Address review comments: negative sign and AdjointTranspose section

release/4.3a0
Gerry Chen 2021-10-31 20:53:15 -04:00
parent 115852cef7
commit 06bb9cedd1
No known key found for this signature in database
GPG Key ID: E9845092D3A57286
2 changed files with 223 additions and 19 deletions

View File

@ -5086,6 +5086,13 @@ reference "ex:projection"
\begin_layout Subsection
Derivative of Adjoint
\begin_inset CommandInset label
LatexCommand label
name "subsec:pose3_adjoint_deriv"
\end_inset
\end_layout
\begin_layout Standard
@ -5098,7 +5105,7 @@ Consider
\end_inset
.
The derivative is notated (see
The derivative is notated (see Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Derivatives-of-Actions"
@ -5114,7 +5121,7 @@ noprefix "false"
\begin_layout Standard
\begin_inset Formula
\[
Df_{(T,y)}(\xi,\delta y)=D_{1}f_{(T,y)}(\xi)+D_{2}f_{(T,y)}(\delta y)
Df_{(T,\xi_{b})}(\xi,\delta\xi_{b})=D_{1}f_{(T,\xi_{b})}(\xi)+D_{2}f_{(T,\xi_{b})}(\delta\xi_{b})
\]
\end_inset
@ -5149,11 +5156,12 @@ D_{2}f_{(T,\xi_{b})}(\xi_{b})=Ad_{T}
\end_inset
To compute
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi_{b})$
We will derive
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi)$
\end_inset
, we'll first define
using two approaches.
In the first, we'll define
\begin_inset Formula $g(T,\xi)\triangleq T\exp\hat{\xi}$
\end_inset
@ -5194,18 +5202,30 @@ Now we can use the definition of the Adjoint representation
\begin_layout Standard
\begin_inset Formula
\begin{align*}
D_{1}f_{(T,\xi_{b})}(\xi)=D_{1}\left(Ad_{T\exp(\hat{\xi})}\hat{\xi}_{b}\right)(\xi) & =D_{1}\left(g\hat{\xi}g^{-1}\right)(\xi)\\
& =\left(D_{2}g_{(T,\xi)}(\xi)\right)\hat{\xi}g^{-1}(T,0)+g(T,0)\hat{\xi}\left(D_{2}g_{(T,\xi)}^{-1}(\xi)\right)\\
D_{1}f_{(T,\xi_{b})}(\xi)=D_{1}\left(Ad_{T\exp(\hat{\xi})}\hat{\xi}_{b}\right)(\xi) & =D_{1}\left(g\hat{\xi}_{b}g^{-1}\right)(\xi)\\
& =\left(D_{2}g_{(T,\xi)}(\xi)\right)\hat{\xi}_{b}g^{-1}(T,0)+g(T,0)\hat{\xi}_{b}\left(D_{2}g_{(T,\xi)}^{-1}(\xi)\right)\\
& =T\hat{\xi}\hat{\xi}_{b}T^{-1}-T\hat{\xi}_{b}\hat{\xi}T^{-1}\\
& =T\left(\hat{\xi}\hat{\xi}_{b}-\hat{\xi}_{b}\hat{\xi}\right)T^{-1}\\
& =-Ad_{T}(ad_{\xi_{b}}\hat{\xi})\\
& =Ad_{T}(ad_{\hat{\xi}}\hat{\xi}_{b})\\
& =-Ad_{T}(ad_{\hat{\xi}_{b}}\hat{\xi})\\
D_{1}F_{(T,\xi_{b})} & =-(Ad_{T})(ad_{\hat{\xi}_{b}})
\end{align*}
\end_inset
An alternative, perhaps more intuitive way of deriving this would be to
use the fact that the derivative at the origin
Where
\begin_inset Formula $ad_{\hat{\xi}}:\mathfrak{g}\rightarrow\mathfrak{g}$
\end_inset
is the adjoint map of the lie algebra.
\end_layout
\begin_layout Standard
The second, perhaps more intuitive way of deriving
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi_{b})$
\end_inset
, would be to use the fact that the derivative at the origin
\begin_inset Formula $D_{1}Ad_{I}\hat{\xi}_{b}=ad_{\hat{\xi}_{b}}$
\end_inset
@ -5224,28 +5244,212 @@ An alternative, perhaps more intuitive way of deriving this would be to
\begin_layout Standard
\begin_inset Formula
\[
D_{1}Ad_{T}\hat{\xi}_{b}(\xi)=D_{1}Ad_{T*I}\hat{\xi}_{b}(\xi)=Ad_{T}\left(D_{1}Ad_{I}\hat{\xi}_{b}(\xi)\right)=Ad_{T}\left(ad_{\hat{\xi}_{b}}(\xi)\right)
D_{1}Ad_{T}\hat{\xi}_{b}(\xi)=D_{1}Ad_{T*I}\hat{\xi}_{b}(\xi)=Ad_{T}\left(D_{1}Ad_{I}\hat{\xi}_{b}(\xi)\right)=Ad_{T}\left(ad_{\hat{\xi}}(\hat{\xi}_{b})\right)=-Ad_{T}\left(ad_{\hat{\xi}_{b}}(\hat{\xi})\right)
\]
\end_inset
It's difficult to apply a similar procedure to compute the derivative of
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
\end_layout
\begin_layout Subsection
Derivative of AdjointTranspose
\end_layout
\begin_layout Standard
The transpose of the Adjoint,
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $Ad_{T}^{T}:\mathfrak{g^{*}\rightarrow g^{*}}$
\end_inset
, is useful as a way to change the reference frame of vectors in the dual
space
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
(note the
\begin_inset Formula $^{*}$
\end_inset
denoting that we are now in the dual space) because
denoting that we are now in the dual space)
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
.
To be more concrete, where
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
as
\begin_inset Formula $Ad_{T}\hat{\xi}_{b}$
\end_inset
converts the
\emph on
twist
\emph default
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $\xi_{b}$
\end_inset
from the
\begin_inset Formula $T$
\end_inset
frame,
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
\end_inset
converts the
\family default
\series default
\shape default
\size default
\emph on
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
wrench
\emph default
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $\xi_{b}^{*}$
\end_inset
from the
\begin_inset Formula $T$
\end_inset
frame
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
.
It's difficult to apply a similar derivation as in Section
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:pose3_adjoint_deriv"
plural "false"
caps "false"
noprefix "false"
\end_inset
for the derivative of
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
\end_inset
because
\begin_inset Formula $Ad_{T}^{T}$
\end_inset
cannot be naturally defined as a conjugation so we resort to crunching
cannot be naturally defined as a conjugation, so we resort to crunching
through the algebra.
The details are omitted but the result is a form vaguely resembling (but
not quite) the
The details are omitted but the result is a form that vaguely resembles
(but does not exactly match)
\begin_inset Formula $ad(Ad_{T}^{T}\hat{\xi}_{b}^{*})$
\end_inset

Binary file not shown.