Importing Frobenius error factors from Shonan effort

release/4.3a0
Frank Dellaert 2020-06-19 23:33:29 -04:00
parent 489e8f0991
commit 0bd8143057
6 changed files with 701 additions and 0 deletions

View File

@ -0,0 +1,56 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
FrobeniusFactor unit tests.
Author: Frank Dellaert
"""
# pylint: disable=no-name-in-module, import-error, invalid-name
import unittest
import numpy as np
from gtsam import (SO3, SO4, FrobeniusBetweenFactorSO4, FrobeniusFactorSO4,
FrobeniusWormholeFactor, SOn)
id = SO4()
v1 = np.array([0, 0, 0, 0.1, 0, 0])
Q1 = SO4.Expmap(v1)
v2 = np.array([0, 0, 0, 0.01, 0.02, 0.03])
Q2 = SO4.Expmap(v2)
class TestFrobeniusFactorSO4(unittest.TestCase):
"""Test FrobeniusFactor factors."""
def test_frobenius_factor(self):
"""Test creation of a factor that calculates the Frobenius norm."""
factor = FrobeniusFactorSO4(1, 2)
actual = factor.evaluateError(Q1, Q2)
expected = (Q2.matrix()-Q1.matrix()).transpose().reshape((16,))
np.testing.assert_array_equal(actual, expected)
def test_frobenius_between_factor(self):
"""Test creation of a Frobenius BetweenFactor."""
factor = FrobeniusBetweenFactorSO4(1, 2, Q1.between(Q2))
actual = factor.evaluateError(Q1, Q2)
expected = np.zeros((16,))
np.testing.assert_array_almost_equal(actual, expected)
def test_frobenius_wormhole_factor(self):
"""Test creation of a factor that calculates Shonan error."""
R1 = SO3.Expmap(v1[3:])
R2 = SO3.Expmap(v2[3:])
factor = FrobeniusWormholeFactor(1, 2, R1.between(R2), p=4)
I4 = SOn(4)
Q1 = I4.retract(v1)
Q2 = I4.retract(v2)
actual = factor.evaluateError(Q1, Q2)
expected = np.zeros((12,))
np.testing.assert_array_almost_equal(actual, expected, decimal=4)
if __name__ == "__main__":
unittest.main()

29
gtsam.h
View File

@ -598,6 +598,7 @@ class SOn {
// Standard Constructors
SOn(size_t n);
static gtsam::SOn FromMatrix(Matrix R);
static gtsam::SOn Lift(size_t n, Matrix R);
// Testable
void print(string s) const;
@ -2835,6 +2836,34 @@ virtual class KarcherMeanFactor : gtsam::NonlinearFactor {
KarcherMeanFactor(const gtsam::KeyVector& keys);
};
#include <gtsam/slam/FrobeniusFactor.h>
gtsam::noiseModel::Isotropic* ConvertPose3NoiseModel(
gtsam::noiseModel::Base* model, size_t d);
template<T = {gtsam::SO3, gtsam::SO4}>
virtual class FrobeniusFactor : gtsam::NoiseModelFactor {
FrobeniusFactor(size_t key1, size_t key2);
FrobeniusFactor(size_t key1, size_t key2, gtsam::noiseModel::Base* model);
Vector evaluateError(const T& R1, const T& R2);
};
template<T = {gtsam::SO3, gtsam::SO4}>
virtual class FrobeniusBetweenFactor : gtsam::NoiseModelFactor {
FrobeniusBetweenFactor(size_t key1, size_t key2, const T& R12);
FrobeniusBetweenFactor(size_t key1, size_t key2, const T& R12, gtsam::noiseModel::Base* model);
Vector evaluateError(const T& R1, const T& R2);
};
virtual class FrobeniusWormholeFactor : gtsam::NoiseModelFactor {
FrobeniusWormholeFactor(size_t key1, size_t key2, const gtsam::Rot3& R12,
size_t p);
FrobeniusWormholeFactor(size_t key1, size_t key2, const gtsam::Rot3& R12,
size_t p, gtsam::noiseModel::Base* model);
Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
};
//*************************************************************************
// Navigation
//*************************************************************************

View File

@ -0,0 +1,117 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FrobeniusFactor.cpp
* @date March 2019
* @author Frank Dellaert
* @brief Various factors that minimize some Frobenius norm
*/
#include <gtsam/slam/FrobeniusFactor.h>
#include <gtsam/base/timing.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <cmath>
