Added Expression header
parent
2d29076187
commit
05c49601ed
|
@ -0,0 +1,407 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Expression.h
|
||||
* @date September 18, 2014
|
||||
* @author Frank Dellaert
|
||||
* @author Paul Furgale
|
||||
* @brief Expressions for Block Automatic Differentiation
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
|
||||
#include <boost/make_shared.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
///-----------------------------------------------------------------------------
|
||||
/// Expression node. The superclass for objects that do the heavy lifting
|
||||
/// An Expression<T> has a pointer to an ExpressionNode<T> underneath
|
||||
/// allowing Expressions to have polymorphic behaviour even though they
|
||||
/// are passed by value. This is the same way boost::function works.
|
||||
/// http://loki-lib.sourceforge.net/html/a00652.html
|
||||
template<class T>
|
||||
class ExpressionNode {
|
||||
protected:
|
||||
ExpressionNode() {
|
||||
}
|
||||
public:
|
||||
virtual ~ExpressionNode() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression as a set
|
||||
virtual std::set<Key> keys() const = 0;
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> = boost::none) const = 0;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class Expression;
|
||||
|
||||
/// Constant Expression
|
||||
template<class T>
|
||||
class ConstantExpression: public ExpressionNode<T> {
|
||||
|
||||
T value_;
|
||||
|
||||
/// Constructor with a value, yielding a constant
|
||||
ConstantExpression(const T& value) :
|
||||
value_(value) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~ConstantExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression, i.e., the empty set
|
||||
virtual std::set<Key> keys() const {
|
||||
std::set<Key> keys;
|
||||
return keys;
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
return value_;
|
||||
}
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// Leaf Expression
|
||||
template<class T>
|
||||
class LeafExpression: public ExpressionNode<T> {
|
||||
|
||||
Key key_;
|
||||
|
||||
/// Constructor with a single key
|
||||
LeafExpression(Key key) :
|
||||
key_(key) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~LeafExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
virtual std::set<Key> keys() const {
|
||||
std::set<Key> keys;
|
||||
keys.insert(key_);
|
||||
return keys;
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
const T& value = values.at<T>(key_);
|
||||
if (jacobians) {
|
||||
std::map<Key, Matrix>::iterator it = jacobians->find(key_);
|
||||
if (it != jacobians->end()) {
|
||||
it->second += Eigen::MatrixXd::Identity(value.dim(), value.dim());
|
||||
} else {
|
||||
(*jacobians)[key_] = Eigen::MatrixXd::Identity(value.dim(),
|
||||
value.dim());
|
||||
}
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// Unary Expression
|
||||
template<class T, class E>
|
||||
class UnaryExpression: public ExpressionNode<T> {
|
||||
|
||||
public:
|
||||
|
||||
typedef boost::function<T(const E&, boost::optional<Matrix&>)> function;
|
||||
|
||||
private:
|
||||
|
||||
boost::shared_ptr<ExpressionNode<E> > expression_;
|
||||
function f_;
|
||||
|
||||
/// Constructor with a unary function f, and input argument e
|
||||
UnaryExpression(function f, const Expression<E>& e) :
|
||||
expression_(e.root()), f_(f) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~UnaryExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
virtual std::set<Key> keys() const {
|
||||
return expression_->keys();
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
|
||||
T value;
|
