all tests are passing!

release/4.3a0
lcarlone 2021-10-05 22:32:02 -04:00
parent 4fd6c2cb5d
commit 0797eae9a8
1 changed files with 419 additions and 423 deletions

View File

@ -724,429 +724,425 @@ TEST(SmartProjectionPoseFactorRollingShutter,
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
///* *************************************************************************/
//TEST(SmartProjectionPoseFactorRollingShutter,
// hessianComparedToProjFactorsRollingShutter) {
// using namespace vanillaPoseRS;
// Point2Vector measurements_lmk1;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
//
// // create inputs
// std::vector<std::pair<Key, Key>> key_pairs;
// key_pairs.push_back(std::make_pair(x1, x2));
// key_pairs.push_back(std::make_pair(x2, x3));
// key_pairs.push_back(std::make_pair(x3, x1));
//
// std::vector<double> interp_factors;
// interp_factors.push_back(interp_factor1);
// interp_factors.push_back(interp_factor2);
// interp_factors.push_back(interp_factor3);
//
// SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
// smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, level_pose);
// values.insert(x2, pose_right);
// // initialize third pose with some noise to get a nontrivial linearization
// // point
// values.insert(x3, pose_above * noise_pose);
// EXPECT( // check that the pose is actually noisy
// assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
// -0.0313952598, -0.000986635786, 0.0314107591,
// -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)),
// values.at<Pose3>(x3)));
//
// // linearization point for the poses
// Pose3 pose1 = level_pose;
// Pose3 pose2 = pose_right;
// Pose3 pose3 = pose_above * noise_pose;
//
// // ==== check Hessian of smartFactor1 =====
// // -- compute actual Hessian
// boost::shared_ptr<GaussianFactor> linearfactor1 =
// smartFactor1->linearize(values);
// Matrix actualHessian = linearfactor1->information();
//
// // -- compute expected Hessian from manual Schur complement from Jacobians
// // linearization point for the 3D point
// smartFactor1->triangulateSafe(smartFactor1->cameras(values));
// TriangulationResult point = smartFactor1->point();
// EXPECT(point.valid()); // check triangulated point is valid
//
// // Use the factor to calculate the Jacobians
// Matrix F = Matrix::Zero(2 * 3, 6 * 3);
// Matrix E = Matrix::Zero(2 * 3, 3);
// Vector b = Vector::Zero(6);
//
// // create projection factors rolling shutter
// ProjectionFactorRollingShutter factor11(measurements_lmk1[0], interp_factor1,
// model, x1, x2, l0, sharedK);
// Matrix H1Actual, H2Actual, H3Actual;
// // note: b is minus the reprojection error, cf the smart factor jacobian
// // computation
// b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(0, 0) = H1Actual;
// F.block<2, 6>(0, 6) = H2Actual;
// E.block<2, 3>(0, 0) = H3Actual;
//
// ProjectionFactorRollingShutter factor12(measurements_lmk1[1], interp_factor2,
// model, x2, x3, l0, sharedK);
// b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(2, 6) = H1Actual;
// F.block<2, 6>(2, 12) = H2Actual;
// E.block<2, 3>(2, 0) = H3Actual;
//
// ProjectionFactorRollingShutter factor13(measurements_lmk1[2], interp_factor3,
// model, x3, x1, l0, sharedK);
// b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(4, 12) = H1Actual;
// F.block<2, 6>(4, 0) = H2Actual;
// E.block<2, 3>(4, 0) = H3Actual;
//
// // whiten
// F = (1 / sigma) * F;
// E = (1 / sigma) * E;
// b = (1 / sigma) * b;
// //* G = F' * F - F' * E * P * E' * F
// Matrix P = (E.transpose() * E).inverse();
// Matrix expectedHessian =
// F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
// EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
//
// // ==== check Information vector of smartFactor1 =====
// GaussianFactorGraph gfg;
// gfg.add(linearfactor1);
// Matrix actualHessian_v2 = gfg.hessian().first;
// EXPECT(assert_equal(actualHessian_v2, actualHessian,
// 1e-6)); // sanity check on hessian
//
// // -- compute actual information vector
// Vector actualInfoVector = gfg.hessian().second;
//
// // -- compute expected information vector from manual Schur complement from
// // Jacobians
// //* g = F' * (b - E * P * E' * b)
// Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
// EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
//
// // ==== check error of smartFactor1 (again) =====
// NonlinearFactorGraph nfg_projFactorsRS;
// nfg_projFactorsRS.add(factor11);
// nfg_projFactorsRS.add(factor12);
// nfg_projFactorsRS.add(factor13);