#include <iostream>
#include <vector>
using namespace std;
namespace gtsam {
//******************************************************************************
boost::shared_ptr<noiseModel::Isotropic> ConvertPose3NoiseModel(
const SharedNoiseModel& model, size_t d, bool defaultToUnit) {
double sigma = 1.0;
if (model != nullptr) {
if (model->dim() != 6) {
if (!defaultToUnit)
throw std::runtime_error("Can only convert Pose3 noise models");
} else {
auto sigmas = model->sigmas().head(3).eval();
if (sigmas(1) != sigmas(0) || sigmas(2) != sigmas(0)) {
if (!defaultToUnit)
throw std::runtime_error("Can only convert isotropic rotation noise");
} else {
sigma = sigmas(0);
}
}
}
return noiseModel::Isotropic::Sigma(d, sigma);
}
//******************************************************************************
FrobeniusWormholeFactor::FrobeniusWormholeFactor(Key j1, Key j2, const Rot3& R12,
size_t p,
const SharedNoiseModel& model)
: NoiseModelFactor2<SOn, SOn>(ConvertPose3NoiseModel(model, p * 3), j1, j2),
M_(R12.matrix()), // 3*3 in all cases
p_(p), // 4 for SO(4)
pp_(p * p), // 16 for SO(4)
dimension_(SOn::Dimension(p)), // 6 for SO(4)
G_(pp_, dimension_) // 16*6 for SO(4)
{
// Calculate G matrix of vectorized generators
Matrix Z = Matrix::Zero(p, p);
for (size_t j = 0; j < dimension_; j++) {
const auto X = SOn::Hat(Eigen::VectorXd::Unit(dimension_, j));
G_.col(j) = Eigen::Map<const Matrix>(X.data(), pp_, 1);
}
assert(noiseModel()->dim() == 3 * p_);
}
//******************************************************************************
Vector FrobeniusWormholeFactor::evaluateError(
const SOn& Q1, const SOn& Q2, boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
gttic(FrobeniusWormholeFactorP_evaluateError);
const Matrix& M1 = Q1.matrix();
const Matrix& M2 = Q2.matrix();
assert(M1.rows() == p_ && M2.rows() == p_);
const size_t dim = 3 * p_; // Stiefel manifold dimension
Vector fQ2(dim), hQ1(dim);
// Vectorize and extract only d leftmost columns, i.e. vec(M2*P)
fQ2 << Eigen::Map<const Matrix>(M2.data(), dim, 1);
// Vectorize M1*P*R12
const Matrix Q1PR12 = M1.leftCols<3>() * M_;
hQ1 << Eigen::Map<const Matrix>(Q1PR12.data(), dim, 1);
// If asked, calculate Jacobian as (M \otimes M1) * G
if (H1) {
const size_t p2 = 2 * p_;
Matrix RPxQ = Matrix::Zero(dim, pp_);
RPxQ.block(0, 0, p_, dim) << M1 * M_(0, 0), M1 * M_(1, 0), M1 * M_(2, 0);
RPxQ.block(p_, 0, p_, dim) << M1 * M_(0, 1), M1 * M_(1, 1), M1 * M_(2, 1);
RPxQ.block(p2, 0, p_, dim) << M1 * M_(0, 2), M1 * M_(1, 2), M1 * M_(2, 2);
*H1 = -RPxQ * G_;
}
if (H2) {
const size_t p2 = 2 * p_;
Matrix PxQ = Matrix::Zero(dim, pp_);
PxQ.block(0, 0, p_, p_) = M2;
PxQ.block(p_, p_, p_, p_) = M2;
PxQ.block(p2, p2, p_, p_) = M2;
*H2 = PxQ * G_;
}
return fQ2 - hQ1;
}
//******************************************************************************
} // namespace gtsam

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FrobeniusFactor.h
* @date March 2019
* @author Frank Dellaert
* @brief Various factors that minimize some Frobenius norm
*/
#pragma once
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/SOn.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* When creating (any) FrobeniusFactor we convert a 6-dimensional Pose3
* BetweenFactor noise model into an 9 or 16-dimensional isotropic noise
* model used to weight the Frobenius norm. If the noise model passed is
* null we return a Dim-dimensional isotropic noise model with sigma=1.0. If
* not, we we check if the 3-dimensional noise model on rotations is
* isotropic. If it is, we extend to 'Dim' dimensions, otherwise we throw an
* error. If defaultToUnit == false throws an exception on unexepcted input.