||||
if (jacobians) {
|
||||
Eigen::MatrixXd H;
|
||||
value = f_(expression_->value(values, jacobians), H);
|
||||
std::map<Key, Matrix>::iterator it = jacobians->begin();
|
||||
for (; it != jacobians->end(); ++it) {
|
||||
it->second = H * it->second;
|
||||
}
|
||||
} else {
|
||||
value = f_(expression_->value(values), boost::none);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// Binary Expression
|
||||
|
||||
template<class T, class E1, class E2>
|
||||
class BinaryExpression: public ExpressionNode<T> {
|
||||
|
||||
public:
|
||||
|
||||
typedef boost::function<
|
||||
T(const E1&, const E2&, boost::optional<Matrix&>,
|
||||
boost::optional<Matrix&>)> function;
|
||||
private:
|
||||
|
||||
boost::shared_ptr<ExpressionNode<E1> > expression1_;
|
||||
boost::shared_ptr<ExpressionNode<E2> > expression2_;
|
||||
function f_;
|
||||
|
||||
/// Constructor with a binary function f, and two input arguments
|
||||
BinaryExpression(function f, //
|
||||
const Expression<E1>& e1, const Expression<E2>& e2) :
|
||||
expression1_(e1.root()), expression2_(e2.root()), f_(f) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~BinaryExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
virtual std::set<Key> keys() const {
|
||||
std::set<Key> keys1 = expression1_->keys();
|
||||
std::set<Key> keys2 = expression2_->keys();
|
||||
keys1.insert(keys2.begin(), keys2.end());
|
||||
return keys1;
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
T val;
|
||||
if (jacobians) {
|
||||
std::map<Key, Matrix> terms1;
|
||||
std::map<Key, Matrix> terms2;
|
||||
Matrix H1, H2;
|
||||
val = f_(expression1_->value(values, terms1),
|
||||
expression2_->value(values, terms2), H1, H2);
|
||||
// TODO: both Jacobians and terms are sorted. There must be a simple
|
||||
// but fast algorithm that does this.
|
||||
typedef std::pair<Key, Matrix> Pair;
|
||||
BOOST_FOREACH(const Pair& term, terms1) {
|
||||
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
|
||||
if (it != jacobians->end()) {
|
||||
it->second += H1 * term.second;
|
||||
} else {
|
||||
(*jacobians)[term.first] = H1 * term.second;
|
||||
}
|
||||
}
|
||||
BOOST_FOREACH(const Pair& term, terms2) {
|
||||
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
|
||||
if (it != jacobians->end()) {
|
||||
it->second += H2 * term.second;
|
||||
} else {
|
||||
(*jacobians)[term.first] = H2 * term.second;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
val = f_(expression1_->value(values), expression2_->value(values),
|
||||
boost::none, boost::none);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* Expression class that supports automatic differentiation
|
||||
*/
|
||||
template<typename T>
|
||||
class Expression {
|
||||
public:
|
||||
|
||||
// Construct a constant expression
|
||||
Expression(const T& value) :
|
||||
root_(new ConstantExpression<T>(value)) {
|
||||
}
|
||||
|
||||
// Construct a leaf expression
|
||||
Expression(const Key& key) :
|
||||
root_(new LeafExpression<T>(key)) {
|
||||
}
|
||||
|
||||
/// Construct a unary expression
|
||||
template<typename E>
|
||||
Expression(typename UnaryExpression<T, E>::function f,
|
||||
const Expression<E>& expression) {
|
||||
// TODO Assert that root of expression is not null.
|
||||
root_.reset(new UnaryExpression<T, E>(f, expression));
|
||||
}
|
||||
|
||||
/// Construct a binary expression
|
||||
template<typename E1, typename E2>
|
||||
Expression(typename BinaryExpression<T, E1, E2>::function f,
|
||||
const Expression<E1>& expression1, const Expression<E2>& expression2) {
|
||||
// TODO Assert that root of expressions 1 and 2 are not null.
