 3) << key_value.value.rotation().matrix().row(0);
result.row(j).segment(3, 3) << key_value.value.rotation().matrix().row(1);
result.row(j).segment(6, 3) << key_value.value.rotation().matrix().row(2);
result.row(j).tail(3) = key_value.value.translation().vector();
j++;
}
return result;
}
/// Perturb all Point2 values using normally distributed noise
void perturbPoint2(Values& values, double sigma, int32_t seed = 42u) {
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,
sigma);
Sampler sampler(model, seed);
BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& key_value, values.filter<Point2>()) {
values.update(key_value.key, key_value.value.retract(sampler.sample()));
}
}
/// Perturb all Pose2 values using normally distributed noise
void perturbPose2(Values& values, double sigmaT, double sigmaR, int32_t seed =
42u) {
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(
Vector3(sigmaT, sigmaT, sigmaR));
Sampler sampler(model, seed);
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& key_value, values.filter<Pose2>()) {
values.update(key_value.key, key_value.value.retract(sampler.sample()));
}
}
/// Perturb all Point3 values using normally distributed noise
void perturbPoint3(Values& values, double sigma, int32_t seed = 42u) {
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,
sigma);
Sampler sampler(model, seed);
BOOST_FOREACH(const Values::ConstFiltered<Point3>::KeyValuePair& key_value, values.filter<Point3>()) {
values.update(key_value.key, key_value.value.retract(sampler.sample()));
}
}
/// Insert a number of initial point values by backprojecting
void insertBackprojections(Values& values, const SimpleCamera& camera,
const Vector& J, const Matrix& Z, double depth) {
if (Z.rows() != 2)
throw std::invalid_argument("insertBackProjections: Z must be 2*K");
if (Z.cols() != J.size())
throw std::invalid_argument(
"insertBackProjections: J and Z must have same number of entries");
for (int k = 0; k < Z.cols(); k++) {
Point2 p(Z(0, k), Z(1, k));
Point3 P = camera.backproject(p, depth);
values.insert(J(k), P);
}
}
/// Insert multiple projection factors for a single pose key
void insertProjectionFactors(NonlinearFactorGraph& graph, Key i,
const Vector& J, const Matrix& Z, const SharedNoiseModel& model,
const Cal3_S2::shared_ptr K, const Pose3& body_P_sensor = Pose3()) {
if (Z.rows() != 2)
throw std::invalid_argument("addMeasurements: Z must be 2*K");
if (Z.cols() != J.size())
throw std::invalid_argument(
"addMeasurements: J and Z must have same number of entries");
for (int k = 0; k < Z.cols(); k++) {
graph.push_back(
boost::make_shared<GenericProjectionFactor<Pose3, Point3> >(
Point2(Z(0, k), Z(1, k)), model, i, Key(J(k)), K, body_P_sensor));
}
}
/// Calculate the errors of all projection factors in a graph
Matrix reprojectionErrors(const NonlinearFactorGraph& graph,
const Values& values) {
// first count
size_t K = 0, k = 0;
BOOST_FOREACH(const NonlinearFactor::shared_ptr& f, graph)
if (boost::dynamic_pointer_cast<const GenericProjectionFactor<Pose3, Point3> >(
f))
++K;
// now fill
Matrix errors(2, K);
BOOST_FOREACH(const NonlinearFactor::shared_ptr& f, graph) {
boost::shared_ptr<const GenericProjectionFactor<Pose3, Point3> > p =
boost::dynamic_pointer_cast<const GenericProjectionFactor<Pose3, Point3> >(
f);
if (p)
errors.col(k++) = p->unwhitenedError(values);
}
return errors;
}
/// Convert from local to world coordinates
Values localToWorld(const Values& local, const Pose2& base,
const FastVector<Key> user_keys = FastVector<Key>()) {
Values world;
// if no keys given, get all keys from local values
FastVector<Key> keys(user_keys);
if (keys.size()==0)
keys = FastVector<Key>(local.keys());
// Loop over all keys
BOOST_FOREACH(Key key, keys) {
try {
// if value is a Pose2, compose it with base pose
Pose2 pose = local.at<Pose2>(key);
world.insert(key, base.compose(pose));
} catch (std::exception e1) {
try {
// if value is a Point2, transform it from base pose
Point2 point = local.at<Point2>(key);
world.insert(key, base.transform_from(point));
} catch (std::exception e2) {
// if not Pose2 or Point2, do nothing
}
}
}
return world;
}
}
}

View File

@ -175,6 +175,9 @@
% symbolIndex - get index from a symbol key
%
%% Wrapped C++ Convenience Functions for use within MATLAB
% utilities.createKeyList - Create KeyList from indices
% utilities.createKeyVector - Create KeyVector from indices
% utilities.createKeySet - Create KeySet from indices
% utilities.extractPoint2 - Extract all Point2 values into a single matrix [x y]
% utilities.extractPoint3 - Extract all Point3 values into a single matrix [x y z]
% utilities.extractPose2 - Extract all Pose2 values into a single matrix [x y theta]
@ -186,3 +189,4 @@
% utilities.insertBackprojections - Insert a number of initial point values by backprojecting
% utilities.insertProjectionFactors - Insert multiple projection factors for a single pose key
% utilities.reprojectionErrors - Calculate the errors of all projection factors in a graph
% utilities.localToWorld - Convert from local to world coordinates

View File

@ -8,53 +8,41 @@ function plot2DTrajectory(values, linespec, marginals)
import gtsam.*
if ~exist('linespec', 'var') || isempty(linespec)
linespec = 'k*-';
linespec = 'k*-';
end
haveMarginals = exist('marginals', 'var');
keys = KeyVector(values.keys);
holdstate = ishold;
hold on
% Plot poses and covariance matrices
lastIndex = [];
for i = 0:keys.size-1
% Do something very efficient to draw trajectory
poses = utilities.extractPose2(values);
X = poses(:,1);
Y = poses(:,2);
theta = poses(:,3);
plot(X,Y,linespec);
% Quiver can also be vectorized if no marginals asked
if ~haveMarginals
C = cos(theta);
S = sin(theta);
quiver(X,Y,C,S,0.1,linespec);
else
% plotPose2 does both quiver and covariance matrix
keys = KeyVector(values.keys);
for i = 0:keys.size-1
key = keys.at(i);
x = values.at(key);
if isa(x, 'gtsam.Pose2')
if ~isempty(lastIndex)
% Draw line from last pose then covariance ellipse on top of
% last pose.
lastKey = keys.at(lastIndex);
lastPose = values.at(lastKey);
plot([ x.x; lastPose.x ], [ x.y; lastPose.y ], linespec);
if haveMarginals
P = marginals.marginalCovariance(lastKey);
gtsam.plotPose2(lastPose, 'g', P);
else
gtsam.plotPose2(lastPose, 'g', []);
end
end
lastIndex = i;
end
end
% Draw final covariance ellipse
if ~isempty(lastIndex)
lastKey = keys.at(lastIndex);
lastPose = values.at(lastKey);
if haveMarginals
P = marginals.marginalCovariance(lastKey);
gtsam.plotPose2(lastPose, 'g', P);
else
gtsam.plotPose2(lastPose, 'g', []);
P = marginals.marginalCovariance(key);
gtsam.plotPose2(x,linespec(1), P);
end
end
end
if ~holdstate
hold off
hold off
end
end

View File

@ -59,16 +59,16 @@ params.setAbsoluteErrorTol(1e-15);
params.setRelativeErrorTol(1e-15);
params.setVerbosity('ERROR');
params.setVerbosityDL('VERBOSE');
params.setOrdering(graph.orderingCOLAMD(initialEstimate));
params.setOrdering(graph.orderingCOLAMD());
optimizer = DoglegOptimizer(graph, initialEstimate, params);
result = optimizer.optimizeSafely();
result.print('final result');
%% Get the corresponding dense matrix
ord = graph.orderingCOLAMD(result);
gfg = graph.linearize(result,ord);
denseAb = gfg.denseJacobian;
ord = graph.orderingCOLAMD();
gfg = graph.linearize(result);
denseAb = gfg.augmentedJacobian;
%% Get sparse matrix A and RHS b
IJS = gfg.sparseJacobian_();

View File

@ -36,7 +36,9 @@ toc
hold on; plot2DTrajectory(result, 'b-*');
%% Plot Covariance Ellipses
tic
marginals = Marginals(graph, result);
toc
P={};
for i=1:result.size()-1
pose_i = result.at(i);

View File

@ -12,6 +12,8 @@
import gtsam.*
%% PLEASE NOTE THAT PLOTTING TAKES A VERY LONG TIME HERE
%% Find data file
N = 2500;
% dataset = 'sphere_smallnoise.graph';

View File

@ -0,0 +1,47 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Checks for results of functions in utilities namespace
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
import gtsam.*
%% Create keys for variables
x1 = symbol('x',1); x2 = symbol('x',2); x3 = symbol('x',3);
actual = utilities.createKeyList([1;2;3]);
CHECK('KeyList', isa(actual,'gtsam.KeyList'));
CHECK('size==3', actual.size==3);
CHECK('actual.front==1', actual.front==1);
actual = utilities.createKeyList('x',[1;2;3]);
CHECK('KeyList', isa(actual,'gtsam.KeyList'));
CHECK('size==3', actual.size==3);
CHECK('actual.front==x1', actual.front==x1);
actual = utilities.createKeyVector([1;2;3]);
CHECK('KeyVector', isa(actual,'gtsam.KeyVector'));
CHECK('size==3', actual.size==3);
CHECK('actual.at(0)==1', actual.at(0)==1);
actual = utilities.createKeyVector('x',[1;2;3]);
CHECK('KeyVector', isa(actual,'gtsam.KeyVector'));
CHECK('size==3', actual.size==3);
CHECK('actual.at(0)==x1', actual.at(0)==x1);
actual = utilities.createKeySet([1;2;3]);
CHECK('KeySet', isa(actual,'gtsam.KeySet'));
CHECK('size==3', actual.size==3);
CHECK('actual.count(1)', actual.count(1));
actual = utilities.createKeySet('x',[1;2;3]);
CHECK('KeySet', isa(actual,'gtsam.KeySet'));
CHECK('size==3', actual.size==3);
CHECK('actual.count(x1)', actual.count(x1));

View File

@ -33,5 +33,8 @@ testVisualISAMExample
display 'Starting: testSerialization'
testSerialization
display 'Starting: testUtilities'
testUtilities
% end of tests
display 'Tests complete!'

0
package_scripts/compile_static_boost.sh Normal file → Executable file
View File

View File

@ -33,22 +33,21 @@ fi
# Run cmake
cmake -DCMAKE_BUILD_TYPE=Release \
-DGTSAM_INSTALL_MATLAB_TOOLBOX:bool=true \
-DGTSAM_INSTALL_MATLAB_TOOLBOX:BOOL=ON \
-DCMAKE_INSTALL_PREFIX="$PWD/stage" \
-DBoost_NO_SYSTEM_PATHS:bool=true \
-DBoost_USE_STATIC_LIBS:bool=true \
-DBoost_NO_SYSTEM_PATHS:BOOL=ON \
-DBoost_USE_STATIC_LIBS:BOOL=ON \
-DBOOST_ROOT="$1" \
-DGTSAM_BUILD_SHARED_LIBRARY:bool=false \
-DGTSAM_BUILD_STATIC_LIBRARY:bool=false \
-DGTSAM_BUILD_TESTS:bool=false \
-DGTSAM_BUILD_EXAMPLES:bool=false \
-DGTSAM_BUILD_UNSTABLE:bool=false \
-DGTSAM_DISABLE_EXAMPLES_ON_INSTALL:bool=true \
-DGTSAM_DISABLE_TESTS_ON_INSTALL:bool=true \
-DGTSAM_BUILD_CONVENIENCE_LIBRARIES:bool=false \
-DGTSAM_MEX_BUILD_STATIC_MODULE:bool=true ..
-DGTSAM_BUILD_TESTS:BOOL=OFF \
-DGTSAM_BUILD_TIMING:BOOL=OFF \
-DGTSAM_BUILD_EXAMPLES_ALWAYS:BOOL=OFF \
-DGTSAM_WITH_TBB:BOOL=OFF \
-DGTSAM_BUILD_METIS:BOOL=OFF \
-DGTSAM_INSTALL_GEOGRAPHICLIB:BOOL=OFF \
-DGTSAM_BUILD_UNSTABLE:BOOL=OFF \
-DGTSAM_MEX_BUILD_STATIC_MODULE:BOOL=ON ..
if [ ! $? ]; then
if [ $? -ne 0 ]; then
echo "CMake failed"
exit 1
fi
@ -56,5 +55,10 @@ fi
# Compile
make -j8 install
if [ $? -ne 0 ]; then
echo "Compile failed"
exit 1
fi
# Create package
tar czf gtsam-toolbox-3.0.0-$platform.tgz -C stage/gtsam_toolbox toolbox