// values.insert(l0, *point);
//
// double actualError = smartFactor1->error(values);
// double expectedError = nfg_projFactorsRS.error(values);
// EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
//}
//
///* *************************************************************************/
//TEST(SmartProjectionPoseFactorRollingShutter,
// hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
// // in this test we make sure the fact works even if we have multiple pixel
// // measurements of the same landmark at a single pose, a setup that occurs in
// // multi-camera systems
//
// using namespace vanillaPoseRS;
// Point2Vector measurements_lmk1;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
//
// // create redundant measurements:
// Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
// measurements_lmk1_redundant.push_back(
// measurements_lmk1.at(0)); // we readd the first measurement
//
// // create inputs
// std::vector<std::pair<Key, Key>> key_pairs;
// key_pairs.push_back(std::make_pair(x1, x2));
// key_pairs.push_back(std::make_pair(x2, x3));
// key_pairs.push_back(std::make_pair(x3, x1));
// key_pairs.push_back(std::make_pair(x1, x2));
//
// std::vector<double> interp_factors;
// interp_factors.push_back(interp_factor1);
// interp_factors.push_back(interp_factor2);
// interp_factors.push_back(interp_factor3);
// interp_factors.push_back(interp_factor1);
//
// SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
// smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors,
// sharedK);
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, level_pose);
// values.insert(x2, pose_right);
// // initialize third pose with some noise to get a nontrivial linearization
// // point
// values.insert(x3, pose_above * noise_pose);
// EXPECT( // check that the pose is actually noisy
// assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
// -0.0313952598, -0.000986635786, 0.0314107591,
// -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)),
// values.at<Pose3>(x3)));
//
// // linearization point for the poses
// Pose3 pose1 = level_pose;
// Pose3 pose2 = pose_right;
// Pose3 pose3 = pose_above * noise_pose;
//
// // ==== check Hessian of smartFactor1 =====
// // -- compute actual Hessian
// boost::shared_ptr<GaussianFactor> linearfactor1 =
// smartFactor1->linearize(values);
// Matrix actualHessian = linearfactor1->information();
//
// // -- compute expected Hessian from manual Schur complement from Jacobians
// // linearization point for the 3D point
// smartFactor1->triangulateSafe(smartFactor1->cameras(values));
// TriangulationResult point = smartFactor1->point();
// EXPECT(point.valid()); // check triangulated point is valid
//
// // Use standard ProjectionFactorRollingShutter factor to calculate the
// // Jacobians
// Matrix F = Matrix::Zero(2 * 4, 6 * 3);
// Matrix E = Matrix::Zero(2 * 4, 3);
// Vector b = Vector::Zero(8);
//
// // create projection factors rolling shutter
// ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0],
// interp_factor1, model, x1, x2, l0,
// sharedK);
// Matrix H1Actual, H2Actual, H3Actual;
// // note: b is minus the reprojection error, cf the smart factor jacobian
// // computation
// b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(0, 0) = H1Actual;
// F.block<2, 6>(0, 6) = H2Actual;
// E.block<2, 3>(0, 0) = H3Actual;
//
// ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1],
// interp_factor2, model, x2, x3, l0,
// sharedK);
// b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(2, 6) = H1Actual;
// F.block<2, 6>(2, 12) = H2Actual;
// E.block<2, 3>(2, 0) = H3Actual;
//
// ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2],
// interp_factor3, model, x3, x1, l0,
// sharedK);
// b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(4, 12) = H1Actual;
// F.block<2, 6>(4, 0) = H2Actual;
// E.block<2, 3>(4, 0) = H3Actual;
//
// ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3],
// interp_factor1, model, x1, x2, l0,
// sharedK);
// b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
// H2Actual, H3Actual);
// F.block<2, 6>(6, 0) = H1Actual;
// F.block<2, 6>(6, 6) = H2Actual;
// E.block<2, 3>(6, 0) = H3Actual;
//
// // whiten
// F = (1 / sigma) * F;
// E = (1 / sigma) * E;
// b = (1 / sigma) * b;
// //* G = F' * F - F' * E * P * E' * F
// Matrix P = (E.transpose() * E).inverse();
// Matrix expectedHessian =
// F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
// EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