*/
boost::shared_ptr<noiseModel::Isotropic> ConvertPose3NoiseModel(
const SharedNoiseModel& model, size_t d, bool defaultToUnit = true);
/**
* FrobeniusPrior calculates the Frobenius norm between a given matrix and an
* element of SO(3) or SO(4).
*/
template <class Rot>
class FrobeniusPrior : public NoiseModelFactor1<Rot> {
enum { Dim = Rot::VectorN2::RowsAtCompileTime };
using MatrixNN = typename Rot::MatrixNN;
Eigen::Matrix<double, Dim, 1> vecM_; ///< vectorized matrix to approximate
public:
/// Constructor
FrobeniusPrior(Key j, const MatrixNN& M,
const SharedNoiseModel& model = nullptr)
: NoiseModelFactor1<Rot>(ConvertPose3NoiseModel(model, Dim), j) {
vecM_ << Eigen::Map<const Matrix>(M.data(), Dim, 1);
}
/// Error is just Frobenius norm between Rot element and vectorized matrix M.
Vector evaluateError(const Rot& R,
boost::optional<Matrix&> H = boost::none) const {
return R.vec(H) - vecM_; // Jacobian is computed only when needed.
}
};
/**
* FrobeniusFactor calculates the Frobenius norm between rotation matrices.
* The template argument can be any fixed-size SO<N>.
*/
template <class Rot>
class FrobeniusFactor : public NoiseModelFactor2<Rot, Rot> {
enum { Dim = Rot::VectorN2::RowsAtCompileTime };
public:
/// Constructor
FrobeniusFactor(Key j1, Key j2, const SharedNoiseModel& model = nullptr)
: NoiseModelFactor2<Rot, Rot>(ConvertPose3NoiseModel(model, Dim), j1,
j2) {}
/// Error is just Frobenius norm between rotation matrices.
Vector evaluateError(const Rot& R1, const Rot& R2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
Vector error = R2.vec(H2) - R1.vec(H1);
if (H1) *H1 = -*H1;
return error;
}
};
/**
* FrobeniusBetweenFactor is a BetweenFactor that evaluates the Frobenius norm
* of the rotation error between measured and predicted (rather than the
* Logmap of the error). This factor is only defined for fixed-dimension types,
* and in fact only SO3 and SO4 really work, as we need SO<N>::AdjointMap.
*/
template <class Rot>
class FrobeniusBetweenFactor : public NoiseModelFactor2<Rot, Rot> {
Rot R12_; ///< measured rotation between R1 and R2
Eigen::Matrix<double, Rot::dimension, Rot::dimension>
R2hat_H_R1_; ///< fixed derivative of R2hat wrpt R1
enum { Dim = Rot::VectorN2::RowsAtCompileTime };
public:
/// Constructor
FrobeniusBetweenFactor(Key j1, Key j2, const Rot& R12,
const SharedNoiseModel& model = nullptr)
: NoiseModelFactor2<Rot, Rot>(
ConvertPose3NoiseModel(model, Dim), j1, j2),
R12_(R12),
R2hat_H_R1_(R12.inverse().AdjointMap()) {}
/// Error is Frobenius norm between R1*R12 and R2.
Vector evaluateError(const Rot& R1, const Rot& R2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
const Rot R2hat = R1.compose(R12_);
Eigen::Matrix<double, Dim, Rot::dimension> vec_H_R2hat;
Vector error = R2.vec(H2) - R2hat.vec(H1 ? &vec_H_R2hat : nullptr);
if (H1) *H1 = -vec_H_R2hat * R2hat_H_R1_;
return error;
}
};
/**
* FrobeniusWormholeFactor is a BetweenFactor that moves in SO(p), but will
* land on the SO(3) sub-manifold of SO(p) at the global minimum. It projects
* the SO(p) matrices down to a Stiefel manifold of p*d matrices.
