Better noise values, little cleanup

release/4.3a0
krunalchande 2015-03-02 16:55:58 -05:00
parent 77f69146f6
commit 04cf6686b4
1 changed files with 22 additions and 21 deletions

View File

@ -968,7 +968,6 @@ TEST(ImuFactor, bodyPSensorNoBias) {
TEST(ImuFactor, bodyPSensorWithBias) {
int numFactors = 80;
imuBias::ConstantBias zeroBias(Vector3(0, 0, 0), Vector3(0.0, 0, 0)); // Biases (acc, rot)
Vector6 noiseBetweenBiasSigma; noiseBetweenBiasSigma << Vector3(2.0e-5, 2.0e-5, 2.0e-5), Vector3(3.0e-6, 3.0e-6, 3.0e-6);
SharedDiagonal biasNoiseModel = noiseModel::Diagonal::Sigmas(noiseBetweenBiasSigma);
@ -985,9 +984,9 @@ TEST(ImuFactor, bodyPSensorWithBias) {
Pose3 bPs(Rot3::ypr(0,0,M_PI), Point3());
Matrix3 accCov = 1e-4 * I_3x3;
Matrix3 gyroCov = 1e-6 * I_3x3;
Matrix3 integrationCov = 1e-8 * I_3x3;
Matrix3 accCov = 1e-7 * I_3x3;
Matrix3 gyroCov = 1e-8 * I_3x3;
Matrix3 integrationCov = 1e-9 * I_3x3;
double deltaT = 0.005;
// Specify noise values on priors
@ -1012,9 +1011,10 @@ TEST(ImuFactor, bodyPSensorWithBias) {
graph.add(priorVel);
values.insert(V(0), zeroVel);
PriorFactor<imuBias::ConstantBias> priorBias(B(0), zeroBias, priorNoiseBias);
graph.add(priorBias);
values.insert(B(0), zeroBias);
imuBias::ConstantBias priorBias(Vector3(0, 0, 0), Vector3(0.0, 0.01, 0)); // Biases (acc, rot)
PriorFactor<imuBias::ConstantBias> priorBiasFactor(B(0), priorBias, priorNoiseBias);
graph.add(priorBiasFactor);
values.insert(B(0), priorBias);
for (int i = 1; i < numFactors; i++) {
ImuFactor::PreintegratedMeasurements pre_int_data = ImuFactor::PreintegratedMeasurements(imuBias::ConstantBias(Vector3(0, 0.0, 0.0),
@ -1024,37 +1024,38 @@ TEST(ImuFactor, bodyPSensorWithBias) {
// Create factor
ImuFactor factor(X(i-1), V(i-1), X(i), V(i), B(i-1), pre_int_data, n_gravity, omegaCoriolis);
graph.add(factor);
graph.add(BetweenFactor<imuBias::ConstantBias>(B(i-1), B(i), zeroBias, biasNoiseModel));
imuBias::ConstantBias betweenBias(Vector3(0, 0, 0), Vector3(0.0, 0, 0));
graph.add(BetweenFactor<imuBias::ConstantBias>(B(i-1), B(i), betweenBias, biasNoiseModel));
values.insert(X(i), Pose3());
values.insert(V(i), zeroVel);
values.insert(B(i), zeroBias);
values.insert(B(i), priorBias);
}
Values results = LevenbergMarquardtOptimizer(graph, values).optimize();
cout.precision(2);
Marginals marginals(graph, results);
imuBias::ConstantBias biasActual = results.at<imuBias::ConstantBias>(B(numFactors-1));
imuBias::ConstantBias biasExpected(Vector3(0,0,0), Vector3(0, 0.01, 0.0));
EXPECT(assert_equal(biasExpected, biasActual, 1e-3));
results.print("Results: \n");
// results.print("Results: \n");
//
// for (int i = 0; i < numFactors; i++) {
// imuBias::ConstantBias currentBias = results.at<imuBias::ConstantBias>(B(i));
// cout << "currentBiasEstimate: " << currentBias.vector().transpose() << endl;
// }
for (int i = 0; i < numFactors; i++) {
imuBias::ConstantBias currentBias = results.at<imuBias::ConstantBias>(B(i));
cout << "currentBiasEstimate: " << currentBias.vector().transpose() << endl;
}
// for (int i = 0; i < numFactors; i++) {
// Matrix biasCov = marginals.marginalCovariance(B(i));
// cout << "b" << i << " cov: " << biasCov.diagonal().transpose() << endl;
// }
//
// for (int i = 0; i < numFactors; i++) {
// Pose3 currentPose = results.at<Pose3>(X(i));
// cout << "currentYPREstimate: " << currentPose.rotation().ypr().transpose()*180/M_PI << endl;
// }
for (int i = 0; i < numFactors; i++) {
Pose3 currentPose = results.at<Pose3>(X(i));
cout << "currentYPREstimate (in Deg): " << currentPose.rotation().ypr().transpose()*180/M_PI << endl;
}
// for (int i = 0; i < numFactors; i++)
// cout << "x" << i << " covariance: " << marginals.marginalCovariance(X(i)).diagonal().transpose() << endl;
imuBias::ConstantBias biasExpected(Vector3(0,0,0), Vector3(0, 0.01, 0.0));
EXPECT(assert_equal(biasExpected, biasActual, 1e-3));
}
/* ************************************************************************* */