View File

@ -18,7 +18,10 @@
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/inference/graph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose2.h>
#include <CppUnitLite/TestHarness.h>
@ -105,24 +108,38 @@ TEST( Graph, composePoses )
CHECK(assert_equal(expected, *actual));
}
// SL-FIX TEST( GaussianFactorGraph, findMinimumSpanningTree )
//{
// GaussianFactorGraph g;
// Matrix I = eye(2);
// Vector b = Vector_(0, 0, 0);
// g += X(1), I, X(2), I, b, model;
// g += X(1), I, X(3), I, b, model;
// g += X(1), I, X(4), I, b, model;
// g += X(2), I, X(3), I, b, model;
// g += X(2), I, X(4), I, b, model;
// g += X(3), I, X(4), I, b, model;
//
// map<string, string> tree = g.findMinimumSpanningTree<string, GaussianFactor>();
// EXPECT(tree[X(1)].compare(X(1))==0);
// EXPECT(tree[X(2)].compare(X(1))==0);
// EXPECT(tree[X(3)].compare(X(1))==0);
// EXPECT(tree[X(4)].compare(X(1))==0);
//}
/* ************************************************************************* */
TEST( GaussianFactorGraph, findMinimumSpanningTree )
{
GaussianFactorGraph g;
Matrix I = eye(2);
Vector2 b(0, 0);
const SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(2) << 0.5, 0.5));
using namespace symbol_shorthand;
g += JacobianFactor(X(1), I, X(2), I, b, model);
g += JacobianFactor(X(1), I, X(3), I, b, model);
g += JacobianFactor(X(1), I, X(4), I, b, model);
g += JacobianFactor(X(2), I, X(3), I, b, model);
g += JacobianFactor(X(2), I, X(4), I, b, model);
g += JacobianFactor(X(3), I, X(4), I, b, model);
PredecessorMap<Key> tree = findMinimumSpanningTree<GaussianFactorGraph, Key, JacobianFactor>(g);
EXPECT_LONGS_EQUAL(X(1),tree[X(1)]);
EXPECT_LONGS_EQUAL(X(1),tree[X(2)]);
EXPECT_LONGS_EQUAL(X(1),tree[X(3)]);
EXPECT_LONGS_EQUAL(X(1),tree[X(4)]);
// we add a disconnected component - does not work yet
// g += JacobianFactor(X(5), I, X(6), I, b, model);
//
// PredecessorMap<Key> forest = findMinimumSpanningTree<GaussianFactorGraph, Key, JacobianFactor>(g);
// EXPECT_LONGS_EQUAL(X(1),forest[X(1)]);
// EXPECT_LONGS_EQUAL(X(1),forest[X(2)]);
// EXPECT_LONGS_EQUAL(X(1),forest[X(3)]);
// EXPECT_LONGS_EQUAL(X(1),forest[X(4)]);
// EXPECT_LONGS_EQUAL(X(5),forest[X(5)]);
// EXPECT_LONGS_EQUAL(X(5),forest[X(6)]);
}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactorGraph, split )

View File

@ -295,7 +295,7 @@ TEST_UNSAFE(NonlinearOptimizer, MoreOptimization) {
// test the diagonal
GaussianFactorGraph::shared_ptr linear = optimizer.linearize();
GaussianFactorGraph damped = optimizer.buildDampedSystem(*linear);
GaussianFactorGraph damped = *optimizer.buildDampedSystem(*linear);
VectorValues d = linear->hessianDiagonal(), //
expectedDiagonal = d + params.lambdaInitial * d;
EXPECT(assert_equal(expectedDiagonal, damped.hessianDiagonal()));
@ -309,7 +309,7 @@ TEST_UNSAFE(NonlinearOptimizer, MoreOptimization) {
EXPECT(assert_equal(expectedGradient,linear->gradientAtZero()));
// Check that the gradient is zero for damped system (it is not!)
damped = optimizer.buildDampedSystem(*linear);
damped = *optimizer.buildDampedSystem(*linear);
VectorValues actualGradient = damped.gradientAtZero();
EXPECT(assert_equal(expectedGradient,actualGradient));

View File

@ -16,13 +16,14 @@
* @author Richard Roberts
**/
#include <iostream>
#include <fstream>
#include <sstream>
#include "Argument.h"
#include <boost/foreach.hpp>
#include <boost/regex.hpp>
#include "Argument.h"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace std;
using namespace wrap;
@ -31,18 +32,24 @@ using namespace wrap;
string Argument::matlabClass(const string& delim) const {
string result;
BOOST_FOREACH(const string& ns, namespaces)
result += ns + delim;
if (type=="string" || type=="unsigned char" || type=="char")
result += ns + delim;
if (type == "string" || type == "unsigned char" || type == "char")
return result + "char";
if (type=="Vector" || type=="Matrix")
if (type == "Vector" || type == "Matrix")
return result + "double";
if (type=="int" || type=="size_t")
if (type == "int" || type == "size_t")
return result + "numeric";
if (type=="bool")
if (type == "bool")
return result + "logical";
return result + type;
}
/* ************************************************************************* */
bool Argument::isScalar() const {
return (type == "bool" || type == "char" || type == "unsigned char"
|| type == "int" || type == "size_t" || type == "double");
}
/* ************************************************************************* */
void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
file.oss << " ";
@ -52,7 +59,8 @@ void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
if (is_ptr)
// A pointer: emit an "unwrap_shared_ptr" call which returns a pointer
file.oss << "boost::shared_ptr<" << cppType << "> " << name << " = unwrap_shared_ptr< ";
file.oss << "boost::shared_ptr<" << cppType << "> " << name
<< " = unwrap_shared_ptr< ";
else if (is_ref)
// A reference: emit an "unwrap_shared_ptr" call and de-reference the pointer
file.oss << cppType << "& " << name << " = *unwrap_shared_ptr< ";
@ -65,23 +73,28 @@ void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
file.oss << cppType << " " << name << " = unwrap< ";
file.oss << cppType << " >(" << matlabName;
if (is_ptr || is_ref) file.oss << ", \"ptr_" << matlabUniqueType << "\"";
if (is_ptr || is_ref)
file.oss << ", \"ptr_" << matlabUniqueType << "\"";
file.oss << ");" << endl;
}
/* ************************************************************************* */
string Argument::qualifiedType(const string& delim) const {
string result;
BOOST_FOREACH(const string& ns, namespaces) result += ns + delim;
BOOST_FOREACH(const string& ns, namespaces)
result += ns + delim;
return result + type;
}
/* ************************************************************************* */
string ArgumentList::types() const {
string str;
bool first=true;
bool first = true;
BOOST_FOREACH(Argument arg, *this) {
if (!first) str += ","; str += arg.type; first=false;
if (!first)
str += ",";
str += arg.type;
first = false;
}
return str;
}
@ -89,16 +102,17 @@ string ArgumentList::types() const {
/* ************************************************************************* */
string ArgumentList::signature() const {
string sig;
bool cap=false;
bool cap = false;
BOOST_FOREACH(Argument arg, *this) {
BOOST_FOREACH(char ch, arg.type)
if(isupper(ch)) {
sig += ch;
//If there is a capital letter, we don't want to read it below
cap=true;
}
if(!cap) sig += arg.type[0];
if (isupper(ch)) {
sig += ch;
//If there is a capital letter, we don't want to read it below
cap = true;
}
if (!cap)
sig += arg.type[0];
//Reset to default
cap = false;
}
@ -109,23 +123,77 @@ string ArgumentList::signature() const {
/* ************************************************************************* */
string ArgumentList::names() const {
string str;
bool first=true;
bool first = true;
BOOST_FOREACH(Argument arg, *this) {
if (!first) str += ","; str += arg.name; first=false;
if (!first)
str += ",";
str += arg.name;
first = false;
}
return str;
}
/* ************************************************************************* */
bool ArgumentList::allScalar() const {
BOOST_FOREACH(Argument arg, *this)
if (!arg.isScalar()) return false;
return true;
}
/* ************************************************************************* */
void ArgumentList::matlab_unwrap(FileWriter& file, int start) const {
int index = start;
BOOST_FOREACH(Argument arg, *this) {
stringstream buf;
buf << "in[" << index << "]";
arg.matlab_unwrap(file,buf.str());
arg.matlab_unwrap(file, buf.str());
index++;
}
}
/* ************************************************************************* */
void ArgumentList::emit_prototype(FileWriter& file, const string& name) const {
file.oss << name << "(";
bool first = true;
BOOST_FOREACH(Argument arg, *this) {
if (!first)
file.oss << ", ";
file.oss << arg.type << " " << arg.name;
first = false;
}
file.oss << ")";
}
/* ************************************************************************* */
void ArgumentList::emit_call(FileWriter& file, const ReturnValue& returnVal,
const string& wrapperName, int id, bool staticMethod) const {
returnVal.emit_matlab(file);
file.oss << wrapperName << "(" << id;
if (!staticMethod)
file.oss << ", this";
file.oss << ", varargin{:});\n";
}
/* ************************************************************************* */
void ArgumentList::emit_conditional_call(FileWriter& file,
const ReturnValue& returnVal, const string& wrapperName, int id,
bool staticMethod) const {
// Check nr of arguments
file.oss << "if length(varargin) == " << size();
if (size() > 0)
file.oss << " && ";
// ...and their types
bool first = true;
for (size_t i = 0; i < size(); i++) {
if (!first)
file.oss << " && ";
file.oss << "isa(varargin{" << i + 1 << "},'" << (*this)[i].matlabClass(".")
<< "')";
first = false;
}
file.oss << "\n";
// output call to C++ wrapper
file.oss << " ";
emit_call(file, returnVal, wrapperName, id, staticMethod);
}
/* ************************************************************************* */

View File

@ -19,11 +19,12 @@
#pragma once
#include "FileWriter.h"
#include "ReturnValue.h"
#include <string>
#include <vector>
#include "FileWriter.h"
namespace wrap {
/// Argument class
@ -40,6 +41,9 @@ struct Argument {
/// return MATLAB class for use in isa(x,class)
std::string matlabClass(const std::string& delim = "") const;
/// Check if will be unwrapped using scalar login in wrap/matlab.h
bool isScalar() const;
/// adds namespaces to type
std::string qualifiedType(const std::string& delim = "") const;
@ -59,6 +63,9 @@ struct ArgumentList: public std::vector<Argument> {
/// create a comma-separated string listing all argument names, used in m-files
std::string names() const;
/// Check if all arguments scalar
bool allScalar() const;
// MATLAB code generation:
/**
@ -68,6 +75,32 @@ struct ArgumentList: public std::vector<Argument> {
*/
void matlab_unwrap(FileWriter& file, int start = 0) const; // MATLAB to C++
/**
* emit MATLAB prototype
* @param file output stream
* @param name of method or function
*/
void emit_prototype(FileWriter& file, const std::string& name) const;
/**
* emit emit MATLAB call to wrapper
* @param file output stream
* @param returnVal the return value
* @param wrapperName of method or function
* @param staticMethod flag to emit "this" in call
*/
void emit_call(FileWriter& file, const ReturnValue& returnVal,
const std::string& wrapperName, int id, bool staticMethod = false) const;
/**
* emit conditional MATLAB call to wrapper (checking arguments first)
* @param file output stream
* @param returnVal the return value
* @param wrapperName of method or function
* @param staticMethod flag to emit "this" in call
*/
void emit_conditional_call(FileWriter& file, const ReturnValue& returnVal,
const std::string& wrapperName, int id, bool staticMethod = false) const;
};
} // \namespace wrap