* TODO(frank): template on D=2 or 3
*/
class FrobeniusWormholeFactor : public NoiseModelFactor2<SOn, SOn> {
Matrix M_; ///< measured rotation between R1 and R2
size_t p_, pp_, dimension_; ///< dimensionality constants
Matrix G_; ///< matrix of vectorized generators
public:
/// Constructor. Note we convert to 3*p-dimensional noise model.
FrobeniusWormholeFactor(Key j1, Key j2, const Rot3& R12, size_t p = 4,
const SharedNoiseModel& model = nullptr);
/// Error is Frobenius norm between Q1*P*R12 and Q2*P, where P=[I_3x3;0]
/// projects down from SO(p) to the Stiefel manifold of px3 matrices.
Vector evaluateError(const SOn& Q1, const SOn& Q2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const;
};
} // namespace gtsam

View File

@ -0,0 +1,244 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* testFrobeniusFactor.cpp
*
* @file testFrobeniusFactor.cpp
* @date March 2019
* @author Frank Dellaert
* @brief Check evaluateError for various Frobenius norm
*/
#include <gtsam/base/lieProxies.h>
#include <gtsam/base/testLie.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/SO3.h>
#include <gtsam/geometry/SO4.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/factorTesting.h>
#include <gtsam/slam/FrobeniusFactor.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
//******************************************************************************
namespace so3 {
SO3 id;
Vector3 v1 = (Vector(3) << 0.1, 0, 0).finished();
SO3 R1 = SO3::Expmap(v1);
Vector3 v2 = (Vector(3) << 0.01, 0.02, 0.03).finished();
SO3 R2 = SO3::Expmap(v2);
SO3 R12 = R1.between(R2);
} // namespace so3
/* ************************************************************************* */
TEST(FrobeniusPriorSO3, evaluateError) {
using namespace ::so3;
auto factor = FrobeniusPrior<SO3>(1, R2.matrix());
Vector actual = factor.evaluateError(R1);
Vector expected = R1.vec() - R2.vec();
EXPECT(assert_equal(expected, actual, 1e-9));
Values values;
values.insert(1, R1);
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
/* ************************************************************************* */
TEST(FrobeniusPriorSO3, ClosestTo) {
// Example top-left of SO(4) matrix not quite on SO(3) manifold
Matrix3 M;
M << 0.79067393, 0.6051136, -0.0930814, //
0.4155925, -0.64214347, -0.64324489, //
-0.44948549, 0.47046326, -0.75917576;
SO3 expected = SO3::ClosestTo(M);
// manifold optimization gets same result as SVD solution in ClosestTo
NonlinearFactorGraph graph;
graph.emplace_shared<FrobeniusPrior<SO3> >(1, M);
Values initial;
initial.insert(1, SO3(I_3x3));
auto result = GaussNewtonOptimizer(graph, initial).optimize();
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-6);
EXPECT(assert_equal(expected, result.at<SO3>(1), 1e-6));
}
/* ************************************************************************* */
TEST(FrobeniusPriorSO3, ChordalL2mean) {
// See Hartley13ijcv:
// Cost function C(R) = \sum FrobeniusPrior(R,R_i)
// Closed form solution = ClosestTo(C_e), where
// C_e = \sum R_i !!!!
// We will test by computing mean of R1=exp(v1) R1^T=exp(-v1):
using namespace ::so3;
SO3 expected; // identity
Matrix3 M = R1.matrix() + R1.matrix().transpose();
EXPECT(assert_equal(expected, SO3::ClosestTo(M), 1e-6));
EXPECT(assert_equal(expected, SO3::ChordalMean({R1, R1.inverse()}), 1e-6));
// manifold optimization gets same result as ChordalMean
NonlinearFactorGraph graph;
graph.emplace_shared<FrobeniusPrior<SO3> >(1, R1.matrix());
graph.emplace_shared<FrobeniusPrior<SO3> >(1, R1.matrix().transpose());
Values initial;
initial.insert<SO3>(1, R1.inverse());
auto result = GaussNewtonOptimizer(graph, initial).optimize();
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 0.1); // Why so loose?