|
||||
root_.reset(new BinaryExpression<T, E1, E2>(f, expression1, expression2));
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
std::set<Key> keys() const {
|
||||
return root_->keys();
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
return root_->value(values, jacobians);
|
||||
}
|
||||
|
||||
const boost::shared_ptr<ExpressionNode<T> >& root() const {
|
||||
return root_;
|
||||
}
|
||||
private:
|
||||
boost::shared_ptr<ExpressionNode<T> > root_;
|
||||
};
|
||||
|
||||
// http://stackoverflow.com/questions/16260445/boost-bind-to-operator
|
||||
template<class T>
|
||||
struct apply_compose {
|
||||
typedef T result_type;
|
||||
T operator()(const T& x, const T& y, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
return x.compose(y, H1, H2);
|
||||
}
|
||||
};
|
||||
|
||||
/// Construct a product expression, assumes T::compose(T) -> T
|
||||
template<typename T>
|
||||
Expression<T> operator*(const Expression<T>& expression1,
|
||||
const Expression<T>& expression2) {
|
||||
return Expression<T>(boost::bind(apply_compose<T>(), _1, _2, _3, _4),
|
||||
expression1, expression2);
|
||||
}
|
||||
|
||||
// http://stackoverflow.com/questions/16260445/boost-bind-to-operator
|
||||
template<class E1, class E2>
|
||||
struct apply_product {
|
||||
typedef E2 result_type;
|
||||
E2 operator()(E1 const& x, E2 const& y) const {
|
||||
return x * y;
|
||||
}
|
||||
};
|
||||
|
||||
/// Construct a product expression, assumes E1 * E2 -> E1
|
||||
template<typename E1, typename E2>
|
||||
Expression<E2> operator*(const Expression<E1>& expression1,
|
||||
const Expression<E2>& expression2) {
|
||||
using namespace boost;
|
||||
return Expression<E2>(boost::bind(apply_product<E1, E2>(), _1, _2),
|
||||
expression1, expression2);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// AD Factor
|
||||
template<class T>
|
||||
class BADFactor: NonlinearFactor {
|
||||
|
||||
const T measurement_;
|
||||
const Expression<T> expression_;
|
||||
|
||||
/// get value from expression and calculate error with respect to measurement
|
||||
Vector unwhitenedError(const Values& values) const {
|
||||
const T& value = expression_.value(values);
|
||||
return value.localCoordinates(measurement_);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
BADFactor(const T& measurement, const Expression<T>& expression) :
|
||||
measurement_(measurement), expression_(expression) {
|
||||
}
|
||||
/// Constructor
|
||||
BADFactor(const T& measurement, const ExpressionNode<T>& expression) :
|
||||
measurement_(measurement), expression_(expression) {
|
||||
}
|
||||
/**
|
||||
* Calculate the error of the factor.
|
||||
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
||||
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
||||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
*/
|
||||
virtual double error(const Values& values) const {
|
||||
if (this->active(values)) {
|
||||
const Vector e = unwhitenedError(values);
|
||||
return 0.5 * e.squaredNorm();
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/// get the dimension of the factor (number of rows on linearization)
|
||||
size_t dim() const {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// linearize to a GaussianFactor
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
|
||||
// We will construct an n-ary factor below, where terms is a container whose
|
||||
// value type is std::pair<Key, Matrix>, specifying the
|
||||
// collection of keys and matrices making up the factor.
|
||||
std::map<Key, Matrix> terms;
|
||||
expression_.value(values, terms);
|
||||
Vector b = unwhitenedError(values);
|
||||
SharedDiagonal model = SharedDiagonal();
|
||||
return boost::shared_ptr<JacobianFactor>(
|
||||
new JacobianFactor(terms, b, model));
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
|
@ -13,408 +13,13 @@
|
|||
* @file testBAD.cpp
|
||||
* @date September 18, 2014
|
||||
* @author Frank Dellaert
|
||||
* @author Paul Furgale
|
||||
* @brief unit tests for Block Automatic Differentiation
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
|
||||
#include <boost/make_shared.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
#include <gtsam_unstable/base/Expression.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
///-----------------------------------------------------------------------------
|
||||
/// Expression node. The superclass for objects that do the heavy lifting
|
||||
/// An Expression<T> has a pointer to an ExpressionNode<T> underneath
|
||||
/// allowing Expressions to have polymorphic behaviour even though they
|
||||
/// are passed by value. This is the same way boost::function works.