//
// // ==== check Information vector of smartFactor1 =====
// GaussianFactorGraph gfg;
// gfg.add(linearfactor1);
// Matrix actualHessian_v2 = gfg.hessian().first;
// EXPECT(assert_equal(actualHessian_v2, actualHessian,
// 1e-6)); // sanity check on hessian
//
// // -- compute actual information vector
// Vector actualInfoVector = gfg.hessian().second;
//
// // -- compute expected information vector from manual Schur complement from
// // Jacobians
// //* g = F' * (b - E * P * E' * b)
// Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
// EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
//
// // ==== check error of smartFactor1 (again) =====
// NonlinearFactorGraph nfg_projFactorsRS;
// nfg_projFactorsRS.add(factor11);
// nfg_projFactorsRS.add(factor12);
// nfg_projFactorsRS.add(factor13);
// nfg_projFactorsRS.add(factor14);
// values.insert(l0, *point);
//
// double actualError = smartFactor1->error(values);
// double expectedError = nfg_projFactorsRS.error(values);
// EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
//}
//
///* *************************************************************************/
//TEST(SmartProjectionPoseFactorRollingShutter,
// optimization_3poses_measurementsFromSamePose) {
// using namespace vanillaPoseRS;
// Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
//
// // create inputs
// std::vector<std::pair<Key, Key>> key_pairs;
// key_pairs.push_back(std::make_pair(x1, x2));
// key_pairs.push_back(std::make_pair(x2, x3));
// key_pairs.push_back(std::make_pair(x3, x1));
//
// std::vector<double> interp_factors;
// interp_factors.push_back(interp_factor1);
// interp_factors.push_back(interp_factor2);
// interp_factors.push_back(interp_factor3);
//
// // For first factor, we create redundant measurement (taken by the same keys
// // as factor 1, to make sure the redundancy in the keys does not create
// // problems)
// Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
// measurements_lmk1_redundant.push_back(
// measurements_lmk1.at(0)); // we readd the first measurement
// std::vector<std::pair<Key, Key>> key_pairs_redundant = key_pairs;
// key_pairs_redundant.push_back(
// key_pairs.at(0)); // we readd the first pair of keys
// std::vector<double> interp_factors_redundant = interp_factors;
// interp_factors_redundant.push_back(
// interp_factors.at(0)); // we readd the first interp factor
//
// SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
// smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
// interp_factors_redundant, sharedK);
//
// SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
// smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
//
// SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
// smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, level_pose, noisePrior);
// graph.addPrior(x2, pose_right, noisePrior);
//
// Values groundTruth;
// groundTruth.insert(x1, level_pose);
// groundTruth.insert(x2, pose_right);
// groundTruth.insert(x3, pose_above);
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// // Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, level_pose);
// values.insert(x2, pose_right);
// // initialize third pose with some noise, we expect it to move back to
// // original pose_above
// values.insert(x3, pose_above * noise_pose);
// EXPECT( // check that the pose is actually noisy
// assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
// -0.0313952598, -0.000986635786, 0.0314107591,
// -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)),
// values.at<Pose3>(x3)));
//
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
//}
//
//#ifndef DISABLE_TIMING
//#include <gtsam/base/timing.h>
//// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
////| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min:
//// 0 max: 0) | -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02
//// children, min: 0 max: 0)
///* *************************************************************************/
//TEST(SmartProjectionPoseFactorRollingShutter, timing) {
// using namespace vanillaPose;
//
// // Default cameras for simple derivatives
// static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
//
// Rot3 R = Rot3::identity();
// Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
// Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
// Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
// Pose3 body_P_sensorId = Pose3::identity();
//
// // one landmarks 1m in front of camera