EXPECT(assert_equal(expected, result.at<SO3>(1), 1e-5));
}
/* ************************************************************************* */
TEST(FrobeniusFactorSO3, evaluateError) {
using namespace ::so3;
auto factor = FrobeniusFactor<SO3>(1, 2);
Vector actual = factor.evaluateError(R1, R2);
Vector expected = R2.vec() - R1.vec();
EXPECT(assert_equal(expected, actual, 1e-9));
Values values;
values.insert(1, R1);
values.insert(2, R2);
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
/* ************************************************************************* */
// Commented out as SO(n) not yet supported (and might never be)
// TEST(FrobeniusBetweenFactorSOn, evaluateError) {
// using namespace ::so3;
// auto factor =
// FrobeniusBetweenFactor<SOn>(1, 2, SOn::FromMatrix(R12.matrix()));
// Vector actual = factor.evaluateError(SOn::FromMatrix(R1.matrix()),
// SOn::FromMatrix(R2.matrix()));
// Vector expected = Vector9::Zero();
// EXPECT(assert_equal(expected, actual, 1e-9));
// Values values;
// values.insert(1, R1);
// values.insert(2, R2);
// EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
// }
/* ************************************************************************* */
TEST(FrobeniusBetweenFactorSO3, evaluateError) {
using namespace ::so3;
auto factor = FrobeniusBetweenFactor<SO3>(1, 2, R12);
Vector actual = factor.evaluateError(R1, R2);
Vector expected = Vector9::Zero();
EXPECT(assert_equal(expected, actual, 1e-9));
Values values;
values.insert(1, R1);
values.insert(2, R2);
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
//******************************************************************************
namespace so4 {
SO4 id;
Vector6 v1 = (Vector(6) << 0.1, 0, 0, 0, 0, 0).finished();
SO4 Q1 = SO4::Expmap(v1);
Vector6 v2 = (Vector(6) << 0.01, 0.02, 0.03, 0.04, 0.05, 0.06).finished();
SO4 Q2 = SO4::Expmap(v2);
} // namespace so4
/* ************************************************************************* */
TEST(FrobeniusFactorSO4, evaluateError) {
using namespace ::so4;
auto factor = FrobeniusFactor<SO4>(1, 2, noiseModel::Unit::Create(6));
Vector actual = factor.evaluateError(Q1, Q2);
Vector expected = Q2.vec() - Q1.vec();
EXPECT(assert_equal(expected, actual, 1e-9));
Values values;
values.insert(1, Q1);
values.insert(2, Q2);
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
/* ************************************************************************* */
TEST(FrobeniusBetweenFactorSO4, evaluateError) {
using namespace ::so4;
Matrix4 M{I_4x4};
M.topLeftCorner<3, 3>() = ::so3::R12.matrix();
auto factor = FrobeniusBetweenFactor<SO4>(1, 2, Q1.between(Q2));
Matrix H1, H2;
Vector actual = factor.evaluateError(Q1, Q2, H1, H2);
Vector expected = SO4::VectorN2::Zero();
EXPECT(assert_equal(expected, actual, 1e-9));
Values values;
values.insert(1, Q1);
values.insert(2, Q2);
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
//******************************************************************************
namespace submanifold {
SO4 id;
Vector6 v1 = (Vector(6) << 0, 0, 0, 0.1, 0, 0).finished();
SO3 R1 = SO3::Expmap(v1.tail<3>());
SO4 Q1 = SO4::Expmap(v1);
Vector6 v2 = (Vector(6) << 0, 0, 0, 0.01, 0.02, 0.03).finished();
SO3 R2 = SO3::Expmap(v2.tail<3>());
SO4 Q2 = SO4::Expmap(v2);
SO3 R12 = R1.between(R2);
} // namespace submanifold
/* ************************************************************************* */
TEST(FrobeniusWormholeFactor, evaluateError) {
auto model = noiseModel::Isotropic::Sigma(6, 1.2); // dimension = 6 not 16
for (const size_t p : {5, 4, 3}) {
Matrix M = Matrix::Identity(p, p);
M.topLeftCorner(3, 3) = submanifold::R1.matrix();
SOn Q1(M);