View File

@ -16,40 +16,40 @@
* @author Richard Roberts
**/
#include "Class.h"
#include "utilities.h"
#include "Argument.h"
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include <vector>
#include <iostream>
#include <fstream>
//#include <cstdint> // on Linux GCC: fails with error regarding needing C++0x std flags
//#include <cinttypes> // same failure as above
#include <stdint.h> // works on Linux GCC
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include "Class.h"
#include "utilities.h"
#include "Argument.h"
using namespace std;
using namespace wrap;
/* ************************************************************************* */
void Class::matlab_proxy(const string& toolboxPath, const string& wrapperName,
const TypeAttributesTable& typeAttributes,
FileWriter& wrapperFile, vector<string>& functionNames) const {
const TypeAttributesTable& typeAttributes, FileWriter& wrapperFile,
vector<string>& functionNames) const {
// Create namespace folders
createNamespaceStructure(namespaces, toolboxPath);
// open destination classFile
string classFile = toolboxPath;
if(!namespaces.empty())
if (!namespaces.empty())
classFile += "/+" + wrap::qualifiedName("/+", namespaces);
classFile += "/" + name + ".m";
FileWriter proxyFile(classFile, verbose_, "%");
// get the name of actual matlab object
const string matlabQualName = qualifiedName("."), matlabUniqueName = qualifiedName(), cppName = qualifiedName("::");
const string matlabQualName = qualifiedName("."), matlabUniqueName =
qualifiedName(), cppName = qualifiedName("::");
const string matlabBaseName = wrap::qualifiedName(".", qualifiedParent);
const string cppBaseName = wrap::qualifiedName("::", qualifiedParent);
@ -72,42 +72,49 @@ void Class::matlab_proxy(const string& toolboxPath, const string& wrapperName,
// other wrap modules - to add these to their collectors the pointer is
// passed from one C++ module into matlab then back into the other C++
// module.
pointer_constructor_fragments(proxyFile, wrapperFile, wrapperName, functionNames);
pointer_constructor_fragments(proxyFile, wrapperFile, wrapperName,
functionNames);
wrapperFile.oss << "\n";
// Regular constructors
BOOST_FOREACH(ArgumentList a, constructor.args_list)
{
const int id = (int)functionNames.size();
constructor.proxy_fragment(proxyFile, wrapperName, !qualifiedParent.empty(), id, a);
BOOST_FOREACH(ArgumentList a, constructor.args_list) {
const int id = (int) functionNames.size();
constructor.proxy_fragment(proxyFile, wrapperName, !qualifiedParent.empty(),
id, a);
const string wrapFunctionName = constructor.wrapper_fragment(wrapperFile,
cppName, matlabUniqueName, cppBaseName, id, a);
cppName, matlabUniqueName, cppBaseName, id, a);
wrapperFile.oss << "\n";
functionNames.push_back(wrapFunctionName);
}
proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of " << matlabQualName << " constructor');\n";
proxyFile.oss << " error('Arguments do not match any overload of "
<< matlabQualName << " constructor');\n";
proxyFile.oss << " end\n";
if(!qualifiedParent.empty())
proxyFile.oss << " obj = obj@" << matlabBaseName << "(uint64(" << ptr_constructor_key << "), base_ptr);\n";
if (!qualifiedParent.empty())
proxyFile.oss << " obj = obj@" << matlabBaseName << "(uint64("
<< ptr_constructor_key << "), base_ptr);\n";
proxyFile.oss << " obj.ptr_" << matlabUniqueName << " = my_ptr;\n";
proxyFile.oss << " end\n\n";
// Deconstructor
{
const int id = (int)functionNames.size();
const int id = (int) functionNames.size();
deconstructor.proxy_fragment(proxyFile, wrapperName, matlabUniqueName, id);
proxyFile.oss << "\n";
const string functionName = deconstructor.wrapper_fragment(wrapperFile, cppName, matlabUniqueName, id);
const string functionName = deconstructor.wrapper_fragment(wrapperFile,
cppName, matlabUniqueName, id);
wrapperFile.oss << "\n";
functionNames.push_back(functionName);
}
proxyFile.oss << " function display(obj), obj.print(''); end\n %DISPLAY Calls print on the object\n";
proxyFile.oss << " function disp(obj), obj.display; end\n %DISP Calls print on the object\n";
proxyFile.oss
<< " function display(obj), obj.print(''); end\n %DISPLAY Calls print on the object\n";
proxyFile.oss
<< " function disp(obj), obj.display; end\n %DISP Calls print on the object\n";
// Methods
BOOST_FOREACH(const Methods::value_type& name_m, methods) {
const Method& m = name_m.second;
m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabQualName, matlabUniqueName, wrapperName, typeAttributes, functionNames);
m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabQualName,
matlabUniqueName, wrapperName, typeAttributes, functionNames);
proxyFile.oss << "\n";
wrapperFile.oss << "\n";
}
@ -121,12 +128,14 @@ void Class::matlab_proxy(const string& toolboxPath, const string& wrapperName,
// Static methods
BOOST_FOREACH(const StaticMethods::value_type& name_m, static_methods) {
const StaticMethod& m = name_m.second;
m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabQualName, matlabUniqueName, wrapperName, typeAttributes, functionNames);
m.proxy_wrapper_fragments(proxyFile, wrapperFile, cppName, matlabQualName,
matlabUniqueName, wrapperName, typeAttributes, functionNames);
proxyFile.oss << "\n";
wrapperFile.oss << "\n";
}
if (hasSerialization)
deserialization_fragments(proxyFile, wrapperFile, wrapperName, functionNames);
deserialization_fragments(proxyFile, wrapperFile, wrapperName,
functionNames);
proxyFile.oss << " end\n";
proxyFile.oss << "end\n";
@ -141,41 +150,50 @@ string Class::qualifiedName(const string& delim) const {
}
/* ************************************************************************* */
void Class::pointer_constructor_fragments(FileWriter& proxyFile, FileWriter& wrapperFile, const string& wrapperName, vector<string>& functionNames) const {
void Class::pointer_constructor_fragments(FileWriter& proxyFile,
FileWriter& wrapperFile, const string& wrapperName,
vector<string>& functionNames) const {
const string matlabUniqueName = qualifiedName(), cppName = qualifiedName("::");
const string matlabUniqueName = qualifiedName(), cppName = qualifiedName(
"::");
const string baseCppName = wrap::qualifiedName("::", qualifiedParent);
const int collectorInsertId = (int)functionNames.size();
const string collectorInsertFunctionName = matlabUniqueName + "_collectorInsertAndMakeBase_" + boost::lexical_cast<string>(collectorInsertId);
const int collectorInsertId = (int) functionNames.size();
const string collectorInsertFunctionName = matlabUniqueName
+ "_collectorInsertAndMakeBase_"
+ boost::lexical_cast<string>(collectorInsertId);
functionNames.push_back(collectorInsertFunctionName);
int upcastFromVoidId;
string upcastFromVoidFunctionName;
if(isVirtual) {
upcastFromVoidId = (int)functionNames.size();
upcastFromVoidFunctionName = matlabUniqueName + "_upcastFromVoid_" + boost::lexical_cast<string>(upcastFromVoidId);
if (isVirtual) {
upcastFromVoidId = (int) functionNames.size();
upcastFromVoidFunctionName = matlabUniqueName + "_upcastFromVoid_"
+ boost::lexical_cast<string>(upcastFromVoidId);
functionNames.push_back(upcastFromVoidFunctionName);
}
// MATLAB constructor that assigns pointer to matlab object then calls c++
// function to add the object to the collector.
if(isVirtual) {
proxyFile.oss << " if (nargin == 2 || (nargin == 3 && strcmp(varargin{3}, 'void')))";
if (isVirtual) {
proxyFile.oss
<< " if (nargin == 2 || (nargin == 3 && strcmp(varargin{3}, 'void')))";
} else {
proxyFile.oss << " if nargin == 2";
}
proxyFile.oss << " && isa(varargin{1}, 'uint64') && varargin{1} == uint64(" << ptr_constructor_key << ")\n";
if(isVirtual) {
proxyFile.oss << " && isa(varargin{1}, 'uint64') && varargin{1} == uint64("
<< ptr_constructor_key << ")\n";
if (isVirtual) {
proxyFile.oss << " if nargin == 2\n";
proxyFile.oss << " my_ptr = varargin{2};\n";
proxyFile.oss << " else\n";
proxyFile.oss << " my_ptr = " << wrapperName << "(" << upcastFromVoidId << ", varargin{2});\n";
proxyFile.oss << " my_ptr = " << wrapperName << "("
<< upcastFromVoidId << ", varargin{2});\n";
proxyFile.oss << " end\n";
} else {
proxyFile.oss << " my_ptr = varargin{2};\n";
}
if(qualifiedParent.empty()) // If this class has a base class, we'll get a base class pointer back
if (qualifiedParent.empty()) // If this class has a base class, we'll get a base class pointer back
proxyFile.oss << " ";
else
proxyFile.oss << " base_ptr = ";
@ -185,22 +203,27 @@ void Class::pointer_constructor_fragments(FileWriter& proxyFile, FileWriter& wra
// comes from a C++ return value; this mechanism allows the object to be added
// to a collector in a different wrap module. If this class has a base class,
// a new pointer to the base class is allocated and returned.
wrapperFile.oss << "void " << collectorInsertFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
wrapperFile.oss << "void " << collectorInsertFunctionName
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
wrapperFile.oss << "{\n";
wrapperFile.oss << " mexAtExit(&_deleteAllObjects);\n";
// Typedef boost::shared_ptr
wrapperFile.oss << " typedef boost::shared_ptr<" << cppName << "> Shared;\n";
wrapperFile.oss << "\n";
// Get self pointer passed in
wrapperFile.oss << " Shared *self = *reinterpret_cast<Shared**> (mxGetData(in[0]));\n";
wrapperFile.oss
<< " Shared *self = *reinterpret_cast<Shared**> (mxGetData(in[0]));\n";
// Add to collector
wrapperFile.oss << " collector_" << matlabUniqueName << ".insert(self);\n";
// If we have a base class, return the base class pointer (MATLAB will call the base class collectorInsertAndMakeBase to add this to the collector and recurse the heirarchy)
if(!qualifiedParent.empty()) {
if (!qualifiedParent.empty()) {
wrapperFile.oss << "\n";
wrapperFile.oss << " typedef boost::shared_ptr<" << baseCppName << "> SharedBase;\n";
wrapperFile.oss << " out[0] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);\n";
wrapperFile.oss << " *reinterpret_cast<SharedBase**>(mxGetData(out[0])) = new SharedBase(*self);\n";
wrapperFile.oss << " typedef boost::shared_ptr<" << baseCppName
<< "> SharedBase;\n";
wrapperFile.oss
<< " out[0] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);\n";
wrapperFile.oss
<< " *reinterpret_cast<SharedBase**>(mxGetData(out[0])) = new SharedBase(*self);\n";
}
wrapperFile.oss << "}\n";
@ -208,31 +231,38 @@ void Class::pointer_constructor_fragments(FileWriter& proxyFile, FileWriter& wra
// shared_ptr<void>. This mechanism allows automatic dynamic creation of the
// real underlying derived-most class when a C++ method returns a virtual
// base class.
if(isVirtual)
wrapperFile.oss <<
"\n"
"void " << upcastFromVoidFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[]) {\n"
" mexAtExit(&_deleteAllObjects);\n"
" typedef boost::shared_ptr<" << cppName << "> Shared;\n"
" boost::shared_ptr<void> *asVoid = *reinterpret_cast<boost::shared_ptr<void>**> (mxGetData(in[0]));\n"
" out[0] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);\n"
" Shared *self = new Shared(boost::static_pointer_cast<" << cppName << ">(*asVoid));\n"
" *reinterpret_cast<Shared**>(mxGetData(out[0])) = self;\n"
"}\n";
if (isVirtual)
wrapperFile.oss << "\n"
"void " << upcastFromVoidFunctionName
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[]) {\n"
" mexAtExit(&_deleteAllObjects);\n"
" typedef boost::shared_ptr<" << cppName
<< "> Shared;\n"
" boost::shared_ptr<void> *asVoid = *reinterpret_cast<boost::shared_ptr<void>**> (mxGetData(in[0]));\n"
" out[0] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);\n"
" Shared *self = new Shared(boost::static_pointer_cast<" << cppName
<< ">(*asVoid));\n"
" *reinterpret_cast<Shared**>(mxGetData(out[0])) = self;\n"
"}\n";
}
/* ************************************************************************* */
vector<ArgumentList> expandArgumentListsTemplate(const vector<ArgumentList>& argLists, const string& templateArg, const vector<string>& instName, const std::vector<string>& expandedClassNamespace, const string& expandedClassName) {
vector<ArgumentList> expandArgumentListsTemplate(
const vector<ArgumentList>& argLists, const string& templateArg,
const vector<string>& instName,
const std::vector<string>& expandedClassNamespace,
const string& expandedClassName) {
vector<ArgumentList> result;
BOOST_FOREACH(const ArgumentList& argList, argLists) {
ArgumentList instArgList;
BOOST_FOREACH(const Argument& arg, argList) {
Argument instArg = arg;
if(arg.type == templateArg) {
instArg.namespaces.assign(instName.begin(), instName.end()-1);
if (arg.type == templateArg) {
instArg.namespaces.assign(instName.begin(), instName.end() - 1);
instArg.type = instName.back();
} else if(arg.type == "This") {
instArg.namespaces.assign(expandedClassNamespace.begin(), expandedClassNamespace.end());
} else if (arg.type == "This") {
instArg.namespaces.assign(expandedClassNamespace.begin(),
expandedClassNamespace.end());
instArg.type = expandedClassName;
}
instArgList.push_back(instArg);
@ -244,28 +274,34 @@ vector<ArgumentList> expandArgumentListsTemplate(const vector<ArgumentList>& arg
/* ************************************************************************* */
template<class METHOD>
map<string, METHOD> expandMethodTemplate(const map<string, METHOD>& methods, const string& templateArg, const vector<string>& instName, const std::vector<string>& expandedClassNamespace, const string& expandedClassName) {
map<string, METHOD> expandMethodTemplate(const map<string, METHOD>& methods,
const string& templateArg, const vector<string>& instName,
const std::vector<string>& expandedClassNamespace,
const string& expandedClassName) {
map<string, METHOD> result;
typedef pair<const string, METHOD> Name_Method;
BOOST_FOREACH(const Name_Method& name_method, methods) {
const METHOD& method = name_method.second;
METHOD instMethod = method;
instMethod.argLists = expandArgumentListsTemplate(method.argLists, templateArg, instName, expandedClassNamespace, expandedClassName);
instMethod.argLists = expandArgumentListsTemplate(method.argLists,
templateArg, instName, expandedClassNamespace, expandedClassName);
instMethod.returnVals.clear();
BOOST_FOREACH(const ReturnValue& retVal, method.returnVals) {
ReturnValue instRetVal = retVal;
if(retVal.type1 == templateArg) {
instRetVal.namespaces1.assign(instName.begin(), instName.end()-1);
if (retVal.type1 == templateArg) {
instRetVal.namespaces1.assign(instName.begin(), instName.end() - 1);
instRetVal.type1 = instName.back();
} else if(retVal.type1 == "This") {
instRetVal.namespaces1.assign(expandedClassNamespace.begin(), expandedClassNamespace.end());
} else if (retVal.type1 == "This") {
instRetVal.namespaces1.assign(expandedClassNamespace.begin(),
expandedClassNamespace.end());
instRetVal.type1 = expandedClassName;
}
if(retVal.type2 == templateArg) {
instRetVal.namespaces2.assign(instName.begin(), instName.end()-1);
if (retVal.type2 == templateArg) {
instRetVal.namespaces2.assign(instName.begin(), instName.end() - 1);
instRetVal.type2 = instName.back();
} else if(retVal.type1 == "This") {
instRetVal.namespaces2.assign(expandedClassNamespace.begin(), expandedClassNamespace.end());
} else if (retVal.type1 == "This") {
instRetVal.namespaces2.assign(expandedClassNamespace.begin(),
expandedClassNamespace.end());
instRetVal.type2 = expandedClassName;
}
instMethod.returnVals.push_back(instRetVal);
@ -276,7 +312,10 @@ map<string, METHOD> expandMethodTemplate(const map<string, METHOD>& methods, con
}
/* ************************************************************************* */
Class expandClassTemplate(const Class& cls, const string& templateArg, const vector<string>& instName, const std::vector<string>& expandedClassNamespace, const string& expandedClassName) {
Class expandClassTemplate(const Class& cls, const string& templateArg,
const vector<string>& instName,
const std::vector<string>& expandedClassNamespace,
const string& expandedClassName) {
Class inst;
inst.name = cls.name;
inst.templateArgs = cls.templateArgs;
@ -284,11 +323,15 @@ Class expandClassTemplate(const Class& cls, const string& templateArg, const vec
inst.isVirtual = cls.isVirtual;
inst.isSerializable = cls.isSerializable;
inst.qualifiedParent = cls.qualifiedParent;