// Point3 landmark1(0, 0, 10);
//
// Point2Vector measurements_lmk1;
//
// // Project 2 landmarks into 2 cameras
// measurements_lmk1.push_back(cam1.project(landmark1));
// measurements_lmk1.push_back(cam2.project(landmark1));
//
// size_t nrTests = 1000;
//
// for (size_t i = 0; i < nrTests; i++) {
// SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
// double interp_factor = 0; // equivalent to measurement taken at pose 1
// smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor,
// sharedKSimple, body_P_sensorId);
// interp_factor = 1; // equivalent to measurement taken at pose 2
// smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor,
// sharedKSimple, body_P_sensorId);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// gttic_(SF_RS_LINEARIZE);
// smartFactorRS->linearize(values);
// gttoc_(SF_RS_LINEARIZE);
// }
//
// for (size_t i = 0; i < nrTests; i++) {
// SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
// smartFactor->add(measurements_lmk1[0], x1);
// smartFactor->add(measurements_lmk1[1], x2);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// gttic_(RS_LINEARIZE);
// smartFactor->linearize(values);
// gttoc_(RS_LINEARIZE);
// }
// tictoc_print_();
//}
//#endif
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
hessianComparedToProjFactorsRollingShutter) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model, Camera(Pose3::identity(),sharedK)));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization
// point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
Pose3 pose2 = pose_right;
Pose3 pose3 = pose_above * noise_pose;
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
boost::shared_ptr<GaussianFactor> linearfactor1 =
smartFactor1->linearize(values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
// linearization point for the 3D point
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use the factor to calculate the Jacobians
Matrix F = Matrix::Zero(2 * 3, 6 * 3);
Matrix E = Matrix::Zero(2 * 3, 3);
Vector b = Vector::Zero(6);
// create projection factors rolling shutter
ProjectionFactorRollingShutter factor11(measurements_lmk1[0], interp_factor1,
model, x1, x2, l0, sharedK);
Matrix H1Actual, H2Actual, H3Actual;
// note: b is minus the reprojection error, cf the smart factor jacobian
// computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(0, 0) = H1Actual;
F.block<2, 6>(0, 6) = H2Actual;
E.block<2, 3>(0, 0) = H3Actual;
ProjectionFactorRollingShutter factor12(measurements_lmk1[1], interp_factor2,
model, x2, x3, l0, sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(2, 6) = H1Actual;
F.block<2, 6>(2, 12) = H2Actual;
E.block<2, 3>(2, 0) = H3Actual;
ProjectionFactorRollingShutter factor13(measurements_lmk1[2], interp_factor3,
model, x3, x1, l0, sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(4, 12) = H1Actual;
F.block<2, 6>(4, 0) = H2Actual;
E.block<2, 3>(4, 0) = H3Actual;
// whiten
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian =
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian,
1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from
// Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
// ==== check error of smartFactor1 (again) =====
NonlinearFactorGraph nfg_projFactorsRS;
nfg_projFactorsRS.add(factor11);
nfg_projFactorsRS.add(factor12);
nfg_projFactorsRS.add(factor13);
values.insert(l0, *point);
double actualError = smartFactor1->error(values);
double expectedError = nfg_projFactorsRS.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
// in this test we make sure the fact works even if we have multiple pixel
// measurements of the same landmark at a single pose, a setup that occurs in
// multi-camera systems
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// create redundant measurements:
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(
measurements_lmk1.at(0)); // we readd the first measurement
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
key_pairs.push_back(std::make_pair(x1, x2));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
interp_factors.push_back(interp_factor1);
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model, Camera(Pose3::identity(),sharedK)));
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization
// point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
Pose3 pose2 = pose_right;
Pose3 pose3 = pose_above * noise_pose;
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
boost::shared_ptr<GaussianFactor> linearfactor1 =