|
||||
/// http://loki-lib.sourceforge.net/html/a00652.html
|
||||
template<class T>
|
||||
class ExpressionNode {
|
||||
protected:
|
||||
ExpressionNode() {
|
||||
}
|
||||
public:
|
||||
virtual ~ExpressionNode() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression as a set
|
||||
virtual std::set<Key> keys() const = 0;
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> = boost::none) const = 0;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class Expression;
|
||||
|
||||
/// Constant Expression
|
||||
template<class T>
|
||||
class ConstantExpression: public ExpressionNode<T> {
|
||||
|
||||
T value_;
|
||||
|
||||
/// Constructor with a value, yielding a constant
|
||||
ConstantExpression(const T& value) :
|
||||
value_(value) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~ConstantExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression, i.e., the empty set
|
||||
virtual std::set<Key> keys() const {
|
||||
std::set<Key> keys;
|
||||
return keys;
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
return value_;
|
||||
}
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// Leaf Expression
|
||||
template<class T>
|
||||
class LeafExpression: public ExpressionNode<T> {
|
||||
|
||||
Key key_;
|
||||
|
||||
/// Constructor with a single key
|
||||
LeafExpression(Key key) :
|
||||
key_(key) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~LeafExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
virtual std::set<Key> keys() const {
|
||||
std::set<Key> keys;
|
||||
keys.insert(key_);
|
||||
return keys;
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
const T& value = values.at<T>(key_);
|
||||
if (jacobians) {
|
||||
std::map<Key, Matrix>::iterator it = jacobians->find(key_);
|
||||
if (it != jacobians->end()) {
|
||||
it->second += Eigen::MatrixXd::Identity(value.dim(), value.dim());
|
||||
} else {
|
||||
(*jacobians)[key_] = Eigen::MatrixXd::Identity(value.dim(),
|
||||
value.dim());
|
||||
}
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// Unary Expression
|
||||
template<class T, class E>
|
||||
class UnaryExpression: public ExpressionNode<T> {
|
||||
|
||||
public:
|
||||
|
||||
//typedef T (*function)(const E&, boost::optional<Matrix&>);
|
||||
typedef boost::function<T(const E&, boost::optional<Matrix&>)> function;
|
||||
|
||||
private:
|
||||
|
||||
boost::shared_ptr<ExpressionNode<E> > expression_;
|
||||
function f_;
|
||||
|
||||
/// Constructor with a unary function f, and input argument e
|
||||
UnaryExpression(function f, const Expression<E>& e) :
|
||||
expression_(e.root()), f_(f) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~UnaryExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
virtual std::set<Key> keys() const {
|
||||
return expression_->keys();
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
|
||||
T value;
|
||||
if (jacobians) {
|
||||
Eigen::MatrixXd H;
|
||||
value = f_(expression_->value(values, jacobians), H);
|
||||
std::map<Key, Matrix>::iterator it = jacobians->begin();
|
||||
for (; it != jacobians->end(); ++it) {
|
||||
it->second = H * it->second;
|
||||
}
|
||||
} else {
|
||||
value = f_(expression_->value(values), boost::none);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// Binary Expression
|
||||
|
||||
template<class T, class E1, class E2>
|
||||
class BinaryExpression: public ExpressionNode<T> {
|
||||
|
||||
public:
|
||||
|
||||
//typedef T (*function)(const E1&, const E2&, boost::optional<Matrix&>,
|
||||
// boost::optional<Matrix&>);
|
||||
typedef boost::function<T(const E1&, const E2&, boost::optional<Matrix&>,
|
||||
boost::optional<Matrix&>)> function;
|
||||
private:
|
||||
|
||||
boost::shared_ptr<ExpressionNode<E1> > expression1_;
|
||||
boost::shared_ptr<ExpressionNode<E2> > expression2_;
|
||||
function f_;
|
||||
|
||||
/// Constructor with a binary function f, and two input arguments
|
||||
BinaryExpression(function f, //
|
||||
const Expression<E1>& e1, const Expression<E2>& e2) :
|
||||
expression1_(e1.root()), expression2_(e2.root()), f_(f) {
|
||||
}
|
||||
|
||||
friend class Expression<T> ;
|
||||
|
||||
public:
|
||||
|
||||
virtual ~BinaryExpression() {
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
virtual std::set<Key> keys() const {
|
||||
std::set<Key> keys1 = expression1_->keys();
|
||||
std::set<Key> keys2 = expression2_->keys();
|
||||
keys1.insert(keys2.begin(), keys2.end());
|
||||
return keys1;
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
virtual T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
T val;
|
||||
if (jacobians) {
|
||||
std::map<Key, Matrix> terms1;
|
||||
std::map<Key, Matrix> terms2;
|
||||
Matrix H1, H2;
|
||||
val = f_(expression1_->value(values, terms1),
|
||||
expression2_->value(values, terms2), H1, H2);
|
||||
// TODO: both Jacobians and terms are sorted. There must be a simple
|
||||
// but fast algorithm that does this.