inst.methods = expandMethodTemplate(cls.methods, templateArg, instName, expandedClassNamespace, expandedClassName);
inst.static_methods = expandMethodTemplate(cls.static_methods, templateArg, instName, expandedClassNamespace, expandedClassName);
inst.methods = expandMethodTemplate(cls.methods, templateArg, instName,
expandedClassNamespace, expandedClassName);
inst.static_methods = expandMethodTemplate(cls.static_methods, templateArg,
instName, expandedClassNamespace, expandedClassName);
inst.namespaces = cls.namespaces;
inst.constructor = cls.constructor;
inst.constructor.args_list = expandArgumentListsTemplate(cls.constructor.args_list, templateArg, instName, expandedClassNamespace, expandedClassName);
inst.constructor.args_list = expandArgumentListsTemplate(
cls.constructor.args_list, templateArg, instName, expandedClassNamespace,
expandedClassName);
inst.constructor.name = inst.name;
inst.deconstructor = cls.deconstructor;
inst.deconstructor.name = inst.name;
@ -297,22 +340,29 @@ Class expandClassTemplate(const Class& cls, const string& templateArg, const vec
}
/* ************************************************************************* */
vector<Class> Class::expandTemplate(const string& templateArg, const vector<vector<string> >& instantiations) const {
vector<Class> Class::expandTemplate(const string& templateArg,
const vector<vector<string> >& instantiations) const {
vector<Class> result;
BOOST_FOREACH(const vector<string>& instName, instantiations) {
const string expandedName = name + instName.back();
Class inst = expandClassTemplate(*this, templateArg, instName, this->namespaces, expandedName);
Class inst = expandClassTemplate(*this, templateArg, instName,
this->namespaces, expandedName);
inst.name = expandedName;
inst.templateArgs.clear();
inst.typedefName = qualifiedName("::") + "<" + wrap::qualifiedName("::", instName) + ">";
inst.typedefName = qualifiedName("::") + "<"
+ wrap::qualifiedName("::", instName) + ">";
result.push_back(inst);
}
return result;
}
/* ************************************************************************* */
Class Class::expandTemplate(const string& templateArg, const vector<string>& instantiation, const std::vector<string>& expandedClassNamespace, const string& expandedClassName) const {
return expandClassTemplate(*this, templateArg, instantiation, expandedClassNamespace, expandedClassName);
Class Class::expandTemplate(const string& templateArg,
const vector<string>& instantiation,
const std::vector<string>& expandedClassNamespace,
const string& expandedClassName) const {
return expandClassTemplate(*this, templateArg, instantiation,
expandedClassNamespace, expandedClassName);
}
/* ************************************************************************* */
@ -322,7 +372,7 @@ std::string Class::getTypedef() const {
result += ("namespace " + namesp + " { ");
}
result += ("typedef " + typedefName + " " + name + ";");
for (size_t i = 0; i<namespaces.size(); ++i) {
for (size_t i = 0; i < namespaces.size(); ++i) {
result += " }";
}
return result;
@ -331,25 +381,16 @@ std::string Class::getTypedef() const {
/* ************************************************************************* */
void Class::comment_fragment(FileWriter& proxyFile) const {
proxyFile.oss << "%class " << name
<< ", see Doxygen page for details\n";
proxyFile.oss << "%class " << name << ", see Doxygen page for details\n";
proxyFile.oss
<< "%at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html\n";
if (!constructor.args_list.empty())
proxyFile.oss << "%\n%-------Constructors-------\n";
BOOST_FOREACH(ArgumentList argList, constructor.args_list) {
string up_name = boost::to_upper_copy(name);
proxyFile.oss << "%" << name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList) {
if (i != argList.size() - 1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
proxyFile.oss << ")\n";
proxyFile.oss << "%";
argList.emit_prototype(proxyFile, name);
proxyFile.oss << "\n";
}
if (!methods.empty())
@ -357,17 +398,9 @@ void Class::comment_fragment(FileWriter& proxyFile) const {
BOOST_FOREACH(const Methods::value_type& name_m, methods) {
const Method& m = name_m.second;
BOOST_FOREACH(ArgumentList argList, m.argLists) {
string up_name = boost::to_upper_copy(m.name);
proxyFile.oss << "%" << m.name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList) {
if (i != argList.size() - 1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
proxyFile.oss << ") : returns "
proxyFile.oss << "%";
argList.emit_prototype(proxyFile, m.name);
proxyFile.oss << " : returns "
<< m.returnVals[0].return_type(false, m.returnVals[0].pair) << endl;
}
}
@ -377,18 +410,9 @@ void Class::comment_fragment(FileWriter& proxyFile) const {
BOOST_FOREACH(const StaticMethods::value_type& name_m, static_methods) {
const StaticMethod& m = name_m.second;
BOOST_FOREACH(ArgumentList argList, m.argLists) {
string up_name = boost::to_upper_copy(m.name);
proxyFile.oss << "%" << m.name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList) {
if (i != argList.size() - 1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
proxyFile.oss << ") : returns "
proxyFile.oss << "%";
argList.emit_prototype(proxyFile, m.name);
proxyFile.oss << " : returns "
<< m.returnVals[0].return_type(false, m.returnVals[0].pair) << endl;
}
}
@ -396,15 +420,17 @@ void Class::comment_fragment(FileWriter& proxyFile) const {
if (hasSerialization) {
proxyFile.oss << "%\n%-------Serialization Interface-------\n";
proxyFile.oss << "%string_serialize() : returns string\n";
proxyFile.oss << "%string_deserialize(string serialized) : returns " << this->name << "\n";
proxyFile.oss << "%string_deserialize(string serialized) : returns "
<< this->name << "\n";
}
proxyFile.oss << "%\n";
}
/* ************************************************************************* */
void Class::serialization_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const std::string& wrapperName, std::vector<std::string>& functionNames) const {
void Class::serialization_fragments(FileWriter& proxyFile,
FileWriter& wrapperFile, const std::string& wrapperName,
std::vector<std::string>& functionNames) const {
//void Point3_string_serialize_17(int nargout, mxArray *out[], int nargin, const mxArray *in[])
//{
@ -418,30 +444,34 @@ void Class::serialization_fragments(FileWriter& proxyFile, FileWriter& wrapperFi
//}
int serialize_id = functionNames.size();
const string
matlabQualName = qualifiedName("."),
matlabUniqueName = qualifiedName(),
cppClassName = qualifiedName("::");
const string wrapFunctionNameSerialize = matlabUniqueName + "_string_serialize_" + boost::lexical_cast<string>(serialize_id);
const string matlabQualName = qualifiedName("."), matlabUniqueName =
qualifiedName(), cppClassName = qualifiedName("::");
const string wrapFunctionNameSerialize = matlabUniqueName
+ "_string_serialize_" + boost::lexical_cast<string>(serialize_id);
functionNames.push_back(wrapFunctionNameSerialize);
// call
//void Point3_string_serialize_17(int nargout, mxArray *out[], int nargin, const mxArray *in[])
wrapperFile.oss << "void " << wrapFunctionNameSerialize << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
wrapperFile.oss << "void " << wrapFunctionNameSerialize
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
wrapperFile.oss << "{\n";
wrapperFile.oss << " typedef boost::shared_ptr<" << cppClassName << "> Shared;" << endl;
wrapperFile.oss << " typedef boost::shared_ptr<" << cppClassName
<< "> Shared;" << endl;
// check arguments - for serialize, no arguments
// example: checkArguments("string_serialize",nargout,nargin-1,0);
wrapperFile.oss << " checkArguments(\"string_serialize\",nargout,nargin-1,0);\n";
wrapperFile.oss
<< " checkArguments(\"string_serialize\",nargout,nargin-1,0);\n";
// get class pointer
// example: Shared obj = unwrap_shared_ptr<Point3>(in[0], "ptr_Point3");
wrapperFile.oss << " Shared obj = unwrap_shared_ptr<" << cppClassName << ">(in[0], \"ptr_" << matlabUniqueName << "\");" << endl;
wrapperFile.oss << " Shared obj = unwrap_shared_ptr<" << cppClassName
<< ">(in[0], \"ptr_" << matlabUniqueName << "\");" << endl;
// Serialization boilerplate
wrapperFile.oss << " std::ostringstream out_archive_stream;\n";
wrapperFile.oss << " boost::archive::text_oarchive out_archive(out_archive_stream);\n";
wrapperFile.oss
<< " boost::archive::text_oarchive out_archive(out_archive_stream);\n";
wrapperFile.oss << " out_archive << *obj;\n";
wrapperFile.oss << " out[0] = wrap< string >(out_archive_stream.str());\n";
@ -459,13 +489,19 @@ void Class::serialization_fragments(FileWriter& proxyFile, FileWriter& wrapperFi
// end
// end
proxyFile.oss << " function varargout = string_serialize(this, varargin)\n";
proxyFile.oss << " % STRING_SERIALIZE usage: string_serialize() : returns string\n";
proxyFile.oss << " % Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html\n";
proxyFile.oss
<< " function varargout = string_serialize(this, varargin)\n";
proxyFile.oss
<< " % STRING_SERIALIZE usage: string_serialize() : returns string\n";
proxyFile.oss
<< " % Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html\n";
proxyFile.oss << " if length(varargin) == 0\n";
proxyFile.oss << " varargout{1} = " << wrapperName << "(" << boost::lexical_cast<string>(serialize_id) << ", this, varargin{:});\n";
proxyFile.oss << " varargout{1} = " << wrapperName << "("
<< boost::lexical_cast<string>(serialize_id) << ", this, varargin{:});\n";
proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of function " << matlabQualName << ".string_serialize');\n";
proxyFile.oss
<< " error('Arguments do not match any overload of function "
<< matlabQualName << ".string_serialize');\n";
proxyFile.oss << " end\n";
proxyFile.oss << " end\n\n";
@ -476,14 +512,16 @@ void Class::serialization_fragments(FileWriter& proxyFile, FileWriter& wrapperFi
// end
proxyFile.oss << " function sobj = saveobj(obj)\n";
proxyFile.oss << " % SAVEOBJ Saves the object to a matlab-readable format\n";
proxyFile.oss
<< " % SAVEOBJ Saves the object to a matlab-readable format\n";
proxyFile.oss << " sobj = obj.string_serialize();\n";
proxyFile.oss << " end\n";
}
/* ************************************************************************* */
void Class::deserialization_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const std::string& wrapperName, std::vector<std::string>& functionNames) const {
void Class::deserialization_fragments(FileWriter& proxyFile,
FileWriter& wrapperFile, const std::string& wrapperName,
std::vector<std::string>& functionNames) const {
//void Point3_string_deserialize_18(int nargout, mxArray *out[], int nargin, const mxArray *in[])
//{
// typedef boost::shared_ptr<Point3> Shared;
@ -495,32 +533,36 @@ void Class::deserialization_fragments(FileWriter& proxyFile, FileWriter& wrapper
// in_archive >> *output;
// out[0] = wrap_shared_ptr(output,"Point3", false);
//}
int deserialize_id = functionNames.size();
const string
matlabQualName = qualifiedName("."),
matlabUniqueName = qualifiedName(),
cppClassName = qualifiedName("::");
const string wrapFunctionNameDeserialize = matlabUniqueName + "_string_deserialize_" + boost::lexical_cast<string>(deserialize_id);
functionNames.push_back(wrapFunctionNameDeserialize);
int deserialize_id = functionNames.size();
const string matlabQualName = qualifiedName("."), matlabUniqueName =
qualifiedName(), cppClassName = qualifiedName("::");
const string wrapFunctionNameDeserialize = matlabUniqueName
+ "_string_deserialize_" + boost::lexical_cast<string>(deserialize_id);
functionNames.push_back(wrapFunctionNameDeserialize);
// call
wrapperFile.oss << "void " << wrapFunctionNameDeserialize << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
wrapperFile.oss << "{\n";
wrapperFile.oss << " typedef boost::shared_ptr<" << cppClassName << "> Shared;" << endl;
// call
wrapperFile.oss << "void " << wrapFunctionNameDeserialize
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
wrapperFile.oss << "{\n";
wrapperFile.oss << " typedef boost::shared_ptr<" << cppClassName
<< "> Shared;" << endl;
// check arguments - for deserialize, 1 string argument
wrapperFile.oss << " checkArguments(\"" << matlabUniqueName << ".string_deserialize\",nargout,nargin,1);\n";
// check arguments - for deserialize, 1 string argument
wrapperFile.oss << " checkArguments(\"" << matlabUniqueName
<< ".string_deserialize\",nargout,nargin,1);\n";
// string argument with deserialization boilerplate
wrapperFile.oss << " string serialized = unwrap< string >(in[0]);\n";
wrapperFile.oss << " std::istringstream in_archive_stream(serialized);\n";
wrapperFile.oss << " boost::archive::text_iarchive in_archive(in_archive_stream);\n";
wrapperFile.oss << " Shared output(new " << cppClassName << "());\n";
wrapperFile.oss << " in_archive >> *output;\n";
wrapperFile.oss << " out[0] = wrap_shared_ptr(output,\"" << matlabQualName << "\", false);\n";
wrapperFile.oss << "}\n";
// string argument with deserialization boilerplate
wrapperFile.oss << " string serialized = unwrap< string >(in[0]);\n";
wrapperFile.oss << " std::istringstream in_archive_stream(serialized);\n";
wrapperFile.oss
<< " boost::archive::text_iarchive in_archive(in_archive_stream);\n";
wrapperFile.oss << " Shared output(new " << cppClassName << "());\n";
wrapperFile.oss << " in_archive >> *output;\n";
wrapperFile.oss << " out[0] = wrap_shared_ptr(output,\"" << matlabQualName
<< "\", false);\n";
wrapperFile.oss << "}\n";
// Generate matlab function
// Generate matlab function
// function varargout = string_deserialize(varargin)
// % STRING_DESERIALIZE usage: string_deserialize() : returns Point3
// % Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
@ -531,32 +573,40 @@ void Class::deserialization_fragments(FileWriter& proxyFile, FileWriter& wrapper
// end
// end
proxyFile.oss << " function varargout = string_deserialize(varargin)\n";
proxyFile.oss << " % STRING_DESERIALIZE usage: string_deserialize() : returns " << matlabQualName << "\n";
proxyFile.oss << " % Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html\n";
proxyFile.oss << " if length(varargin) == 1\n";
proxyFile.oss << " varargout{1} = " << wrapperName << "(" << boost::lexical_cast<string>(deserialize_id) << ", varargin{:});\n";
proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of function " << matlabQualName << ".string_deserialize');\n";
proxyFile.oss << " end\n";
proxyFile.oss << " end\n\n";
proxyFile.oss << " function varargout = string_deserialize(varargin)\n";
proxyFile.oss
<< " % STRING_DESERIALIZE usage: string_deserialize() : returns "
<< matlabQualName << "\n";
proxyFile.oss
<< " % Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html\n";
proxyFile.oss << " if length(varargin) == 1\n";
proxyFile.oss << " varargout{1} = " << wrapperName << "("
<< boost::lexical_cast<string>(deserialize_id) << ", varargin{:});\n";
proxyFile.oss << " else\n";
proxyFile.oss
<< " error('Arguments do not match any overload of function "
<< matlabQualName << ".string_deserialize');\n";
proxyFile.oss << " end\n";
proxyFile.oss << " end\n\n";
// Generate matlab load function
// Generate matlab load function
// function obj = loadobj(sobj)
// % LOADOBJ Saves the object to a matlab-readable format
// obj = Point3.string_deserialize(sobj);
// end
proxyFile.oss << " function obj = loadobj(sobj)\n";
proxyFile.oss << " % LOADOBJ Saves the object to a matlab-readable format\n";
proxyFile.oss << " obj = " << matlabQualName << ".string_deserialize(sobj);\n";
proxyFile.oss << " end" << endl;
proxyFile.oss << " function obj = loadobj(sobj)\n";
proxyFile.oss
<< " % LOADOBJ Saves the object to a matlab-readable format\n";
proxyFile.oss << " obj = " << matlabQualName
<< ".string_deserialize(sobj);\n";
proxyFile.oss << " end" << endl;
}
/* ************************************************************************* */
std::string Class::getSerializationExport() const {
//BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsamSharedDiagonal");
return "BOOST_CLASS_EXPORT_GUID(" + qualifiedName("::") + ", \"" + qualifiedName() + "\");";
return "BOOST_CLASS_EXPORT_GUID(" + qualifiedName("::") + ", \""
+ qualifiedName() + "\");";
}
/* ************************************************************************* */