M.topLeftCorner(3, 3) = submanifold::R2.matrix();
SOn Q2(M);
auto factor =
FrobeniusWormholeFactor(1, 2, Rot3(::so3::R12.matrix()), p, model);
Matrix H1, H2;
factor.evaluateError(Q1, Q2, H1, H2);
// Test derivatives
Values values;
values.insert(1, Q1);
values.insert(2, Q2);
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
}
/* ************************************************************************* */
TEST(FrobeniusWormholeFactor, equivalenceToSO3) {
using namespace ::submanifold;
auto R12 = ::so3::R12.retract(Vector3(0.1, 0.2, -0.1));
auto model = noiseModel::Isotropic::Sigma(6, 1.2); // wrong dimension
auto factor3 = FrobeniusBetweenFactor<SO3>(1, 2, R12, model);
auto factor4 = FrobeniusWormholeFactor(1, 2, Rot3(R12.matrix()), 4, model);
const Eigen::Map<Matrix3> E3(factor3.evaluateError(R1, R2).data());
const Eigen::Map<Matrix43> E4(
factor4.evaluateError(SOn(Q1.matrix()), SOn(Q2.matrix())).data());
EXPECT(assert_equal((Matrix)E4.topLeftCorner<3, 3>(), E3, 1e-9));
EXPECT(assert_equal((Matrix)E4.row(3), Matrix13::Zero(), 1e-9));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -0,0 +1,110 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file timeFrobeniusFactor.cpp
* @brief time FrobeniusFactor with BAL file
* @author Frank Dellaert
* @date June 6, 2015
*/
#include <gtsam/base/timing.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/SO4.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/linear/PCGSolver.h>
#include <gtsam/linear/SubgraphPreconditioner.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/FrobeniusFactor.h>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
static SharedNoiseModel gNoiseModel = noiseModel::Unit::Create(2);
int main(int argc, char* argv[]) {
// primitive argument parsing:
if (argc > 3) {
throw runtime_error("Usage: timeFrobeniusFactor [g2oFile]");
}
string g2oFile;
try {
if (argc > 1)
g2oFile = argv[argc - 1];
else
g2oFile =
"/Users/dellaert/git/2019c-notes-shonanrotationaveraging/matlabCode/"
"datasets/randomTorus3D.g2o";
// g2oFile = findExampleDataFile("sphere_smallnoise.graph");
} catch (const exception& e) {
cerr << e.what() << '\n';
exit(1);
}
// Read G2O file
const auto factors = parse3DFactors(g2oFile);
const auto poses = parse3DPoses(g2oFile);
// Build graph
NonlinearFactorGraph graph;
// graph.add(NonlinearEquality<SO4>(0, SO4()));
auto priorModel = noiseModel::Isotropic::Sigma(6, 10000);
graph.add(PriorFactor<SO4>(0, SO4(), priorModel));
for (const auto& factor : factors) {
const auto& keys = factor->keys();
const auto& Tij = factor->measured();
const auto& model = factor->noiseModel();
graph.emplace_shared<FrobeniusWormholeFactor>(
keys[0], keys[1], SO3(Tij.rotation().matrix()), model);
}
boost::mt19937 rng(42);
// Set parameters to be similar to ceres
LevenbergMarquardtParams params;
LevenbergMarquardtParams::SetCeresDefaults(&params);
params.setLinearSolverType("MULTIFRONTAL_QR");
// params.setVerbosityLM("SUMMARY");
// params.linearSolverType = LevenbergMarquardtParams::Iterative;
// auto pcg = boost::make_shared<PCGSolverParameters>();
// pcg->preconditioner_ =
// boost::make_shared<SubgraphPreconditionerParameters>();
// boost::make_shared<BlockJacobiPreconditionerParameters>();
// params.iterativeParams = pcg;
// Optimize
for (size_t i = 0; i < 100; i++) {
gttic_(optimize);
Values initial;
initial.insert(0, SO4());
for (size_t j = 1; j < poses.size(); j++) {
initial.insert(j, SO4::Random(rng));
}
LevenbergMarquardtOptimizer lm(graph, initial, params);
Values result = lm.optimize();
cout << "cost = " << graph.error(result) << endl;
}
tictoc_finishedIteration_();
tictoc_print_();
return 0;
}