From 04cf6686b4c1205ce322d22e2d2bda8d3cead666 Mon Sep 17 00:00:00 2001 From: krunalchande Date: Mon, 2 Mar 2015 16:55:58 -0500 Subject: [PATCH] Better noise values, little cleanup --- gtsam/navigation/tests/testImuFactor.cpp | 43 ++++++++++++------------ 1 file changed, 22 insertions(+), 21 deletions(-) diff --git a/gtsam/navigation/tests/testImuFactor.cpp b/gtsam/navigation/tests/testImuFactor.cpp index ecf019a04..b47612088 100644 --- a/gtsam/navigation/tests/testImuFactor.cpp +++ b/gtsam/navigation/tests/testImuFactor.cpp @@ -968,7 +968,6 @@ TEST(ImuFactor, bodyPSensorNoBias) { TEST(ImuFactor, bodyPSensorWithBias) { int numFactors = 80; - imuBias::ConstantBias zeroBias(Vector3(0, 0, 0), Vector3(0.0, 0, 0)); // Biases (acc, rot) Vector6 noiseBetweenBiasSigma; noiseBetweenBiasSigma << Vector3(2.0e-5, 2.0e-5, 2.0e-5), Vector3(3.0e-6, 3.0e-6, 3.0e-6); SharedDiagonal biasNoiseModel = noiseModel::Diagonal::Sigmas(noiseBetweenBiasSigma); @@ -985,9 +984,9 @@ TEST(ImuFactor, bodyPSensorWithBias) { Pose3 bPs(Rot3::ypr(0,0,M_PI), Point3()); - Matrix3 accCov = 1e-4 * I_3x3; - Matrix3 gyroCov = 1e-6 * I_3x3; - Matrix3 integrationCov = 1e-8 * I_3x3; + Matrix3 accCov = 1e-7 * I_3x3; + Matrix3 gyroCov = 1e-8 * I_3x3; + Matrix3 integrationCov = 1e-9 * I_3x3; double deltaT = 0.005; // Specify noise values on priors @@ -1012,9 +1011,10 @@ TEST(ImuFactor, bodyPSensorWithBias) { graph.add(priorVel); values.insert(V(0), zeroVel); - PriorFactor priorBias(B(0), zeroBias, priorNoiseBias); - graph.add(priorBias); - values.insert(B(0), zeroBias); + imuBias::ConstantBias priorBias(Vector3(0, 0, 0), Vector3(0.0, 0.01, 0)); // Biases (acc, rot) + PriorFactor priorBiasFactor(B(0), priorBias, priorNoiseBias); + graph.add(priorBiasFactor); + values.insert(B(0), priorBias); for (int i = 1; i < numFactors; i++) { ImuFactor::PreintegratedMeasurements pre_int_data = ImuFactor::PreintegratedMeasurements(imuBias::ConstantBias(Vector3(0, 0.0, 0.0), @@ -1024,37 +1024,38 @@ TEST(ImuFactor, bodyPSensorWithBias) { // Create factor ImuFactor factor(X(i-1), V(i-1), X(i), V(i), B(i-1), pre_int_data, n_gravity, omegaCoriolis); graph.add(factor); - graph.add(BetweenFactor(B(i-1), B(i), zeroBias, biasNoiseModel)); + imuBias::ConstantBias betweenBias(Vector3(0, 0, 0), Vector3(0.0, 0, 0)); + graph.add(BetweenFactor(B(i-1), B(i), betweenBias, biasNoiseModel)); values.insert(X(i), Pose3()); values.insert(V(i), zeroVel); - values.insert(B(i), zeroBias); + values.insert(B(i), priorBias); } Values results = LevenbergMarquardtOptimizer(graph, values).optimize(); cout.precision(2); Marginals marginals(graph, results); imuBias::ConstantBias biasActual = results.at(B(numFactors-1)); - imuBias::ConstantBias biasExpected(Vector3(0,0,0), Vector3(0, 0.01, 0.0)); - EXPECT(assert_equal(biasExpected, biasActual, 1e-3)); + results.print("Results: \n"); -// results.print("Results: \n"); -// -// for (int i = 0; i < numFactors; i++) { -// imuBias::ConstantBias currentBias = results.at(B(i)); -// cout << "currentBiasEstimate: " << currentBias.vector().transpose() << endl; -// } + for (int i = 0; i < numFactors; i++) { + imuBias::ConstantBias currentBias = results.at(B(i)); + cout << "currentBiasEstimate: " << currentBias.vector().transpose() << endl; + } // for (int i = 0; i < numFactors; i++) { // Matrix biasCov = marginals.marginalCovariance(B(i)); // cout << "b" << i << " cov: " << biasCov.diagonal().transpose() << endl; // } // -// for (int i = 0; i < numFactors; i++) { -// Pose3 currentPose = results.at(X(i)); -// cout << "currentYPREstimate: " << currentPose.rotation().ypr().transpose()*180/M_PI << endl; -// } + for (int i = 0; i < numFactors; i++) { + Pose3 currentPose = results.at(X(i)); + cout << "currentYPREstimate (in Deg): " << currentPose.rotation().ypr().transpose()*180/M_PI << endl; + } // for (int i = 0; i < numFactors; i++) // cout << "x" << i << " covariance: " << marginals.marginalCovariance(X(i)).diagonal().transpose() << endl; + + imuBias::ConstantBias biasExpected(Vector3(0,0,0), Vector3(0, 0.01, 0.0)); + EXPECT(assert_equal(biasExpected, biasActual, 1e-3)); } /* ************************************************************************* */