View File

@ -27,7 +27,6 @@
#include "Method.h"
#include "StaticMethod.h"
#include "TypeAttributesTable.h"
#include <boost/algorithm/string.hpp>
namespace wrap {

View File

@ -18,11 +18,11 @@
#pragma once
#include "Argument.h"
#include <string>
#include <vector>
#include "Argument.h"
namespace wrap {
// Constructor class
@ -34,7 +34,7 @@ struct Constructor {
}
// Then the instance variables are set directly by the Module constructor
std::vector<ArgumentList> args_list;
std::vector<ArgumentList> args_list;
std::string name;
bool verbose_;
@ -50,21 +50,18 @@ struct Constructor {
* if nargin == 2, obj.self = new_Pose3_RP(varargin{1},varargin{2}); end
*/
void proxy_fragment(FileWriter& file, const std::string& wrapperName,
bool hasParent, const int id, const ArgumentList args) const;
bool hasParent, const int id, const ArgumentList args) const;
/// cpp wrapper
std::string wrapper_fragment(FileWriter& file,
const std::string& cppClassName,
const std::string& matlabUniqueName,
const std::string& cppBaseClassName,
int id,
const ArgumentList& al) const;
const std::string& cppClassName, const std::string& matlabUniqueName,
const std::string& cppBaseClassName, int id,
const ArgumentList& al) const;
/// constructor function
void generate_construct(FileWriter& file, const std::string& cppClassName,
std::vector<ArgumentList>& args_list) const;
std::vector<ArgumentList>& args_list) const;
};
} // \namespace wrap

View File

@ -28,7 +28,7 @@ void FileWriter::emit(bool add_header, bool force_overwrite) const {
bool file_exists = true;
try {
existing_contents = file_contents(filename_.c_str(), add_header);
} catch (CantOpenFile& e) {
} catch (CantOpenFile) {
file_exists = false;
}

View File

@ -17,7 +17,8 @@ using namespace std;
/* ************************************************************************* */
void GlobalFunction::addOverload(bool verbose, const std::string& name,
const ArgumentList& args, const ReturnValue& retVal, const StrVec& ns_stack) {
const ArgumentList& args, const ReturnValue& retVal,
const StrVec& ns_stack) {
this->verbose_ = verbose;
this->name = name;
this->argLists.push_back(args);
@ -26,16 +27,16 @@ void GlobalFunction::addOverload(bool verbose, const std::string& name,
}
/* ************************************************************************* */
void GlobalFunction::matlab_proxy(const std::string& toolboxPath, const std::string& wrapperName,
const TypeAttributesTable& typeAttributes, FileWriter& wrapperFile,
std::vector<std::string>& functionNames) const {
void GlobalFunction::matlab_proxy(const std::string& toolboxPath,
const std::string& wrapperName, const TypeAttributesTable& typeAttributes,
FileWriter& file, std::vector<std::string>& functionNames) const {
// cluster overloads with same namespace
// create new GlobalFunction structures around namespaces - same namespaces and names are overloads
// map of namespace to global function
typedef map<string, GlobalFunction> GlobalFunctionMap;
GlobalFunctionMap grouped_functions;
for (size_t i=0; i<namespaces.size(); ++i) {
for (size_t i = 0; i < namespaces.size(); ++i) {
StrVec ns = namespaces.at(i);
string str_ns = qualifiedName("", ns, "");
ReturnValue ret = returnVals.at(i);
@ -51,16 +52,17 @@ void GlobalFunction::matlab_proxy(const std::string& toolboxPath, const std::str
size_t lastcheck = grouped_functions.size();
BOOST_FOREACH(const GlobalFunctionMap::value_type& p, grouped_functions) {
p.second.generateSingleFunction(toolboxPath, wrapperName, typeAttributes, wrapperFile, functionNames);
p.second.generateSingleFunction(toolboxPath, wrapperName, typeAttributes,
file, functionNames);
if (--lastcheck != 0)
wrapperFile.oss << endl;
file.oss << endl;
}
}
/* ************************************************************************* */
void GlobalFunction::generateSingleFunction(const std::string& toolboxPath, const std::string& wrapperName,
const TypeAttributesTable& typeAttributes, FileWriter& wrapperFile,
std::vector<std::string>& functionNames) const {
void GlobalFunction::generateSingleFunction(const std::string& toolboxPath,
const std::string& wrapperName, const TypeAttributesTable& typeAttributes,
FileWriter& file, std::vector<std::string>& functionNames) const {
// create the folder for the namespace
const StrVec& ns = namespaces.front();
@ -68,84 +70,68 @@ void GlobalFunction::generateSingleFunction(const std::string& toolboxPath, cons
// open destination mfunctionFileName
string mfunctionFileName = toolboxPath;
if(!ns.empty())
if (!ns.empty())
mfunctionFileName += "/+" + wrap::qualifiedName("/+", ns);
mfunctionFileName += "/" + name + ".m";
FileWriter mfunctionFile(mfunctionFileName, verbose_, "%");
// get the name of actual matlab object
const string
matlabQualName = qualifiedName(".", ns, name),
matlabUniqueName = qualifiedName("", ns, name),
cppName = qualifiedName("::", ns, name);
const string matlabQualName = qualifiedName(".", ns, name), matlabUniqueName =
qualifiedName("", ns, name), cppName = qualifiedName("::", ns, name);
mfunctionFile.oss << "function varargout = " << name << "(varargin)\n";
for(size_t overload = 0; overload < argLists.size(); ++overload) {
for (size_t overload = 0; overload < argLists.size(); ++overload) {
const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload];
size_t nrArgs = args.size();
const int id = functionNames.size();
// Output proxy matlab code
// check for number of arguments...
mfunctionFile.oss << (overload==0?"":"else") << "if length(varargin) == " << nrArgs;
if (nrArgs>0) mfunctionFile.oss << " && ";
// ...and their types
bool first = true;
for(size_t i=0;i<nrArgs;i++) {
if (!first) mfunctionFile.oss << " && ";
mfunctionFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass(".") << "')";
first=false;
}
mfunctionFile.oss << "\n";
// output call to C++ wrapper
string output;
if(returnVal.isPair)
output = "[ varargout{1} varargout{2} ] = ";
else if(returnVal.category1 == ReturnValue::VOID)
output = "";
else
output = "varargout{1} = ";
mfunctionFile.oss << " " << output << wrapperName << "(" << id << ", varargin{:});\n";
mfunctionFile.oss << " " << (overload == 0 ? "" : "else");
argLists[overload].emit_conditional_call(mfunctionFile,
returnVals[overload], wrapperName, id, true); // true omits "this"
// Output C++ wrapper code
const string wrapFunctionName = matlabUniqueName + "_" + boost::lexical_cast<string>(id);
const string wrapFunctionName = matlabUniqueName + "_"
+ boost::lexical_cast<string>(id);
// call
wrapperFile.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
file.oss << "void " << wrapFunctionName
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
// start
wrapperFile.oss << "{\n";
file.oss << "{\n";
returnVal.wrapTypeUnwrap(wrapperFile);
returnVal.wrapTypeUnwrap(file);
// check arguments
// NOTE: for static functions, there is no object passed
wrapperFile.oss << " checkArguments(\"" << matlabUniqueName << "\",nargout,nargin," << args.size() << ");\n";
file.oss << " checkArguments(\"" << matlabUniqueName
<< "\",nargout,nargin," << args.size() << ");\n";
// unwrap arguments, see Argument.cpp
args.matlab_unwrap(wrapperFile,0); // We start at 0 because there is no self object
args.matlab_unwrap(file, 0); // We start at 0 because there is no self object
// call method with default type and wrap result
if (returnVal.type1!="void")
returnVal.wrap_result(cppName+"("+args.names()+")", wrapperFile, typeAttributes);
if (returnVal.type1 != "void")
returnVal.wrap_result(cppName + "(" + args.names() + ")", file,
typeAttributes);
else
wrapperFile.oss << cppName+"("+args.names()+");\n";
file.oss << cppName + "(" + args.names() + ");\n";
// finish
wrapperFile.oss << "}\n";
file.oss << "}\n";
// Add to function list
functionNames.push_back(wrapFunctionName);
}
mfunctionFile.oss << "else\n";
mfunctionFile.oss << " error('Arguments do not match any overload of function " << matlabQualName << "');" << endl;
mfunctionFile.oss << "end" << endl;
mfunctionFile.oss << " else\n";
mfunctionFile.oss
<< " error('Arguments do not match any overload of function "
<< matlabQualName << "');" << endl;
mfunctionFile.oss << " end" << endl;
// Close file
mfunctionFile.emit(true);
@ -153,9 +139,5 @@ void GlobalFunction::generateSingleFunction(const std::string& toolboxPath, cons
/* ************************************************************************* */
} // \namespace wrap