|
||||
typedef std::pair<Key, Matrix> Pair;
|
||||
BOOST_FOREACH(const Pair& term, terms1) {
|
||||
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
|
||||
if (it != jacobians->end()) {
|
||||
it->second += H1 * term.second;
|
||||
} else {
|
||||
(*jacobians)[term.first] = H1 * term.second;
|
||||
}
|
||||
}
|
||||
BOOST_FOREACH(const Pair& term, terms2) {
|
||||
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
|
||||
if (it != jacobians->end()) {
|
||||
it->second += H2 * term.second;
|
||||
} else {
|
||||
(*jacobians)[term.first] = H2 * term.second;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
val = f_(expression1_->value(values), expression2_->value(values),
|
||||
boost::none, boost::none);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* Expression class that supports automatic differentiation
|
||||
*/
|
||||
template<typename T>
|
||||
class Expression {
|
||||
public:
|
||||
|
||||
// Construct a constant expression
|
||||
Expression(const T& value) :
|
||||
root_(new ConstantExpression<T>(value)) {
|
||||
}
|
||||
|
||||
// Construct a leaf expression
|
||||
Expression(const Key& key) :
|
||||
root_(new LeafExpression<T>(key)) {
|
||||
}
|
||||
|
||||
/// Construct a unary expression
|
||||
template<typename E>
|
||||
Expression(typename UnaryExpression<T, E>::function f,
|
||||
const Expression<E>& expression) {
|
||||
// TODO Assert that root of expression is not null.
|
||||
root_.reset(new UnaryExpression<T, E>(f, expression));
|
||||
}
|
||||
|
||||
/// Construct a binary expression
|
||||
template<typename E1, typename E2>
|
||||
Expression(typename BinaryExpression<T, E1, E2>::function f,
|
||||
const Expression<E1>& expression1, const Expression<E2>& expression2) {
|
||||
// TODO Assert that root of expressions 1 and 2 are not null.