smartFactor1->linearize(values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
// linearization point for the 3D point
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use standard ProjectionFactorRollingShutter factor to calculate the
// Jacobians
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
Matrix E = Matrix::Zero(2 * 4, 3);
Vector b = Vector::Zero(8);
// create projection factors rolling shutter
ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0],
interp_factor1, model, x1, x2, l0,
sharedK);
Matrix H1Actual, H2Actual, H3Actual;
// note: b is minus the reprojection error, cf the smart factor jacobian
// computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(0, 0) = H1Actual;
F.block<2, 6>(0, 6) = H2Actual;
E.block<2, 3>(0, 0) = H3Actual;
ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1],
interp_factor2, model, x2, x3, l0,
sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(2, 6) = H1Actual;
F.block<2, 6>(2, 12) = H2Actual;
E.block<2, 3>(2, 0) = H3Actual;
ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2],
interp_factor3, model, x3, x1, l0,
sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(4, 12) = H1Actual;
F.block<2, 6>(4, 0) = H2Actual;
E.block<2, 3>(4, 0) = H3Actual;
ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3],
interp_factor1, model, x1, x2, l0,
sharedK);
b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(6, 0) = H1Actual;
F.block<2, 6>(6, 6) = H2Actual;
E.block<2, 3>(6, 0) = H3Actual;
// whiten
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian =
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian,
1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from
// Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
// ==== check error of smartFactor1 (again) =====
NonlinearFactorGraph nfg_projFactorsRS;
nfg_projFactorsRS.add(factor11);
nfg_projFactorsRS.add(factor12);
nfg_projFactorsRS.add(factor13);
nfg_projFactorsRS.add(factor14);
values.insert(l0, *point);
double actualError = smartFactor1->error(values);
double expectedError = nfg_projFactorsRS.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_measurementsFromSamePose) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
// For first factor, we create redundant measurement (taken by the same keys
// as factor 1, to make sure the redundancy in the keys does not create
// problems)
Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(
measurements_lmk1.at(0)); // we readd the first measurement
std::vector<std::pair<Key, Key>> key_pairs_redundant = key_pairs;
key_pairs_redundant.push_back(
key_pairs.at(0)); // we readd the first pair of keys
std::vector<double> interp_factors_redundant = interp_factors;
interp_factors_redundant.push_back(
interp_factors.at(0)); // we readd the first interp factor
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model, Camera(Pose3::identity(),sharedK)));
smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
interp_factors_redundant);
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model, Camera(Pose3::identity(),sharedK)));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model, Camera(Pose3::identity(),sharedK)));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
}
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
//-Total: 0 CPU (0 times, 0 wall, 0.21 children, min: 0 max: 0)
//| -SF RS LINEARIZE: 0.15 CPU (10000 times, 0.125521 wall, 0.15 children, min: 0 max: 0)
//| -RS LINEARIZE: 0.06 CPU (10000 times, 0.06311 wall, 0.06 children, min: 0 max: 0)
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, timing) {
using namespace vanillaPose;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
Point2Vector measurements_lmk1;
// Project 2 landmarks into 2 cameras
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
size_t nrTests = 10000;
for (size_t i = 0; i < nrTests; i++) {
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model, Camera(body_P_sensorId,sharedKSimple)));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SF_RS_LINEARIZE);
smartFactorRS->linearize(values);
gttoc_(SF_RS_LINEARIZE);
}
for (size_t i = 0; i < nrTests; i++) {
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
smartFactor->add(measurements_lmk1[0], x1);
smartFactor->add(measurements_lmk1[1], x2);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(RS_LINEARIZE);
smartFactor->linearize(values);
gttoc_(RS_LINEARIZE);
}
tictoc_print_();
}
#endif
/* ************************************************************************* */
int main() {