View File

@ -22,37 +22,38 @@ struct GlobalFunction {
std::string name;
// each overload, regardless of namespace
std::vector<ArgumentList> argLists; ///< arugments for each overload
std::vector<ReturnValue> returnVals; ///< returnVals for each overload
std::vector<StrVec> namespaces; ///< Stack of namespaces
std::vector<ArgumentList> argLists; ///< arugments for each overload
std::vector<ReturnValue> returnVals; ///< returnVals for each overload
std::vector<StrVec> namespaces; ///< Stack of namespaces
// Constructor only used in Module
GlobalFunction(bool verbose = true) : verbose_(verbose) {}
GlobalFunction(bool verbose = true) :
verbose_(verbose) {
}
// Used to reconstruct
GlobalFunction(const std::string& name_, bool verbose = true)
: verbose_(verbose), name(name_) {}
GlobalFunction(const std::string& name_, bool verbose = true) :
verbose_(verbose), name(name_) {
}
// adds an overloaded version of this function
void addOverload(bool verbose, const std::string& name,
const ArgumentList& args, const ReturnValue& retVal, const StrVec& ns_stack);
const ArgumentList& args, const ReturnValue& retVal,
const StrVec& ns_stack);
// codegen function called from Module to build the cpp and matlab versions of the function
void matlab_proxy(const std::string& toolboxPath, const std::string& wrapperName,
const TypeAttributesTable& typeAttributes, FileWriter& wrapperFile,
std::vector<std::string>& functionNames) const;
void matlab_proxy(const std::string& toolboxPath,
const std::string& wrapperName, const TypeAttributesTable& typeAttributes,
FileWriter& file, std::vector<std::string>& functionNames) const;
private:
// Creates a single global function - all in same namespace
void generateSingleFunction(const std::string& toolboxPath, const std::string& wrapperName,
const TypeAttributesTable& typeAttributes, FileWriter& wrapperFile,
std::vector<std::string>& functionNames) const;
void generateSingleFunction(const std::string& toolboxPath,
const std::string& wrapperName, const TypeAttributesTable& typeAttributes,
FileWriter& file, std::vector<std::string>& functionNames) const;
};
} // \namespace wrap

View File

@ -15,14 +15,15 @@
* @author Richard Roberts
**/
#include <iostream>
#include <fstream>
#include "Method.h"
#include "utilities.h"
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include "Method.h"
#include "utilities.h"
#include <iostream>
#include <fstream>
using namespace std;
using namespace wrap;
@ -38,155 +39,140 @@ void Method::addOverload(bool verbose, bool is_const, const std::string& name,
}
/* ************************************************************************* */
void Method::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const string& cppClassName,
const std::string& matlabQualName,
const std::string& matlabUniqueName,
const string& wrapperName,
const TypeAttributesTable& typeAttributes,
vector<string>& functionNames) const {
void Method::proxy_wrapper_fragments(FileWriter& file, FileWriter& wrapperFile,
const string& cppClassName, const std::string& matlabQualName,
const std::string& matlabUniqueName, const string& wrapperName,
const TypeAttributesTable& typeAttributes,
vector<string>& functionNames) const {
proxyFile.oss << " function varargout = " << name << "(this, varargin)\n";
//Comments for documentation
string up_name = boost::to_upper_copy(name);
proxyFile.oss << " % " << up_name << " usage:";
// Create function header
file.oss << " function varargout = " << name << "(this, varargin)\n";
// Emit comments for documentation
string up_name = boost::to_upper_copy(name);
file.oss << " % " << up_name << " usage: ";
unsigned int argLCount = 0;
BOOST_FOREACH(ArgumentList argList, argLists)
{
proxyFile.oss << " " << name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList)
{
if(i != argList.size()-1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
if(argLCount != argLists.size()-1)
proxyFile.oss << "), ";
else
proxyFile.oss << ") : returns " << returnVals[0].return_type(false, returnVals[0].pair) << endl;
argLCount++;
}
proxyFile.oss << " % " << "Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html" << endl;
proxyFile.oss << " % " << "" << endl;
proxyFile.oss << " % " << "Method Overloads" << endl;
BOOST_FOREACH(ArgumentList argList, argLists)
{
proxyFile.oss << " % " << name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList)
{
if(i != argList.size()-1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
proxyFile.oss << ")" << endl;
}
for(size_t overload = 0; overload < argLists.size(); ++overload) {
const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload];
size_t nrArgs = args.size();
const int id = functionNames.size();
// Output proxy matlab code
// check for number of arguments...
proxyFile.oss << " " << (overload==0?"":"else") << "if length(varargin) == " << nrArgs;
if (nrArgs>0) proxyFile.oss << " && ";
// ...and their types
bool first = true;
for(size_t i=0;i<nrArgs;i++) {
if (!first) proxyFile.oss << " && ";
proxyFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass(".") << "')";
first=false;
}
proxyFile.oss << "\n";
// output call to C++ wrapper
string output;
if(returnVal.isPair)
output = "[ varargout{1} varargout{2} ] = ";
else if(returnVal.category1 == ReturnValue::VOID)
output = "";
BOOST_FOREACH(ArgumentList argList, argLists) {
argList.emit_prototype(file, name);
if (argLCount != argLists.size() - 1)
file.oss << ", ";
else
output = "varargout{1} = ";
proxyFile.oss << " " << output << wrapperName << "(" << id << ", this, varargin{:});\n";
file.oss << " : returns "
<< returnVals[0].return_type(false, returnVals[0].pair) << endl;
argLCount++;
}
// Emit URL to Doxygen page
file.oss << " % "
<< "Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html"
<< endl;
// Document all overloads, if any
if (argLists.size() > 1) {
file.oss << " % " << "" << endl;
file.oss << " % " << "Method Overloads" << endl;
BOOST_FOREACH(ArgumentList argList, argLists) {
file.oss << " % ";
argList.emit_prototype(file, name);
file.oss << endl;
}
}
// Handle special case of single overload with all numeric arguments
if (argLists.size() == 1 && argLists[0].allScalar()) {
// Output proxy matlab code
file.oss << " ";
const int id = (int) functionNames.size();
argLists[0].emit_call(file, returnVals[0], wrapperName, id);
// Output C++ wrapper code
const string wrapFunctionName = wrapper_fragment(
wrapperFile, cppClassName, matlabUniqueName, overload, id, typeAttributes);
const string wrapFunctionName = wrapper_fragment(wrapperFile, cppClassName,
matlabUniqueName, 0, id, typeAttributes);
// Add to function list
functionNames.push_back(wrapFunctionName);
} else {
// Check arguments for all overloads
for (size_t overload = 0; overload < argLists.size(); ++overload) {
// Output proxy matlab code
file.oss << " " << (overload == 0 ? "" : "else");
const int id = (int) functionNames.size();
argLists[overload].emit_conditional_call(file, returnVals[overload],
wrapperName, id);
// Output C++ wrapper code
const string wrapFunctionName = wrapper_fragment(wrapperFile,
cppClassName, matlabUniqueName, overload, id, typeAttributes);
// Add to function list
functionNames.push_back(wrapFunctionName);
}
file.oss << " else\n";
file.oss
<< " error('Arguments do not match any overload of function "
<< matlabQualName << "." << name << "');" << endl;
file.oss << " end\n";
}
proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of function " <<
matlabQualName << "." << name << "');" << endl;
proxyFile.oss << " end\n";
proxyFile.oss << " end\n";
file.oss << " end\n";
}
/* ************************************************************************* */
string Method::wrapper_fragment(FileWriter& file,
const string& cppClassName,
const string& matlabUniqueName,
int overload,
int id,
const TypeAttributesTable& typeAttributes) const {
string Method::wrapper_fragment(FileWriter& file, const string& cppClassName,
const string& matlabUniqueName, int overload, int id,
const TypeAttributesTable& typeAttributes) const {
// generate code
const string wrapFunctionName = matlabUniqueName + "_" + name + "_" + boost::lexical_cast<string>(id);
const string wrapFunctionName = matlabUniqueName + "_" + name + "_"
+ boost::lexical_cast<string>(id);
const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload];
// call
file.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
file.oss << "void " << wrapFunctionName
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
// start
file.oss << "{\n";
if(returnVal.isPair)
{
if(returnVal.category1 == ReturnValue::CLASS)
file.oss << " typedef boost::shared_ptr<" << returnVal.qualifiedType1("::") << "> Shared" << returnVal.type1 << ";"<< endl;
if(returnVal.category2 == ReturnValue::CLASS)
file.oss << " typedef boost::shared_ptr<" << returnVal.qualifiedType2("::") << "> Shared" << returnVal.type2 << ";"<< endl;
}
else
if(returnVal.category1 == ReturnValue::CLASS)
file.oss << " typedef boost::shared_ptr<" << returnVal.qualifiedType1("::") << "> Shared" << returnVal.type1 << ";"<< endl;
if (returnVal.isPair) {
if (returnVal.category1 == ReturnValue::CLASS)
file.oss << " typedef boost::shared_ptr<"
<< returnVal.qualifiedType1("::") << "> Shared" << returnVal.type1
<< ";" << endl;
if (returnVal.category2 == ReturnValue::CLASS)
file.oss << " typedef boost::shared_ptr<"
<< returnVal.qualifiedType2("::") << "> Shared" << returnVal.type2
<< ";" << endl;
} else if (returnVal.category1 == ReturnValue::CLASS)
file.oss << " typedef boost::shared_ptr<" << returnVal.qualifiedType1("::")
<< "> Shared" << returnVal.type1 << ";" << endl;
file.oss << " typedef boost::shared_ptr<" << cppClassName << "> Shared;" << endl;
file.oss << " typedef boost::shared_ptr<" << cppClassName << "> Shared;"
<< endl;
// check arguments
// extra argument obj -> nargin-1 is passed !
// example: checkArguments("equals",nargout,nargin-1,2);
file.oss << " checkArguments(\"" << name << "\",nargout,nargin-1," << args.size() << ");\n";
file.oss << " checkArguments(\"" << name << "\",nargout,nargin-1,"
<< args.size() << ");\n";
// get class pointer
// example: shared_ptr<Test> = unwrap_shared_ptr< Test >(in[0], "Test");
file.oss << " Shared obj = unwrap_shared_ptr<" << cppClassName << ">(in[0], \"ptr_" << matlabUniqueName << "\");" << endl;
file.oss << " Shared obj = unwrap_shared_ptr<" << cppClassName
<< ">(in[0], \"ptr_" << matlabUniqueName << "\");" << endl;
// unwrap arguments, see Argument.cpp
args.matlab_unwrap(file,1);
args.matlab_unwrap(file, 1);
// call method and wrap result
// example: out[0]=wrap<bool>(self->return_field(t));
if (returnVal.type1!="void")
returnVal.wrap_result("obj->"+name+"("+args.names()+")", file, typeAttributes);
if (returnVal.type1 != "void")
returnVal.wrap_result("obj->" + name + "(" + args.names() + ")", file,
typeAttributes);
else
file.oss << " obj->"+name+"("+args.names()+");\n";
file.oss << " obj->" + name + "(" + args.names() + ");\n";
// finish
file.oss << "}\n";