|
||||
root_.reset(new BinaryExpression<T, E1, E2>(f, expression1, expression2));
|
||||
}
|
||||
|
||||
/// Return keys that play in this expression
|
||||
std::set<Key> keys() const {
|
||||
return root_->keys();
|
||||
}
|
||||
|
||||
/// Return value and optional derivatives
|
||||
T value(const Values& values,
|
||||
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||
return root_->value(values, jacobians);
|
||||
}
|
||||
|
||||
const boost::shared_ptr<ExpressionNode<T> >& root() const {
|
||||
return root_;
|
||||
}
|
||||
private:
|
||||
boost::shared_ptr<ExpressionNode<T> > root_;
|
||||
};
|
||||
|
||||
// http://stackoverflow.com/questions/16260445/boost-bind-to-operator
|
||||
template<class T>
|
||||
struct apply_compose {
|
||||
typedef T result_type;
|
||||
T operator()(const T& x, const T& y, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
return x.compose(y, H1, H2);
|
||||
}
|
||||
};
|
||||
|
||||
/// Construct a product expression, assumes T::compose(T) -> T
|
||||
template<typename T>
|
||||
Expression<T> operator*(const Expression<T>& expression1,
|
||||
const Expression<T>& expression2) {
|
||||
return Expression<T>(boost::bind(apply_compose<T>(), _1, _2, _3, _4),
|
||||
expression1, expression2);
|
||||
}
|
||||
|
||||
// http://stackoverflow.com/questions/16260445/boost-bind-to-operator
|
||||
template<class E1, class E2>
|
||||
struct apply_product {
|
||||
typedef E2 result_type;
|
||||
E2 operator()(E1 const& x, E2 const& y) const {
|
||||
return x * y;
|
||||
}
|
||||
};
|
||||
|
||||
/// Construct a product expression, assumes E1 * E2 -> E1
|
||||
template<typename E1, typename E2>
|
||||
Expression<E2> operator*(const Expression<E1>& expression1,
|
||||
const Expression<E2>& expression2) {
|
||||
using namespace boost;
|
||||
return Expression<E2>(boost::bind(apply_product<E1, E2>(), _1, _2),
|
||||
expression1, expression2);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void printPair(std::pair<Key, Matrix> pair) {
|
||||
std::cout << pair.first << ": " << pair.second << std::endl;
|
||||
}
|
||||
// usage: std::for_each(terms.begin(), terms.end(), printPair);
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/// AD Factor
|
||||
template<class T>
|
||||
class BADFactor: NonlinearFactor {
|
||||
|
||||
const T measurement_;
|
||||
const Expression<T> expression_;
|
||||
|
||||
/// get value from expression and calculate error with respect to measurement
|
||||
Vector unwhitenedError(const Values& values) const {
|
||||
const T& value = expression_.value(values);
|
||||
return value.localCoordinates(measurement_);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
BADFactor(const T& measurement, const Expression<T>& expression) :
|
||||
measurement_(measurement), expression_(expression) {
|
||||
}
|
||||
/// Constructor
|
||||
BADFactor(const T& measurement, const ExpressionNode<T>& expression) :
|
||||
measurement_(measurement), expression_(expression) {
|
||||
}
|
||||
/**
|
||||
* Calculate the error of the factor.
|
||||
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
||||
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
||||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
*/
|
||||
virtual double error(const Values& values) const {
|
||||
if (this->active(values)) {
|
||||
const Vector e = unwhitenedError(values);
|
||||
return 0.5 * e.squaredNorm();
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/// get the dimension of the factor (number of rows on linearization)
|
||||
size_t dim() const {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// linearize to a GaussianFactor
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
|
||||
// We will construct an n-ary factor below, where terms is a container whose
|
||||
// value type is std::pair<Key, Matrix>, specifying the
|
||||
// collection of keys and matrices making up the factor.
|
||||
std::map<Key, Matrix> terms;
|
||||
expression_.value(values, terms);
|
||||
Vector b = unwhitenedError(values);
|
||||
SharedDiagonal model = SharedDiagonal();
|
||||
return boost::shared_ptr<JacobianFactor>(
|
||||
new JacobianFactor(terms, b, model));
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
|
@ -484,7 +89,6 @@ TEST(BAD, test) {
|
|||
// Check linearization
|
||||
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
||||
EXPECT( assert_equal(*expected, *gf, 1e-9));
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -494,16 +98,6 @@ TEST(BAD, compose) {
|
|||
Expression<Rot3> R3 = R1 * R2;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
TEST(BAD, rotate) {
|
||||
Expression<Rot3> R(1);
|
||||
Expression<Point3> p(2);
|
||||
// fails because optional derivatives can't be delivered by the operator*()
|
||||
// Need a convention for products like these. "act" ?
|
||||
// Expression<Point3> q = R * p;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue