Address review comments: negative sign and AdjointTranspose section
parent
115852cef7
commit
06bb9cedd1
238
doc/math.lyx
238
doc/math.lyx
|
@ -5086,6 +5086,13 @@ reference "ex:projection"
|
|||
|
||||
\begin_layout Subsection
|
||||
Derivative of Adjoint
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:pose3_adjoint_deriv"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -5098,7 +5105,7 @@ Consider
|
|||
\end_inset
|
||||
|
||||
.
|
||||
The derivative is notated (see
|
||||
The derivative is notated (see Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Derivatives-of-Actions"
|
||||
|
@ -5114,7 +5121,7 @@ noprefix "false"
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
Df_{(T,y)}(\xi,\delta y)=D_{1}f_{(T,y)}(\xi)+D_{2}f_{(T,y)}(\delta y)
|
||||
Df_{(T,\xi_{b})}(\xi,\delta\xi_{b})=D_{1}f_{(T,\xi_{b})}(\xi)+D_{2}f_{(T,\xi_{b})}(\delta\xi_{b})
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -5149,11 +5156,12 @@ D_{2}f_{(T,\xi_{b})}(\xi_{b})=Ad_{T}
|
|||
|
||||
\end_inset
|
||||
|
||||
To compute
|
||||
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi_{b})$
|
||||
We will derive
|
||||
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi)$
|
||||
\end_inset
|
||||
|
||||
, we'll first define
|
||||
using two approaches.
|
||||
In the first, we'll define
|
||||
\begin_inset Formula $g(T,\xi)\triangleq T\exp\hat{\xi}$
|
||||
\end_inset
|
||||
|
||||
|
@ -5194,18 +5202,30 @@ Now we can use the definition of the Adjoint representation
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
D_{1}f_{(T,\xi_{b})}(\xi)=D_{1}\left(Ad_{T\exp(\hat{\xi})}\hat{\xi}_{b}\right)(\xi) & =D_{1}\left(g\hat{\xi}g^{-1}\right)(\xi)\\
|
||||
& =\left(D_{2}g_{(T,\xi)}(\xi)\right)\hat{\xi}g^{-1}(T,0)+g(T,0)\hat{\xi}\left(D_{2}g_{(T,\xi)}^{-1}(\xi)\right)\\
|
||||
D_{1}f_{(T,\xi_{b})}(\xi)=D_{1}\left(Ad_{T\exp(\hat{\xi})}\hat{\xi}_{b}\right)(\xi) & =D_{1}\left(g\hat{\xi}_{b}g^{-1}\right)(\xi)\\
|
||||
& =\left(D_{2}g_{(T,\xi)}(\xi)\right)\hat{\xi}_{b}g^{-1}(T,0)+g(T,0)\hat{\xi}_{b}\left(D_{2}g_{(T,\xi)}^{-1}(\xi)\right)\\
|
||||
& =T\hat{\xi}\hat{\xi}_{b}T^{-1}-T\hat{\xi}_{b}\hat{\xi}T^{-1}\\
|
||||
& =T\left(\hat{\xi}\hat{\xi}_{b}-\hat{\xi}_{b}\hat{\xi}\right)T^{-1}\\
|
||||
& =-Ad_{T}(ad_{\xi_{b}}\hat{\xi})\\
|
||||
& =Ad_{T}(ad_{\hat{\xi}}\hat{\xi}_{b})\\
|
||||
& =-Ad_{T}(ad_{\hat{\xi}_{b}}\hat{\xi})\\
|
||||
D_{1}F_{(T,\xi_{b})} & =-(Ad_{T})(ad_{\hat{\xi}_{b}})
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
An alternative, perhaps more intuitive way of deriving this would be to
|
||||
use the fact that the derivative at the origin
|
||||
Where
|
||||
\begin_inset Formula $ad_{\hat{\xi}}:\mathfrak{g}\rightarrow\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
is the adjoint map of the lie algebra.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The second, perhaps more intuitive way of deriving
|
||||
\begin_inset Formula $D_{1}f_{(T,\xi_{b})}(\xi_{b})$
|
||||
\end_inset
|
||||
|
||||
, would be to use the fact that the derivative at the origin
|
||||
\begin_inset Formula $D_{1}Ad_{I}\hat{\xi}_{b}=ad_{\hat{\xi}_{b}}$
|
||||
\end_inset
|
||||
|
||||
|
@ -5224,28 +5244,212 @@ An alternative, perhaps more intuitive way of deriving this would be to
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
D_{1}Ad_{T}\hat{\xi}_{b}(\xi)=D_{1}Ad_{T*I}\hat{\xi}_{b}(\xi)=Ad_{T}\left(D_{1}Ad_{I}\hat{\xi}_{b}(\xi)\right)=Ad_{T}\left(ad_{\hat{\xi}_{b}}(\xi)\right)
|
||||
D_{1}Ad_{T}\hat{\xi}_{b}(\xi)=D_{1}Ad_{T*I}\hat{\xi}_{b}(\xi)=Ad_{T}\left(D_{1}Ad_{I}\hat{\xi}_{b}(\xi)\right)=Ad_{T}\left(ad_{\hat{\xi}}(\hat{\xi}_{b})\right)=-Ad_{T}\left(ad_{\hat{\xi}_{b}}(\hat{\xi})\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
It's difficult to apply a similar procedure to compute the derivative of
|
||||
|
||||
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivative of AdjointTranspose
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The transpose of the Adjoint,
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $Ad_{T}^{T}:\mathfrak{g^{*}\rightarrow g^{*}}$
|
||||
\end_inset
|
||||
|
||||
, is useful as a way to change the reference frame of vectors in the dual
|
||||
space
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
(note the
|
||||
\begin_inset Formula $^{*}$
|
||||
\end_inset
|
||||
|
||||
denoting that we are now in the dual space) because
|
||||
denoting that we are now in the dual space)
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
.
|
||||
To be more concrete, where
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
as
|
||||
\begin_inset Formula $Ad_{T}\hat{\xi}_{b}$
|
||||
\end_inset
|
||||
|
||||
converts the
|
||||
\emph on
|
||||
twist
|
||||
\emph default
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $\xi_{b}$
|
||||
\end_inset
|
||||
|
||||
from the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
frame,
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
|
||||
\end_inset
|
||||
|
||||
converts the
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph on
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
wrench
|
||||
\emph default
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $\xi_{b}^{*}$
|
||||
\end_inset
|
||||
|
||||
from the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
frame
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
.
|
||||
It's difficult to apply a similar derivation as in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "subsec:pose3_adjoint_deriv"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
for the derivative of
|
||||
\begin_inset Formula $Ad_{T}^{T}\hat{\xi}_{b}^{*}$
|
||||
\end_inset
|
||||
|
||||
because
|
||||
\begin_inset Formula $Ad_{T}^{T}$
|
||||
\end_inset
|
||||
|
||||
cannot be naturally defined as a conjugation so we resort to crunching
|
||||
cannot be naturally defined as a conjugation, so we resort to crunching
|
||||
through the algebra.
|
||||
The details are omitted but the result is a form vaguely resembling (but
|
||||
not quite) the
|
||||
The details are omitted but the result is a form that vaguely resembles
|
||||
(but does not exactly match)
|
||||
\begin_inset Formula $ad(Ad_{T}^{T}\hat{\xi}_{b}^{*})$
|
||||
\end_inset
|
||||
|
||||
|
|
BIN
doc/math.pdf
BIN
doc/math.pdf
Binary file not shown.
Loading…
Reference in New Issue