View File

@ -18,13 +18,12 @@
#pragma once
#include <string>
#include <list>
#include "Argument.h"
#include "ReturnValue.h"
#include "TypeAttributesTable.h"
#include <boost/algorithm/string.hpp>
#include <string>
#include <list>
namespace wrap {

View File

@ -98,7 +98,7 @@ void Module::parseMarkup(const std::string& data) {
// The one with postfix 0 are used to reset the variables after parse.
string methodName, methodName0;
bool isConst, isConst0 = false;
ReturnValue retVal0(verbose), retVal(verbose);
ReturnValue retVal0, retVal;
Argument arg0, arg;
ArgumentList args0, args;
vector<string> arg_dup; ///keep track of duplicates

View File

@ -141,5 +141,13 @@ void ReturnValue::wrapTypeUnwrap(FileWriter& wrapperFile) const {
}
}
/* ************************************************************************* */
void ReturnValue::emit_matlab(FileWriter& file) const {
string output;
if (isPair)
file.oss << "[ varargout{1} varargout{2} ] = ";
else if (category1 != ReturnValue::VOID)
file.oss << "varargout{1} = ";
}
/* ************************************************************************* */

View File

@ -8,36 +8,36 @@
* @author Richard Roberts
*/
#include <vector>
#include <map>
#include "FileWriter.h"
#include "TypeAttributesTable.h"
#include <vector>
#pragma once
namespace wrap {
/**
* Encapsulates return value of a method or function
*/
struct ReturnValue {
/// the different supported return value categories
typedef enum {
CLASS = 1,
EIGEN = 2,
BASIS = 3,
VOID = 4
CLASS = 1, EIGEN = 2, BASIS = 3, VOID = 4
} return_category;
ReturnValue(bool enable_verbosity = true)
: verbose(enable_verbosity), isPtr1(false), isPtr2(false),
isPair(false), category1(CLASS), category2(CLASS)
{}
bool verbose;
bool isPtr1, isPtr2, isPair;
return_category category1, category2;
std::string type1, type2;
std::vector<std::string> namespaces1, namespaces2;
/// Constructor
ReturnValue() :
isPtr1(false), isPtr2(false), isPair(false), category1(CLASS), category2(
CLASS) {
}
typedef enum {
arg1, arg2, pair
} pairing;
@ -49,10 +49,12 @@ struct ReturnValue {
std::string matlab_returnType() const;
void wrap_result(const std::string& result, FileWriter& file, const TypeAttributesTable& typeAttributes) const;
void wrap_result(const std::string& result, FileWriter& file,
const TypeAttributesTable& typeAttributes) const;
void wrapTypeUnwrap(FileWriter& wrapperFile) const;
void emit_matlab(FileWriter& file) const;
};
} // \namespace wrap

View File

@ -16,19 +16,19 @@
* @author Richard Roberts
**/
#include <iostream>
#include <fstream>
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include "StaticMethod.h"
#include "utilities.h"
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <iostream>
#include <fstream>
using namespace std;
using namespace wrap;
/* ************************************************************************* */
void StaticMethod::addOverload(bool verbose, const std::string& name,
const ArgumentList& args, const ReturnValue& retVal) {
@ -39,144 +39,103 @@ void StaticMethod::addOverload(bool verbose, const std::string& name,
}
/* ************************************************************************* */
void StaticMethod::proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const string& cppClassName,
const std::string& matlabQualName,
const std::string& matlabUniqueName,
const string& wrapperName,
const TypeAttributesTable& typeAttributes,
vector<string>& functionNames) const {
void StaticMethod::proxy_wrapper_fragments(FileWriter& file,
FileWriter& wrapperFile, const string& cppClassName,
const std::string& matlabQualName, const std::string& matlabUniqueName,
const string& wrapperName, const TypeAttributesTable& typeAttributes,
vector<string>& functionNames) const {
string upperName = name; upperName[0] = std::toupper(upperName[0], std::locale());
string upperName = name;
upperName[0] = std::toupper(upperName[0], std::locale());
proxyFile.oss << " function varargout = " << upperName << "(varargin)\n";
file.oss << " function varargout = " << upperName << "(varargin)\n";
//Comments for documentation
string up_name = boost::to_upper_copy(name);
proxyFile.oss << " % " << up_name << " usage:";
string up_name = boost::to_upper_copy(name);
file.oss << " % " << up_name << " usage: ";
unsigned int argLCount = 0;
BOOST_FOREACH(ArgumentList argList, argLists)
{
proxyFile.oss << " " << name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList)
{
if(i != argList.size()-1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
if(argLCount != argLists.size()-1)
proxyFile.oss << "), ";
else
proxyFile.oss << ") : returns " << returnVals[0].return_type(false, returnVals[0].pair) << endl;
argLCount++;
}
BOOST_FOREACH(ArgumentList argList, argLists) {
argList.emit_prototype(file, name);
if (argLCount != argLists.size() - 1)
file.oss << ", ";
else
file.oss << " : returns "
<< returnVals[0].return_type(false, returnVals[0].pair) << endl;
argLCount++;
}
proxyFile.oss << " % " << "Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html" << endl;
proxyFile.oss << " % " << "" << endl;
proxyFile.oss << " % " << "Usage" << endl;
BOOST_FOREACH(ArgumentList argList, argLists)
{
proxyFile.oss << " % " << up_name << "(";
unsigned int i = 0;
BOOST_FOREACH(const Argument& arg, argList)
{
if(i != argList.size()-1)
proxyFile.oss << arg.type << " " << arg.name << ", ";
else
proxyFile.oss << arg.type << " " << arg.name;
i++;
}
proxyFile.oss << ")" << endl;
}
file.oss << " % "
<< "Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html"
<< endl;
file.oss << " % " << "" << endl;
file.oss << " % " << "Usage" << endl;
BOOST_FOREACH(ArgumentList argList, argLists) {
file.oss << " % ";
argList.emit_prototype(file, up_name);
file.oss << endl;
}
for(size_t overload = 0; overload < argLists.size(); ++overload) {
const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload];
size_t nrArgs = args.size();
const int id = (int)functionNames.size();
// Check arguments for all overloads
for (size_t overload = 0; overload < argLists.size(); ++overload) {
// Output proxy matlab code
// check for number of arguments...
proxyFile.oss << " " << (overload==0?"":"else") << "if length(varargin) == " << nrArgs;
if (nrArgs>0) proxyFile.oss << " && ";
// ...and their types
bool first = true;
for(size_t i=0;i<nrArgs;i++) {
if (!first) proxyFile.oss << " && ";
proxyFile.oss << "isa(varargin{" << i+1 << "},'" << args[i].matlabClass(".") << "')";
first=false;
}
proxyFile.oss << "\n";
// output call to C++ wrapper
string output;
if(returnVal.isPair)
output = "[ varargout{1} varargout{2} ] = ";
else if(returnVal.category1 == ReturnValue::VOID)
output = "";
else
output = "varargout{1} = ";
proxyFile.oss << " " << output << wrapperName << "(" << id << ", varargin{:});\n";
file.oss << " " << (overload == 0 ? "" : "else");
const int id = (int) functionNames.size();
argLists[overload].emit_conditional_call(file, returnVals[overload],
wrapperName, id, true); // last bool is to indicate static !
// Output C++ wrapper code
const string wrapFunctionName = wrapper_fragment(
wrapperFile, cppClassName, matlabUniqueName, (int)overload, id, typeAttributes);
const string wrapFunctionName = wrapper_fragment(wrapperFile, cppClassName,
matlabUniqueName, (int) overload, id, typeAttributes);
// Add to function list
functionNames.push_back(wrapFunctionName);
}
file.oss << " else\n";
file.oss << " error('Arguments do not match any overload of function "
<< matlabQualName << "." << upperName << "');" << endl;
file.oss << " end\n";
proxyFile.oss << " else\n";
proxyFile.oss << " error('Arguments do not match any overload of function " <<
matlabQualName << "." << upperName << "');" << endl;
proxyFile.oss << " end\n";
proxyFile.oss << " end\n";
file.oss << " end\n";
}
/* ************************************************************************* */
string StaticMethod::wrapper_fragment(FileWriter& file,
const string& cppClassName,
const string& matlabUniqueName,
int overload,
int id,
const TypeAttributesTable& typeAttributes) const {
const string& cppClassName, const string& matlabUniqueName, int overload,
int id, const TypeAttributesTable& typeAttributes) const {
// generate code
const string wrapFunctionName = matlabUniqueName + "_" + name + "_" + boost::lexical_cast<string>(id);
const string wrapFunctionName = matlabUniqueName + "_" + name + "_"
+ boost::lexical_cast<string>(id);
const ArgumentList& args = argLists[overload];
const ReturnValue& returnVal = returnVals[overload];
// call
file.oss << "void " << wrapFunctionName << "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
file.oss << "void " << wrapFunctionName
<< "(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
// start
file.oss << "{\n";
returnVal.wrapTypeUnwrap(file);
file.oss << " typedef boost::shared_ptr<" << cppClassName << "> Shared;" << endl;
file.oss << " typedef boost::shared_ptr<" << cppClassName << "> Shared;"
<< endl;
// check arguments
// NOTE: for static functions, there is no object passed
file.oss << " checkArguments(\"" << matlabUniqueName << "." << name << "\",nargout,nargin," << args.size() << ");\n";
file.oss << " checkArguments(\"" << matlabUniqueName << "." << name
<< "\",nargout,nargin," << args.size() << ");\n";
// unwrap arguments, see Argument.cpp
args.matlab_unwrap(file,0); // We start at 0 because there is no self object
args.matlab_unwrap(file, 0); // We start at 0 because there is no self object
// call method with default type and wrap result
if (returnVal.type1!="void")
returnVal.wrap_result(cppClassName+"::"+name+"("+args.names()+")", file, typeAttributes);
if (returnVal.type1 != "void")
returnVal.wrap_result(cppClassName + "::" + name + "(" + args.names() + ")",
file, typeAttributes);
else
file.oss << cppClassName+"::"+name+"("+args.names()+");\n";
file.oss << cppClassName + "::" + name + "(" + args.names() + ");\n";
// finish
file.oss << "}\n";

View File

@ -19,13 +19,9 @@
#pragma once
#include <string>
#include <list>
#include "Argument.h"
#include "ReturnValue.h"
#include "TypeAttributesTable.h"
#include <boost/algorithm/string.hpp>
namespace wrap {
@ -34,7 +30,8 @@ struct StaticMethod {
/// Constructor creates empty object
StaticMethod(bool verbosity = true) :
verbose(verbosity) {}
verbose(verbosity) {
}
// Then the instance variables are set directly by the Module constructor
bool verbose;
@ -46,22 +43,20 @@ struct StaticMethod {
// with those in rhs, but in subsequent calls it adds additional argument
// lists as function overloads.
void addOverload(bool verbose, const std::string& name,
const ArgumentList& args, const ReturnValue& retVal);
const ArgumentList& args, const ReturnValue& retVal);
// MATLAB code generation
// classPath is class directory, e.g., ../matlab/@Point2
void proxy_wrapper_fragments(FileWriter& proxyFile, FileWriter& wrapperFile,
const std::string& cppClassName, const std::string& matlabQualName, const std::string& matlabUniqueName,
const std::string& wrapperName, const TypeAttributesTable& typeAttributes,
std::vector<std::string>& functionNames) const;
const std::string& cppClassName, const std::string& matlabQualName,
const std::string& matlabUniqueName, const std::string& wrapperName,
const TypeAttributesTable& typeAttributes,
std::vector<std::string>& functionNames) const;
private:
std::string wrapper_fragment(FileWriter& file,
const std::string& cppClassName,
const std::string& matlabUniqueName,
int overload,
int id,
const TypeAttributesTable& typeAttributes) const; ///< cpp wrapper
const std::string& cppClassName, const std::string& matlabUniqueName,
int overload, int id, const TypeAttributesTable& typeAttributes) const; ///< cpp wrapper
};
} // \namespace wrap

