gtsam/gtsam/geometry/tests/testTriangulation.cpp

294 lines
9.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* testTriangulation.cpp
*
* Created on: July 30th, 2013
* Author: cbeall3
*/
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
// Some common constants
static const boost::shared_ptr<Cal3_S2> sharedCal = //
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
// Looking along X-axis, 1 meter above ground plane (x-y)
static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2);
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
// create second camera 1 meter to the right of first camera
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
// landmark ~5 meters infront of camera
static const Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
Point2 z2 = camera2.project(landmark);
//******************************************************************************
TEST( triangulation, twoPoses) {
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose2;
measurements += z1, z2;
bool optimize = true;
double rank_tol = 1e-9;
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
}
//******************************************************************************
TEST( triangulation, twoPosesBundler) {
boost::shared_ptr<Cal3Bundler> bundlerCal = //
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
Point2 z2 = camera2.project(landmark);
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose2;
measurements += z1, z2;
bool optimize = true;
double rank_tol = 1e-9;
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
bundlerCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
bundlerCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
}
//******************************************************************************
TEST( triangulation, fourPoses) {
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose2;
measurements += z1, z2;
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = //
triangulatePoint3(poses, sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
// 3. Add a slightly rotated third camera above, again with measurement noise
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
SimpleCamera camera3(pose3, *sharedCal);
Point2 z3 = camera3.project(landmark);
poses += pose3;
measurements += z3 + Point2(0.1, -0.1);
boost::optional<Point3> triangulated_3cameras = //
triangulatePoint3(poses, sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
// Again with nonlinear optimization
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
sharedCal, measurements, 1e-9, true);
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
// 4. Test failure: Add a 4th camera facing the wrong way
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
SimpleCamera camera4(pose4, *sharedCal);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
poses += pose4;
measurements += Point2(400, 400);
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationCheiralityException);
#endif
}
//******************************************************************************
TEST( triangulation, fourPoses_distinct_Ks) {
Cal3_S2 K1(1500, 1200, 0, 640, 480);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
SimpleCamera camera1(pose1, K1);
// create second camera 1 meter to the right of first camera
Cal3_S2 K2(1600, 1300, 0, 650, 440);
SimpleCamera camera2(pose2, K2);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
Point2 z2 = camera2.project(landmark);
vector<SimpleCamera> cameras;
vector<Point2> measurements;
cameras += camera1, camera2;
measurements += z1, z2;
boost::optional<Point3> triangulated_landmark = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
// 3. Add a slightly rotated third camera above, again with measurement noise
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
Cal3_S2 K3(700, 500, 0, 640, 480);
SimpleCamera camera3(pose3, K3);
Point2 z3 = camera3.project(landmark);
cameras += camera3;
measurements += z3 + Point2(0.1, -0.1);
boost::optional<Point3> triangulated_3cameras = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
// Again with nonlinear optimization
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(cameras,
measurements, 1e-9, true);
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
// 4. Test failure: Add a 4th camera facing the wrong way
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
Cal3_S2 K4(700, 500, 0, 640, 480);
SimpleCamera camera4(pose4, K4);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
cameras += camera4;
measurements += Point2(400, 400);
CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
TriangulationCheiralityException);
#endif
}
//******************************************************************************
TEST( triangulation, twoIdenticalPoses) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
SimpleCamera camera1(pose1, *sharedCal);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose1;
measurements += z1, z1;
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationUnderconstrainedException);
}
//******************************************************************************
/*
TEST( triangulation, onePose) {
// we expect this test to fail with a TriangulationUnderconstrainedException
// because there's only one camera observation
Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480);
vector<Pose3> poses;
vector<Point2> measurements;
poses += Pose3();
measurements += Point2();
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
TriangulationUnderconstrainedException);
}
*/
//******************************************************************************
TEST( triangulation, TriangulationFactor ) {
// Create the factor with a measurement that is 3 pixels off in x
Key pointKey(1);
SharedNoiseModel model;
typedef TriangulationFactor<> Factor;
Factor factor(camera1, z1, model, pointKey, sharedCal);
// Use the factor to calculate the Jacobians
Matrix HActual;
factor.evaluateError(landmark, HActual);
// Matrix expectedH1 = numericalDerivative11<Pose3>(
// boost::bind(&EssentialMatrixConstraint::evaluateError, &factor, _1, pose2,
// boost::none, boost::none), pose1);
// The expected Jacobian
Matrix HExpected = numericalDerivative11<Point3>(
boost::bind(&Factor::evaluateError, &factor, _1, boost::none), landmark);
// Verify the Jacobians are correct
CHECK(assert_equal(HExpected, HActual, 1e-3));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************