1
wrap/tests/expected/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.m~

View File

@ -44,92 +44,43 @@ classdef Point2 < handle
function varargout = argChar(this, varargin)
% ARGCHAR usage: argChar(char a) : returns void
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% argChar(char a)
if length(varargin) == 1 && isa(varargin{1},'char')
geometry_wrapper(4, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.argChar');
end
geometry_wrapper(4, this, varargin{:});
end
function varargout = argUChar(this, varargin)
% ARGUCHAR usage: argUChar(unsigned char a) : returns void
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% argUChar(unsigned char a)
if length(varargin) == 1 && isa(varargin{1},'char')
geometry_wrapper(5, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.argUChar');
end
geometry_wrapper(5, this, varargin{:});
end
function varargout = dim(this, varargin)
% DIM usage: dim() : returns int
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% dim()
if length(varargin) == 0
varargout{1} = geometry_wrapper(6, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.dim');
end
varargout{1} = geometry_wrapper(6, this, varargin{:});
end
function varargout = returnChar(this, varargin)
% RETURNCHAR usage: returnChar() : returns char
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% returnChar()
if length(varargin) == 0
varargout{1} = geometry_wrapper(7, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.returnChar');
end
varargout{1} = geometry_wrapper(7, this, varargin{:});
end
function varargout = vectorConfusion(this, varargin)
% VECTORCONFUSION usage: vectorConfusion() : returns VectorNotEigen
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% vectorConfusion()
if length(varargin) == 0
varargout{1} = geometry_wrapper(8, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.vectorConfusion');
end
varargout{1} = geometry_wrapper(8, this, varargin{:});
end
function varargout = x(this, varargin)
% X usage: x() : returns double
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% x()
if length(varargin) == 0
varargout{1} = geometry_wrapper(9, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.x');
end
varargout{1} = geometry_wrapper(9, this, varargin{:});
end
function varargout = y(this, varargin)
% Y usage: y() : returns double
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% y()
if length(varargin) == 0
varargout{1} = geometry_wrapper(10, this, varargin{:});
else
error('Arguments do not match any overload of function Point2.y');
end
varargout{1} = geometry_wrapper(10, this, varargin{:});
end
end

View File

@ -43,14 +43,7 @@ classdef Point3 < handle
function varargout = norm(this, varargin)
% NORM usage: norm() : returns double
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% norm()
if length(varargin) == 0
varargout{1} = geometry_wrapper(14, this, varargin{:});
else
error('Arguments do not match any overload of function Point3.norm');
end
varargout{1} = geometry_wrapper(14, this, varargin{:});
end
function varargout = string_serialize(this, varargin)

View File

@ -56,9 +56,6 @@ classdef Test < handle
function varargout = arg_EigenConstRef(this, varargin)
% ARG_EIGENCONSTREF usage: arg_EigenConstRef(Matrix value) : returns void
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% arg_EigenConstRef(Matrix value)
if length(varargin) == 1 && isa(varargin{1},'double')
geometry_wrapper(23, this, varargin{:});
else
@ -69,61 +66,30 @@ classdef Test < handle
function varargout = create_MixedPtrs(this, varargin)
% CREATE_MIXEDPTRS usage: create_MixedPtrs() : returns pair< Test, SharedTest >
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% create_MixedPtrs()
if length(varargin) == 0
[ varargout{1} varargout{2} ] = geometry_wrapper(24, this, varargin{:});
else
error('Arguments do not match any overload of function Test.create_MixedPtrs');
end
[ varargout{1} varargout{2} ] = geometry_wrapper(24, this, varargin{:});
end
function varargout = create_ptrs(this, varargin)
% CREATE_PTRS usage: create_ptrs() : returns pair< SharedTest, SharedTest >
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% create_ptrs()
if length(varargin) == 0
[ varargout{1} varargout{2} ] = geometry_wrapper(25, this, varargin{:});
else
error('Arguments do not match any overload of function Test.create_ptrs');
end
[ varargout{1} varargout{2} ] = geometry_wrapper(25, this, varargin{:});
end
function varargout = print(this, varargin)
% PRINT usage: print() : returns void
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% print()
if length(varargin) == 0
geometry_wrapper(26, this, varargin{:});
else
error('Arguments do not match any overload of function Test.print');
end
geometry_wrapper(26, this, varargin{:});
end
function varargout = return_Point2Ptr(this, varargin)
% RETURN_POINT2PTR usage: return_Point2Ptr(bool value) : returns Point2
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_Point2Ptr(bool value)
if length(varargin) == 1 && isa(varargin{1},'logical')
varargout{1} = geometry_wrapper(27, this, varargin{:});
else
error('Arguments do not match any overload of function Test.return_Point2Ptr');
end
varargout{1} = geometry_wrapper(27, this, varargin{:});
end
function varargout = return_Test(this, varargin)
% RETURN_TEST usage: return_Test(Test value) : returns Test
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_Test(Test value)
if length(varargin) == 1 && isa(varargin{1},'Test')
varargout{1} = geometry_wrapper(28, this, varargin{:});
else
@ -134,9 +100,6 @@ classdef Test < handle
function varargout = return_TestPtr(this, varargin)
% RETURN_TESTPTR usage: return_TestPtr(Test value) : returns Test
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_TestPtr(Test value)
if length(varargin) == 1 && isa(varargin{1},'Test')
varargout{1} = geometry_wrapper(29, this, varargin{:});
else
@ -147,35 +110,18 @@ classdef Test < handle
function varargout = return_bool(this, varargin)
% RETURN_BOOL usage: return_bool(bool value) : returns bool
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_bool(bool value)
if length(varargin) == 1 && isa(varargin{1},'logical')
varargout{1} = geometry_wrapper(30, this, varargin{:});
else
error('Arguments do not match any overload of function Test.return_bool');
end
varargout{1} = geometry_wrapper(30, this, varargin{:});
end
function varargout = return_double(this, varargin)
% RETURN_DOUBLE usage: return_double(double value) : returns double
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_double(double value)
if length(varargin) == 1 && isa(varargin{1},'double')
varargout{1} = geometry_wrapper(31, this, varargin{:});
else
error('Arguments do not match any overload of function Test.return_double');
end
varargout{1} = geometry_wrapper(31, this, varargin{:});
end
function varargout = return_field(this, varargin)
% RETURN_FIELD usage: return_field(Test t) : returns bool
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_field(Test t)
if length(varargin) == 1 && isa(varargin{1},'Test')
varargout{1} = geometry_wrapper(32, this, varargin{:});
else
@ -186,22 +132,12 @@ classdef Test < handle
function varargout = return_int(this, varargin)
% RETURN_INT usage: return_int(int value) : returns int
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_int(int value)
if length(varargin) == 1 && isa(varargin{1},'numeric')
varargout{1} = geometry_wrapper(33, this, varargin{:});
else
error('Arguments do not match any overload of function Test.return_int');
end
varargout{1} = geometry_wrapper(33, this, varargin{:});
end
function varargout = return_matrix1(this, varargin)
% RETURN_MATRIX1 usage: return_matrix1(Matrix value) : returns Matrix
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_matrix1(Matrix value)
if length(varargin) == 1 && isa(varargin{1},'double')
varargout{1} = geometry_wrapper(34, this, varargin{:});
else
@ -212,9 +148,6 @@ classdef Test < handle
function varargout = return_matrix2(this, varargin)
% RETURN_MATRIX2 usage: return_matrix2(Matrix value) : returns Matrix
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_matrix2(Matrix value)
if length(varargin) == 1 && isa(varargin{1},'double')
varargout{1} = geometry_wrapper(35, this, varargin{:});
else
@ -225,9 +158,6 @@ classdef Test < handle
function varargout = return_pair(this, varargin)
% RETURN_PAIR usage: return_pair(Vector v, Matrix A) : returns pair< Vector, Matrix >
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_pair(Vector v, Matrix A)
if length(varargin) == 2 && isa(varargin{1},'double') && isa(varargin{2},'double')
[ varargout{1} varargout{2} ] = geometry_wrapper(36, this, varargin{:});
else
@ -238,9 +168,6 @@ classdef Test < handle
function varargout = return_ptrs(this, varargin)
% RETURN_PTRS usage: return_ptrs(Test p1, Test p2) : returns pair< SharedTest, SharedTest >
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_ptrs(Test p1, Test p2)
if length(varargin) == 2 && isa(varargin{1},'Test') && isa(varargin{2},'Test')
[ varargout{1} varargout{2} ] = geometry_wrapper(37, this, varargin{:});
else
@ -251,22 +178,12 @@ classdef Test < handle
function varargout = return_size_t(this, varargin)
% RETURN_SIZE_T usage: return_size_t(size_t value) : returns size_t
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_size_t(size_t value)
if length(varargin) == 1 && isa(varargin{1},'numeric')
varargout{1} = geometry_wrapper(38, this, varargin{:});
else
error('Arguments do not match any overload of function Test.return_size_t');
end
varargout{1} = geometry_wrapper(38, this, varargin{:});
end
function varargout = return_string(this, varargin)
% RETURN_STRING usage: return_string(string value) : returns string
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_string(string value)
if length(varargin) == 1 && isa(varargin{1},'char')
varargout{1} = geometry_wrapper(39, this, varargin{:});
else
@ -277,9 +194,6 @@ classdef Test < handle
function varargout = return_vector1(this, varargin)
% RETURN_VECTOR1 usage: return_vector1(Vector value) : returns Vector
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_vector1(Vector value)
if length(varargin) == 1 && isa(varargin{1},'double')
varargout{1} = geometry_wrapper(40, this, varargin{:});
else
@ -290,9 +204,6 @@ classdef Test < handle
function varargout = return_vector2(this, varargin)
% RETURN_VECTOR2 usage: return_vector2(Vector value) : returns Vector
% Doxygen can be found at http://research.cc.gatech.edu/borg/sites/edu.borg/html/index.html
%
% Method Overloads
% return_vector2(Vector value)
if length(varargin) == 1 && isa(varargin{1},'double')
varargout{1} = geometry_wrapper(41, this, varargin{:});
else

View File

@ -1,6 +1,6 @@
function varargout = aGlobalFunction(varargin)
if length(varargin) == 0
varargout{1} = geometry_wrapper(42, varargin{:});
else
error('Arguments do not match any overload of function aGlobalFunction');
end
if length(varargin) == 0
varargout{1} = geometry_wrapper(42, varargin{:});
else
error('Arguments do not match any overload of function aGlobalFunction');
end

View File

@ -502,6 +502,19 @@ void aGlobalFunction_42(int nargout, mxArray *out[], int nargin, const mxArray *
checkArguments("aGlobalFunction",nargout,nargin,0);
out[0] = wrap< Vector >(aGlobalFunction());
}
void overloadedGlobalFunction_43(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("overloadedGlobalFunction",nargout,nargin,1);
int a = unwrap< int >(in[0]);
out[0] = wrap< Vector >(overloadedGlobalFunction(a));
}
void overloadedGlobalFunction_44(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
checkArguments("overloadedGlobalFunction",nargout,nargin,2);
int a = unwrap< int >(in[0]);
double b = unwrap< double >(in[1]);
out[0] = wrap< Vector >(overloadedGlobalFunction(a,b));
}
void mexFunction(int nargout, mxArray *out[], int nargin, const mxArray *in[])
{
@ -643,6 +656,12 @@ void mexFunction(int nargout, mxArray *out[], int nargin, const mxArray *in[])
case 42:
aGlobalFunction_42(nargout, out, nargin-1, in+1);
break;
case 43:
overloadedGlobalFunction_43(nargout, out, nargin-1, in+1);
break;
case 44:
overloadedGlobalFunction_44(nargout, out, nargin-1, in+1);
break;
}
} catch(const std::exception& e) {
mexErrMsgTxt(("Exception from gtsam:\n" + std::string(e.what()) + "\n").c_str());

View File

@ -0,0 +1,8 @@
function varargout = overloadedGlobalFunction(varargin)
if length(varargin) == 1 && isa(varargin{1},'numeric')
varargout{1} = geometry_wrapper(43, varargin{:});
elseif length(varargin) == 2 && isa(varargin{1},'numeric') && isa(varargin{2},'double')
varargout{1} = geometry_wrapper(44, varargin{:});
else
error('Arguments do not match any overload of function overloadedGlobalFunction');
end

Some files were not shown because too many files have changed in this diff Show More